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Abstract. The application of the model predictive control (MPC) based on discrete-

time Laguerre functions is presented in this paper. A nonlinear three-tank hydraulic 

system is used as an object to which the proposed algorithm is applied. The paper also 

presents the method of linearization of the nonlinear system, as well as the procedure 

for the controller design. For the verification of the proposed control method, digital 

simulations are performed using Matlab. 
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1. INTRODUCTION 

Model Predictive Control (MPC) is a control method that has many applications in the 

different fields of engineering. For a long time, it has been in the focus of interest of both 

engineering and academic circles. In a sense, it represents a further development of 

optimal control algorithms for linear systems developed in the 50s and 60s of the last 

century [1], [2]. MPC has traditionally been used to control a system with relatively slow 

dynamics, but recently, this method for the linear and nonlinear systems control has found 

application in the chemical, petroleum and other industries [3], [4], due to more efficient 

optimization formulations and the availability of computational power. 
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The main idea is to use a dynamical model and an optimization formulation to 

optimize the predicted future plant behaviour, with future inputs as degrees of freedom in 

the optimization [5]. The optimization is performed for a finite prediction horizon into the 

future but re-optimized at every time step (hence the alternative name Receding Horizon 

Control). While the optimal control action over a future time horizon is calculated, only 

the first control action is implemented before the calculations are repeated at the next 

sample instant. This feature distinguishes MPC from other optimal control algorithms 

whose control law is determined off-line, i.e. it is pre-calculated. 

For the application of a digital MPC, it is possible to use various models of the 

system, such as the impulse response model, the transfer function model, the state space 

model, etc. In this paper, the state space model is used, whose main advantage is an easy 

representation of the system with multiple inputs and multiple outputs [6]. 

To cope with the time needed for the calculation of the optimal control move, as well 

as the number of the parameters used for the fast calculations when the long horizon is 

used, different methods can be introduced within the traditional MPC algorithm. One of 

them is using orthogonal functions representations of the predicted control trajectories. 

This paper shows how Laguerre functions can be applied in this manner [7]. 

The system of three reservoirs is considered in this paper [8]. The primary control 

problem for this system is to achieve the desired fluid level in each of the tanks and keep 

this level constant. The control of the levels in all three tanks is achieved by the pump 

control, which serves to supply fluid to the system, and by automatic opening and closing 

valves that provide desired fluid flow.  

The paper is organized in the following way. Section 2 provides a detailed description 

of the system with three reservoirs. Section 3 describes a nonlinear model of the system, 

and the following, Section 4, shows the process of linearizing the model of the system. 

Section 5 explains the design and application of the digital MPC based on Laguerre 

functions, and in Section 6, the simulated results are given. Section 7 contains conclusions 

and remarks on further work. 

2. THE THREE-TANK SYSTEM 

The three-tank system consists of three physically separated reservoirs that, at their 

bottom, have valves whose opening allows the water to flow out of the tank. All three 

tanks are of different shapes. The first reservoir, viewed from above, has a constant cross-

section. The other two reservoirs are spherical and conical, so they have different cross 

sections, which create basic nonlinearities in the system. To fill the fluid in the first tank, 

a variable flow pump is used. Fluid, due to gravity, goes into the other two reservoirs, and 

the flow is regulated by opening and closing the aforementioned controlled valves. There 

is a fluid level meter in each tank. Below the third tank is an auxiliary tank used to collect 

the fluid that flows from the third tank so that the same fluid is reused for charging the 

first tank with the pump. The block diagram of the described system is given in Fig. 1.  
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Fig. 1 The three-tank system 

It is assumed that the valve-controlled system is considered, and the flow of the fluid, 

provided by the DC pump, is a constant parameter (Fig. 2). 

The states of the system H1, H2, and H3 represent the levels of the fluid in the first, 

second and third reservoirs, respectively.  

The system is controlled by three inputs:  

 u1  the control of the valve C1, 

 u2  the control of the valve C2, and  

 u3  the control of the valve C3.    

The possibility of occurrence of fluctuations in fluid level control in reservoirs could 

be produced by nonlinearities due to reservoirs shape, valve geometry and dead zone of 

the valves. 

 

Fig. 2 Valve-controlled three tank system 
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The laminar outflow rate of an “ideal” fluid can be calculated according to Bernoulli 

law: 

 2 ,  1,3r rQ S gH r  , (1) 

where  is the orifice outflow coefficient, S is the output area of the orifice, Hr is the level 

of the liquid in the tank r, and g is the gravitational acceleration.  

If the value for the openness of the valve is defined by S = ur S0r, 0  ur  1, where S0r 

is fully opened valve constant, ur is the coefficient which determines how much the valve 

is opened, the following equation is obtained:  

 0 2 ,  1,3r

r r r r r r rQ u S gH D u H r   , (2) 

where 
01 2,  2r r rD S g   .

r is the value which depends on turbulence and 

acceleration of the liquid, and it can be different for the different kind of fluids.  

The system dynamics is described by: 
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From (3), it can be obtained: 
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where ( )i iH  is a cross sectional area of the -thi tank at the level Hi, and the other 

parameters of the tanks are (Fig. 3): 0.25ma  , 0.035mw , 0.1mc  , 0.345mb  , 

0.364mR  , 1max 2max 3max 0.35mH H H   . 

Substituting (4) in (3) yields: 
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Fig. 3 Dimensions of the tanks 

 

The last set of equations is a nonlinear model of the observed system and completely 

describes its dynamics. In order to implement the proposed control algorithm, a linearized 

model of this system is required. 

3. LINEARIZED MODEL OF THE THREE TANK SYSTEM  

The equilibrium point of the system is obtained by equating the right side of the (5) 

with zero: 
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Using (6), the equilibrium point is calculated by: 

 31 2

0 1 10 10 2 20 20 3 30 30q D u H D u H D u H
    . (7) 

By denoting  

 ( , , )i i i idH dt F q H u ,  

the equation (5) can be reformulated as: 
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Using the Taylor expansion of (8), around the obtained equilibrium point, the linearized 

model is obtained by 

 H u

dh
J h J u

dt
  , (9) 

where h =H  H0 is a deviation from the equilibrium point H0, u =u  u0 is a deviation 

from the control u0. Jacobian matrices of the (8) are then determined by 
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For the three tank system described by (8), the obtained Jacobians have the following 

form: 
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Now, the linearized model of the system can be represented in the form of a linear 

differential equation: 

 (t)h Ah Bu  , (10) 

where matrices A  and B  are already obtained Jacobians 
hJ and 

uJ , respectively.  

 4. DESIGN OF MPC OF THREE TANK SYSTEM  

 

In order to define the increment of the control signalu , and to design MPC based on 

Laguerre functions, the augmented model of the system is obtained by introducing the 

integrators: 
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where matrices Am, Bm, and Cm are discrete-time matrices of the system.   

The optimized control trajectory  

 
c1 2 N(k) [ u (k) u (k) ... u (k)],    u  (12) 

consists of the increments of the control signal in the control horizon Nc and it is 

calculated by 

 T

i i i(k) (k)u L η   (13) 

where  

 
T i i i
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i

L  (14) 

is Laguerre functions vector, and i is Laguerre coefficient vector [7]. The parameters of 

the Laguerre functions are determined from the difference equation of the discrete-time 

Laguerre functions defined as: 
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where the matrix Ali, containing the parameters of the Laguerre network,  and 
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and the vector of the initial conditions is 
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The optimal control action is then calculated by 
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where m represents the number of inputs. 

5. DIGITAL SIMULATION RESULTS 

After the linearization method described in Section 3, the following Jacobian matrices 

of the three tank system are obtained: 

 

0.0274 0 0

0.0344 0.0366 0 ,

0 0.0290 0.0297

0.0041 0 0

0.0052 0.0052 0 .

0 0.0041 0.0042

 
 

 
 
  

 
 

 
 
  

u

h
J

J

 (19) 

The parameters that are used for the Jacobians and the simulations are: 

 
10 20 30H 0.1m, H 0.1m, H 0.1m    , 

 3

0q 2.7958e 005m / s  , 

 10 20 30u 0.7733,u 0.7734,u 0.7676   , 

 1 2 3D 7.3322e 005,D 7.667e 005,D 7.8632e 005      , 

 1 2 30.3071, 0.3265, 0.3342     . 

The simulations are conducted, and the robustness of the proposed controller is examined. 

As it was mentioned before, the equilibrium point is calculated for the equal value of the 

tanks levels of   
10 20 30H H H 0.1m   , and the referent tank level values are chosen as: 

1ref 2ref 3refH 0.08m, H 0.09m, H 0.11m   . 

It can be seen that the referent levels are achieved using the proposed MPC, and the 

desired values of the fluid levels for the first, second and third tank are shown in Figs. 4, 5 

and 6, respectively: 



 Digital Model Predictive Control of the Three Tank System based on Laguerre Functions 161 

 
Fig. 4 Level H1 

 

Fig. 5 Level H2  
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Fig. 6 Level H3 

 

The proposed discrete-time MPC based on the Laguerre functions, defined by (17), 

applied to the plant described by (10) results in the control signals depicted in Figs. 7, 8 

and 9.   

 

Fig. 7 MPC signal 
1u  
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Fig. 8 MPC signal 
2u  

 

Fig. 9 MPC signal 3u  
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6. CONCLUSION 

This paper describes the application of a digital model predictive control (MPC) based 

on the Laguerre functions applied to the nonlinear system with multiple inputs and 

outputs. As a control object, the system with three reservoirs of different shapes and 

dimensions was used. The system is valve-controlled. Digital MPC has been designed and 

implemented, and satisfactory results have been obtained regarding the robustness of the 

proposed controller. 

For the future work, it is planned to use the other orthogonal, almost orthogonal and 

quasi-orthogonal functions of the Legendre type. In order to cope with the disturbance, a 

combination of MPC and sliding mode control should be considered. This combination 

could use the good features of each of the aforementioned control algorithms to obtain an 

optimal control law. 
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