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Abstract. This paper presents a method for adequate transformation of the nonlinear 

plants and control systems models into quasilinear forms and also analytical methods 

for the design of nonlinear control systems on the basis of these quasilinear models. 

The solution of control analytical design problem for the quasilinear model of plants 

exists, if the controllability functional matrix is non singular. The suggested analytical 

design methods provide asymptotical stability of the equilibrium point in a limited area 

of the state space or it’s globally asymptotically stability and also desirable performance 

of transients. There methods can be applied to design control systems for nonlinear plants 

with differentiable nonlinearity. Examples of nonlinear control systems design resulted in 

concrete plants. 
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1. INTRODUCTION 

The equations of nonlinear plants and control systems frequently contain differentiable 

nonlinear functions. Differentiability of the functions enables transformation of equations 

into a kind that is convenient for the design of nonlinear control systems. Nonlinear 

feedbacks are used for linearization and transformations of the plants nonlinear equations 

to the controllable canonical form [1-3]. The method of transformation is applied at the 

solution of a disturbance rejection problem [3, 4]; for the design of the pacifying 

feedback and solution of the adaptive control and synchronization problems [5, 6]. Fussy 
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control for various plants is usually designed on the basis of the linear equations. 

However, the nearness of linear models result in the necessity of application of the hybrid 

control [7].  

The purpose of this paper is the representation of a rather effective approach to the 

design of nonlinear control systems on the basis of transformation of the plants and 

systems equations to the quasilinear form [8-10]. The mathematical basis of this 

transformation is independence from the integration way of the curvilinear integral of 

many variables function [11]. The quasilinear form of nonlinear equations is close to 

linear, therefore the well developed analytical methods of the linear control theory can be 

applied to the problem solution of nonlinear systems design. 

This paper is organized as follows. The problem of nonlinear control systems design is 

given in section 2. Transformation of the nonlinear equations of dynamic plants and 

systems to the quasilinear form is presented in section 3. Features of this transformation 

are shown on a concrete example of a nonlinear plant. Suggested method of analytical 

nonlinear control systems design on the basis of quasilinear forms and a corresponding 

example are given in section 4. The design method considered in this section is very 

simple, but it allows providing stability of nonlinear systems equilibrium point only in the 

limited area of the system state space. The fifth section is devoted to conditions of 

globally asymptotical stability of quasilinear systems. In the final section the more 

complex method for analytical design of the globally asymptotically stable nonlinear 

control systems is offered; the corresponding example of the design is the result. 

2. STATEMENT OF THE DESIGN PROBLEM 

Let some nonlinear controlled plant be described by the equation in deviations  

 ( , )x f x u , (1) 

where  nx R  – measured state vector; ( )u u x  – scalar control; 

1( , ) [ ( , ) ( , )] T
nf x u f x u f x u  – nonlinear differentiable vector-function so that 

 (0, 0) 0f ,  
( , )

( )





i
iu

f x u
f x

u
, ,  nx R x .  (2) 

The design problem consists in the definition of the control u = u(x) so that equilibrium 

point of the plant (1) was asymptotically stable, at least, in the limited area, i.e. 

 0lim ( , , ( )) 0
t

x t x u x


 , 0 0
nx R  ,  (3) 

where 0  – limited attraction area of the equilibrium point 0x  . 

Before passing to the solution of the statement problem, we shall define the term 

«quasilinear form» of nonlinear functions and nonlinear vector-functions. 
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3. QUASILINEAR FORM OF NONLINEARITIES 

If some nonlinear function f (x) = f (x1, ..., xn) of variables x1, ..., xn is differentiable it 

always can be presented as follows: 

 
1( ) ( ) (0) [ ( ) ( )] (0)T

nf x a x x f a x a x x f    ,  (4) 

where a
T
(x) – some functional n-vector and ai(x) – its components determined by 

integration of partial derivatives fi (x) = f(x) / xi by some way from the point x  0 to a 

point x [8, 11]. Various ways of integration give various quasilinear representations of the 

same nonlinear function. We shall look at the result of three variants of the definition of 

the components ai(x): 

 

1

1 1

0

( ) ( , , ,0, 0)I
i i i ia x f x x x d   ,  1,i n ,  (5) 

 

1

1

0

( ) (0, 0, , , )II
i i i i na x f x x x d   ,  1,i n , (6) 

 

1

1

0

( ) ( )III
ia x f x d   ,    1,i n . (7) 

The validity of the expressions (4)-(7) will be shown on the concrete examples. Let us 

consider function 
2 3
1 2 1 2( )f x x x x x    , where x1, x2 there are independent variables 

and  – some constant. The function f*(x) is differentiable; therefore there are its partial 

derivatives:  

 3
1 1 2 2( ) 2f x x x x    ,  2 2

2 1 1 2( ) 3f x x x x   , (8) 

and (0)f   . The formula (5) with reference to the derivatives (8) gives: 
1( ) 0Ia x  , 

2 2

2 1 1 2( )Ia x x x x   , i.e. the vector , 2 2

1 1 2( ) [0 ]I Ta x x x x   . Substituting the received 

expressions in the formula (4), we shall find 2 2
1 1 1 2 20 ( ) ( )x x x x x f x     . Similarly, 

formulas (6) and (7) with account (8) at 1, 2i  , give , 3

1 2 2( ) [ 0]II Ta x x x x    and 
, 3 2 2

1 2 2 1 1 2( ) [8 3 4 9 ]/12III Ta x x x x x x x    . The received vectors and the formula (4) in 

view of value (0)f   , also give a harder nonlinear function ( )f x .  

The expressions (4)-(8) are fair and in relation to differentiable vector-functions with 

replacement of a vector ( )Ta x  by a corresponding functional matrix. Let, for example, 

1 2 3[ ]Tx x x x  and 
2 3

2 1 2 3 1 3 1 3( ) [2 3 5 sin 1,2 ]Tf x x x x x x x x x     . The expressions (5) 

applied to the components of this vector-function give a matrix 

 

1

1 2

2
1 3

3 2 0

( ) ( ) 0 5

0 0 1,2

x

A x x x

x x

 
 

  
  

, 

where (x1) = (sin x1)/x1. It will easily prove the validity of the expression f
**

(x) = 

A(x)x + f
**

(0). 
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The expressions (4) also ( ) ( ) (0)f x A x x f   refer to the quasilinear forms of nonlinear 

functions and vector-functions accordingly [8, 9]. Apparently, the quasilinear form of some 

nonlinearity is not unique. However, any quasilinear form describes the given nonlinearity 

precisely, in difference, for example, from «first approximation models» [7, 12].  

The vector-function f (x,u) from the equation (1) satisfies the conditions (2), therefore 

according to expressions (4), (5) equation (1) can be submitted as follows:  

 ( ) ( ) x A x x b x u ,  (9) 

where ( ) [ ( )]i jA x a x  – n n -functional matrix, ( ) [ ( )] ib x b x  – n-vector and bi (x) = fiu(x). 

The equation (9) is the quasilinear form of the equation (1). 

In summary, we shall emphasize: the right parts of the equations (1) and (9) are 

completely identical with all ,  nx R x , i.e. the quasilinear form (9) is the exact 

representation of the nonlinear differential equations such as (1), satisfying conditions (2). 

The most convenient expression for the calculation of matrix A (x) and vector b (x) from 

equation (9) is the formula (5) [9]. 

 4. CONTROL SYSTEMS DESIGN ON THE BASIS OF QUASILINEAR FORMS  

Usually, when u = 0 the equilibrium position x  0 of the plant (1) either (9) is 

unstable or the processes in this plant are unsatisfactory. For the maintenance of the 

required properties of these processes nonlinear control u = u(x) is designed. In the 

quasilinear form this control looks like: 

 
1

( ) ( ) ( )
n

T
i i

i

u x k x x k x x


    ,   ,  nx R x . (10) 

Here ki(x) are some nonlinear functions. The next equality follows from the expressions (9) 

and (10): 

 ( )x D x x ,  (11) 

where 

 ( ) ( ) ( ) ( )  TD x A x b x k x .  (12) 

Thus, the design problem with the use of the quasilinear form is to define n nonlinear 

functions ki(x) from (10) so that the condition (3) is satisfied. The characteristic 

polynomial of the functional matrix D(x) from equation (11), in view of the expression 

(12), it is possible to present as follows: 

 ( , ) det( ( )) det[ ( ) ( ) ( )]     TD p x pE D x pE A x b x k x . (13) 

Determinants of any matrixes satisfy the identity 

 det( ) det (adj )T TM bk M k M b   , (14) 

where adj is a adjunct matrix [9, 12]. Therefore, the equality (12) in view of the expressions 

(13), (14) it is possible to copy as: 
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 ( , ) ( , ) ( )adj( ( )) ( )   TD p x A p x b x pE A x k x  

or 

 
1

( , ) ( , ) ( ) ( , )


 
n

i i

i

D p x A p x k x B p x ,  (15) 

where  

 
1

0

( , ) det( ( )) ( )




    
n

n i
i

i

A p x pE A x p x p ,  (16)  

 
1

0

( , ) adj( ( )) ( ) ( )
n

j
i i i j

j

B p x e pE A x b x x p




    ,  1,i n .  (17) 

Here 1 [1 0 0]e  , 2 [0 1 0]e  , , [0 0 1]ne  .  

Let, according to stability and desirable performance of the closed nonlinear system, the 

characteristic polynomial of the matrix ( )D x  from (11) be appointed the following kind: 

 1
1 1 0( )    
    n n

nD p p p p .  (18) 

The polynomial (18) satisfies the Hurwitz conditions [12, 13]. If the polynomial (18) 

is to substitute in the equation (15) instead of the polynomial D(p,x), a polynomial equation 

is formed which is equivalent to the following algebraic system:  

 

10 20 0 1 0

11 21 1 2 1

1 1 2 1 , 1 1

n

n

n n n n n n

k

k

k

   

   

      

     
     
     
     
     

         

.  (19) 

Here ( )i i x   are the coefficients of the polynomials difference: D
*
(p)  D(p,x) =  

1
0 1 1( ) ( ) ( ) n

nx x p x p   
   . In the system (19) an arguments of the functions are 

lowered for brevity. The solution of the algebraic system (19) defines the functions ki(x) 

from the control (10) of the closed system (1), (10) or the system (11) equivalent to it.  

Theorem 1. The system (19) has the solution if the next condition satisfies 

 1det ( ) det[ ( ) ( ) ( ) ( ) ( )] 0nU x b x A x b x A x b x  .  (20) 

Proof. The polynomials Bi(p,x) (17) can be written down as the polynomial vector-

column:  

 1 2( , ) [ ( , ) ( , ) ( , )] adj( ( )) ( )T
nB p x B p x B p x B p x E pE A x b x   .  (21)  

The adjunct matrix adj(pE  A(x)) in view of the formula (32) from [13, p. 88] and the 

polynomial (16) satisfies the expression: 

 

1 2

1

1 2

1 1

adj( ( )) [ ( ) ( ) ] ...

... [ ( ) ( ) ( ) ... ( ) ]

n n

n

n n

n

pE A x Ep A x x E p

A x x A x x E

 



 



    

   
  (22) 
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The equality (21) in view of the expression (22) will be written down as  

 

1 2
1

1 2
1 1

( , ) {[ ( ( ) ( ) ) ...

... ( ( ) ( ) ( ) ... ( ) )] ( )},

n n
n

n n
n

B p x Ep A x x E p

A x x A x x E b x

 


 


   

   
 

or 

 

1 2
1

1 2
1 1

( , ) { ( ) [ ( ) ( ) ( ) ( )] ...

... [ ( ) ( ) ( ) ( ) ( ) ... ( ) ( )]}.

n n
n

n n
n

B p x b x p A x b x x b x p

A x b x x A x b x x b x

 


 


   

   
 (23) 

Let Mu be the matrix of the system (19). The coefficients of each column of this matrix 

are the coefficients of the corresponding polynomial of the vector-column (23). 

Therefore, the transposed matrix Mu can be presented as follows: 

 1 2 1[ ]T
u n nM M M M M ,  (24) 

where 

 

1 2
1 1 1

2 3
2 1 2

1 1

( ) ( ) ( ) ( ) ( ) ... ( ) ( ),

( ) ( ) ( ) ( ) ( ) ... ( ) ( ),

( ) ( ) ( ) ( ),

( ).

n n
n

n n
n

n n

n

M A x b x x A x b x x b x

M A x b x x A x b x x b x

M A x b x x b x

M b x

 


 


 

   

   

 



 

It is easy to see, that the columns of the matrix Mu

T
 represent the linear combinations of 

the columns of the matrix U(x) from the condition (19): 

 1( ) [ ( ) ( ) ( ) ( ) ( )]nU x b x A x b x A x b x . 

Therefore by of the known properties of determinants there is equality: det Mu

T
 = 

det U(x) [12, 13]. Transposing does not change the value of a determinant, therefore from 

here the statement of the theorem 1 follows. The theorem 1 is proved.  

Note, the condition (20) refers to as the controllability condition of the nonlinear 

system (9) [9, 10]. If the matrix A and the vector b in the equation (9) are constants then the 

inequality (20) passes in the known Kalman controllability condition [2, 9]. 

So, if the vector k(x) (10) is determined by the expressions (16)-(19) the elements of 

the matrix D(x) in (11) are continuous; the matrix D(0) = const and its characteristic 

polynomial satisfy the Hurwitz conditions. In this case the equilibrium point x  0 of the 

nonlinear closed system (10), (11) is asymptotically stable in limited area (3). Only in 

some cases the equilibrium point x  0 of this system is globally asymptotically stable 

[12]. Hence, the expressions (10)-(19) allow finding the nonlinear control which provides 

stability of the equilibrium point x  0 of the nonlinear plant (1), (2) and the certain 

performance of the control process by a choice of the coefficients of the polynomial (18). 

It is easy to see, that these expressions can be applied to the design of modal control for 

linear plants with constant parameters, as the well known J. Ackermann formula [10].  

The method of nonlinear control systems design with application of the quasilinear 

form and the expressions (10)-(19) we shall show on an example. 
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Example 1. The plant is described by the next equations:  

 1 22x x , 2 1 33sin 5 x x x , 3
3 3 31,2x x x u   .  (25) 

To find the control u = k(x) by which the equilibrium point x  0 of the plant (25) 

will be asymptotically stable. The state variables 
1 2 3, ,x x x  are measured. 

Solution. In the equations (25) the vector-function f (0,0) = 0, therefore according to 

the formula (5) the quasilinear equation (9) corresponds to this nonlinear equations with  

 1

2
3

0 2 0

( ) 3 ( ) 0 5

0 0 1,2

A x x

x



 
 

  
  

, 

0

( ) 0

1

 
 


 
  

b x .  (26) 

It is easy to see that the equation (9) in view of the expressions (26) is the exact 

representation of the equations of the nonlinear plant (25). In this case det ( ) 50U x   , the 

condition (20) is carried out, i.e. the solution of the design problem exists.  

Passing to its definition, we find by the formulas (16) and (17) the polynomials: 
3 2 2 2

3 1 3 1( , ) (1,2 ) 6 ( ) (7,2 6 ) ( )A p x p x p x p x x       , 1( , ) 10B p x , 2 ( , ) 5B p x p , 
2

3 1( , ) 6 ( )B p x p x  . The desirable polynomial D
*
(p) (18) undertakes on the basis of a 

standard polynomial with coefficients: 0 1  , 1 2,2  , 2 1,9  , 3 1  . In this case 

the transient lasts 4,04 seconds in the corresponding linear system [9]. As the designed 

system is nonlinear, we shall put the time scale equal to 2. Then the desirable characteristic 

polynomial of the quasilinear matrix (12) is 
3 2( ) 3,8 8,8 8D p p p p     . This 

polynomial, obviously, satisfies to the Hurwitz criterion, and the system (19) becomes: 

 

2
1 1 3 1

2 1

2
3 3

10 0 6 ( ) 8 (7,2 6 ) ( )

0 5 0 8,8 6 ( )

0 0 1 5

x k x x

k x

k x

 



      
    

     
          

. 

The solution of this system leads to the control: 1 1( ) 0,8 2,28sinu x x x     
3

2 2 1 3 31,76 1,2 ( ) 5x x x x x     according to the expression (10). It is easy to establish the 

characteristic polynomial D (p,x) calculated under the formula (13) is equal to the 

desirable polynomial D
*
(p). Hence, the equilibrium point 0x   of the closed system is 

asymptotically stable in some limited area [12]. 

5. NONLINEAR SYSTEMS GLOBALLY ASYMPTOTICALLY STABLE 

In some cases the plants (1) have such properties that the quasilinear forms of their 

equations allows to design the control systems whose equilibrium point is globally 

asymptotically stable. Systems of this type further are referred to as «the nonlinear systems 

globally asymptotically stable». The state vector 0( , )x t x of the nonlinear systems globally 

asymptotically stable satisfies the condition (3) at 0 0
nx R  , 0x    [9, 12]. 
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To formulate the stability conditions of the nonlinear systems globally asymptotically 

stable, we shall consider any system (11) with order n, where the matrix D
 
(x) is n  2 

time differentiable. Let us assume, some limited, n  1 time differentiable on x  vector 

b
*
(x) exists in R

n
 for all x   . The matrix 1( ) [ ( ), , ( ) ]nL x l x l x   is determined as 

follows: 

 1( ) ( )l x b x , 1 1( ) ( ) ( ) ( )i i il x D x l x l x   , 2,i n .  (27) 

Notice, the derivative on time ( )il x  of the column ( )il x , 1, 1i n   in (27) are 

determined on the trajectories of the above mentioned system (11) [9, 10]. Therefore the 

matrix ( )L x  and its derivative on time ( )L x  are functions only of the state vector x  of 

the system (11) or some functions of time. 

The following lemma is used in the definition of the conditions of globally asymptotical 

stability of the nonlinear systems (11).  

Lemma. If the matrix ( )L x  is determined by the expressions (27) on the solution of 

the system (11); there is a matrix 1( )L x  and the matrix 1( ) ( ) ( ) ( )G x D x L x L x  , then 

the matrix 1
1( ) ( ) ( ) ( )D x L x G x L x  is the transposed companion matrix of the characteristic 

polynomial of the matrix ( )G x . 

The proof of this lemma is given in [10], therefore here only the numerical example is 

the result. Let the matrix ( ) ( )D x D t  and the vector ( ) ( )b x b t   look like:  

 
1

( )
2

t
D t

t

 
  

 
, ( )

1

t
b t  

  
 

. 

In this case a matrix ( )L t  determined by the expressions (27) and also matrixes ( )L t , 

L
1

(t) are equal: 

1
( )

1

t
L t

t

 
  
 

,  
1 0

0 1
L

 
  
 

  1

2

11
( )

11

t
L t

tt

  
  

  
. 

The matrix 1( ) ( ) ( ) ( )G t D t L t L t   and its characteristic polynomial look like: 

2 3

2 2 3

1 11
( )

1 2 3 2

t t t t
G t

t t t t

     
  

     

, 2
1 0( , ) det( ( )) ( ) ( )G p t pE G t p t p t      , 

where 
3 2

1 2

3 1
( )

1

t t t
t

t


  



, 

5 4 3 2

0 2 2

2 4 3
( )

( 1)

t t t t t
t

t


     



. 

Calculating the matrix 1( )D t  under the formula 
1

1( ) ( ) ( ) ( )D t L t G t L t , we shall 

receive the companion matrix 

0

1

1

0 ( )
( )

1 ( )

t
D t

t





 
  

 
. 

This expression, obviously, fully complies with the statement of the lemma. 
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The conditions of globally asymptotically stability of the nonlinear systems (11) are 

determined by the following theorem. 

Theorem 2. Let the matrix ( )L x  be determined by the expressions (27) on solutions 

of system (11), and this matrix and its derivative on time ( )L x  are continuous and 

limited, and det ( ) 0L x   at all nx R , x   . Then, if the coefficients of the 

characteristic polynomial of the matrix 

 1( ) ( ) ( ) ( )G x D x L x L x  ,  (28) 

are constant and satisfy the Hurwitz criterion at all nx R , x   , the equilibrium point 

0x   of the system (11) is globally asymptotically stable.  

Proof. The matrix 1( )L x  exists on conditions of the theorem. If ( )x L x x  then the 

system (11) is transformed to  

 2 ( )x D x x ,  (29) 

where x  is a new state vector, and the matrix D2(x) is determined by the following expression 

 1 1
2 ( ) [ ( ) ( ) ( ) ( ) ( )]D x L x D x L x L x L x   .  (30) 

The right part of the expression (30), in view of the equality (28), is possible to 

present as follows: 

1
2 ( ) ( ) ( ) ( )D x L x G x L x . 

According to the lemma the matrix D2(x) is the transposed companion matrix of the 

characteristic polynomial of the matrix G(x) (28) (it is similar to matrix D1(t)). But in 

conditions of the theorem 2 the coefficients of the characteristic polynomial of the matrix 

G(x) are constant and satisfy the Hurwitz criterion. Hence, in the system (29) the matrix D2(x) 

is constant (D2(x) = D2 = const) and stable. Therefore, any solution of the system (29) are 

globally asymptotically stable, i.e. 0lim ( , ) 0
t

x t x


  for all 0
nx R , 0x    [12]. 

On the other hand, the expression ( )x L x x  is Lyapunov's transformation by virtue 

of the mentioned above properties of a matrix ( )L x  also at all nx R , x    [12]. 

Hence the statement of the theorem 2 follows from here. The theorem 2 is proved.  

According to the expression (28) for the research of the stability of the nonlinear system 

( )x f x  it is necessary to construct its quasilinear representation (11), to choose a 

vector ( )b x  and then a matrix ( )L x  to find by expression (27). If the matrix ( )L x  will be 

non singular and limited, then the matrix ( )G x  is calculated under expression (28) and its 

characteristic polynomial is found: 

 
1

0

( , ) det( ( )) ( )
n

n i
i

i

G p x pE G x p x p




    .  (31) 

If the coefficients ( )i x  are constants and the polynomial ( , )G p x  satisfies the 

Hurwitz criterion, then the equilibrium point 0x   of the researched system is globally 

asymptotically stable.  
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Natural nonlinear systems satisfy the conditions of the theorem 2 rather seldom. 

However, the systems of such type can be designed under some conditions which have 

been mentioned below. 

6. DESIGN OF A NONLINEAR SYSTEMS GLOBALLY ASYMPTOTICALLY STABLE 

Let the equation of the plant (1) be transformed to the quasilinear form (9). Then it is 

submitted as (11), (12) with an unknown vector ( )k x . In this case the matrixes ( )D x  

and ( )L x  are determined by the formulas (12) and (27) dependent on the vector ( )k x , i.e. 

in the expressions (11), (28) the matrixes ( ) ( , )D x D x k  and ( ) ( , )L x L x k . Assume, 

that matrixes ( , )L x k  and ( , )L x k  are continuous, limited, and det ( , ) 0L x k   at all 

x  R
n
, x   . In view of the entered designations the equality (28) will be written 

down as follows 

 ( , ) ( , ) ( ) ( )TG x k A x k b x k x  ,  (32) 

where 

 1( , ) ( ) ( , ) ( , )A x k A x L x k L x k  .  (33) 

Assume also, that the matrix ( , )A x k  and the vector ( )b x  satisfy the controllability 

condition (20). Further the design method fully complies with expressions (16)-(19). 

However, if the design problem considered in section 4 has a solution only under 

condition (20), the design problem of the nonlinear systems globally asymptotically stable 

has a solution by the considered method, if the condition (20) is carried out and the 

solution of the corresponding system (19) depends only on the vector x. 

The design method following from expressions (27), (32), (33) and (16)-(19) is 

considered on the example of control systems design for some nonlinear plant.  

Example 2. To design the control (10) providing stability of the equilibrium point 

x  0 of the plant is described by the equations:  

 2

1 1 25x x x  ,  3

2 1 32x x x  ,  
3 2 2( )x x x u   ,  (34) 

where 
2( )x is function continuous and limited at everything nx R , x   ; the variables 

1 2 3, ,x x x  are measured.  

Solution. According to the expression (5) the matrix and the vector of quasilinear 

forms (9) of the plant equations (34) look like 

 

1

2
1

2

5 0

( ) 0 2

0 ( ) 0

x

A x x

x

 
 

  
  

, 

0

( ) 0

1

b x

 
 


 
  

.  (35) 

If the vector 1 2 3( ) [ ( ) ( ) ( )]Tk x k x k x k x  the next matrixes follow from (12), (35) 

and (27): 
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1

2
1

1 3

5 0

( , ) 0 2

x

D x k x

k h k

 
 

  
   

, 3

2
3 3 3

0 0 10

( , ) 0 2 2

1 2

L x k k

k h k k

 
 

  
     

,  (36) 

where 2 2( ) ( ) ( )h h x x k x    . Arguments of the functions in the right parts of these 

and subsequent expressions are omitted for brevity. In this case det ( , ) 20L x k   , 

therefore it is possible to calculate the matrix
1
( , )L x k


, and under formula (33) the 

matrix ( , )A x k : 

3 3

1
3

0,2 0,1 0,5 1

( , ) 0,1 0,5 0

0,1 0 0

h k k

L x k k


   
 

   
  

, 

1

2
1 3

3 3 3 3

5 0

( , ) 0,2 0 2

0,1( 2 ) 0,5 0

x

A x k x k

k k h k k

 
 

   
    

.  (37) 

Matrix ( , )A x k  (37) and vector ( )b x  (35) satisfy the condition (20), therefore 

allows under formulas (16), (17) to find polynomials:  

3 2
2 1 0( , , ) det( ( , )) ( , ) ( , ) ( , )A p x k pE A x k p x k p x k p x k        ,  

1 2( , , ) 4 2B p x k h k  , 2 1( , , ) 2 2B p x k p x   , 2 2
3 1 2 3( , , ) 0,5 ( )B p x k p x p x k x    , 

where  

2 1( , )x k x   ,  2
1 2 3 1( , ) 2 ( ) 2 ( ) 5x k x k x x    ,  

0 1 2 3 3 3 2 2 3( , ) [2 ( ) ( )] ( ) ( ) 2[ ( ) ( )] ( )x k x x k x k x k x k x x k x         . 

The desirable polynomial (18) here is equal to 3 2
2 1 0( )D p p p p          and 

satisfies the Hurwitz criterion. The system (19) in this case looks like 

2
0 01 1 3 1

1 2 1 1

3 2 2

10 2 5

0 2

0 0 1

x x k k

x k

k

 

 

 







      
    

       
          

. 

This algebraic system has the solution which depends only on the state vector of the designing 

control system: *
3 2 1( )k x x  , 2

1 2 1 2( ) 2 ( ) 7 10x x x x    , k2(x) =  (x2)  0,5( 1
*
 + x1 2

*
) 

 5x2  4x1

2
, 3

0 3 1 2 1 1 2( ) 10 2 ( ) 17 60x x x x x x x     , k1(x) = 0,1[ 0
 *
 + x1 1

*
 + (7x1

2
 + 5x2) 2

*
] 

+ 3,1x1

3
 + 7,5x1x2  x3.  

The found solution allows writing down the required control ( )u x  (10) for the system 

(34). Now the matrixes ( )D x , ( )L x , 1( )L x , ( )A x  and also ( )G x  can be calculated 

under the expressions (36), (37) and (32) in view of the found functions ( )ik x  and 

1( )i x  , 1, 2, 3i  . The characteristic polynomial of the matrix ( )G x  coincides with the 

chosen polynomial ( )D p , i.e. satisfies conditions of the theorem 2. The matrix ( )L x  

and its derivative ( )L x  are continuous and limited at all limited x. Therefore the 

equilibrium point of the nonlinear system (34) with control (10) and the found coefficients 

1 2 3( ), ( ), ( )k x k x k x  is globally asymptotically stable [12]. 
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6. CONCLUSION 

Representation of the nonlinear plants and system equations in the quasilinear form is 

exact. Quasilinear models allow solving analytically a problem of control systems design 

for nonlinear plants with measured state variables. This design problem has the solution if 

the controllability functional matrix is non singular. Required nonlinear control is 

determined by the solution of the algebraic linear equations system. Equilibrium point of 

the closed system is asymptotically stable in the limited area of state space. Globally 

asymptotically stability is provided under some additional conditions. Efficiency of the 

suggested methods is shown by the examples of analytical design of control systems for 

nonlinear plants. 
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