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Abstract. In this paper, the steady flow and heat transfer of an incompressible electrically 

conducting micropolar fluid through a parallel plate channel is investigated. The upper 

and lower plate have been kept at the two constant different temperatures and the plates 

are electrically insulated. The applied magnetic field is perpendicular to the flow, while 

the Reynolds number is significantly lower than one i.e. the considered problem is in 

induction-less approximation. The general equations that describe the discussed problem 

under the adopted assumptions are reduced to ordinary differential equations and closed-

form solutions are obtained. The influences of each of the governing parameters on 

velocity, heat transfer on the plates (Nusselt number), flow rate and skin friction are 

discussed with the aid of graphs. 
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1. INTRODUCTION 

The flow and heat transfer of electrically conducting fluids in channels and circular 

pipes under the effect of a transverse magnetic field occurs in magnetohydrodynamic 

(MHD) generators, pumps, accelerators and flowmeters and it has applications in nuclear 

reactors, filtration, geothermal systems and others. 

The interest in the outer magnetic field effect on heat-physical processes appeared 

seventy years ago. Blum et al. [1] carried out one of the first works in the field of heat 

and mass transfer in the presence of a magnetic field. The research in MHD flows was 

stimulated by two problems: the protection of space vehicles from aerodynamic 

overheating and destruction during the passage through dense layers of the atmosphere; 

the enhancement of the operational ability of constructive elements of high temperature 

MHD generators for direct transformation of the heat energy into electric. The first 
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problem showed that the influence of a magnetic field on ionized gases is a convenient 

control method for mass, heat and hydrodynamic processes.  

The flow and heat transfer of a viscous incompressible electrically conducting fluid 

between two infinite parallel insulating plates has been studied by many researchers [2-4] 

due to its important applications in the further development of MHD technology. The 

MHD devices for liquid metals attracted the attention of metallurgist [5]. It was shown 

that the effect of the magnetic field could be very helpful in the modernization of 

technological processes. The increasing interest in the study of MHD phenomena is also 

related to the development of fusion reactors where plasma is confined by a strong 

magnetic field [6]. Many exciting innovations were put forth in the areas of MHD 

propulsion [7], remote energy deposition for drag reduction [8], MHD control of flow 

and heat transfer in the boundary layer [9,10]. 

All the studies cited above are limited to classical Newtonian fluids. There are many 

fluids important from the industrial point of view, and they display non-Newtonian 

behaviour. Due to the complexity of such fluids, several models have been proposed but 

the micropolar model is the most prominent one. 

Eringen [11] initiated the concept of micropolar fluids to characterize the suspensions 

of neutrally buoyant rigid particles in a viscous fluid. The micropolar fluids exhibit 

microrotational and microintertial effects and support body couple and couple stresses. It 

may be noted that micropolar fluids take care of the microrotation of fluid particles by 

means of an independent kinematic vector called the microrotation vector. 

According to the theory of micropolar fluids proposed by Eringen [11] it is possible 

to recover the inadequacy of the Navier–Stokes theory to describe the correct behaviour 

of some types of fluids with a microstructure such as animal blood, muddy water, 

colloidal fluids, lubricants and chemical suspensions. In the mathematical theory of 

micropolar fluids there are, in general, six degrees of freedom, three for translation and 

three for microrotation of microelements. Extensive reviews of the theory and 

applications can be found in the review articles [12,13] and in the recent books [14,15]. 

The research interest in the MHD flows of micropolar fluids has increased 

substantially over the past decades due to the occurrence of these fluids in industrial and 

magneto-biological processes. These flows take into account the effect arising from the 

local structure and micro-motions of the fluid elements, and are able to describe the 

behaviour of the polymeric additives, animal blood, lubricants, liquid crystals, dirty oils, 

solutions of colloidal suspensions, etc. A comprehensive review of the subject and 

applications of micropolar fluid mechanics was given by Chamkha et al. [16] and Bachok 

et al. [17]. 

Basic ideas and techniques for both steady and unsteady flow problems of Newtonian 

and non-Newtonian fluids are given by Ellahi [18]. The basic equations governing the 

flow of couple stress fluids are non-linear in nature and even of higher order than the 

Navier Stokes equations. Thus an exact solution of these equations is not easy to find. 

Different perturbation techniques and a reasonable simplification are commonly used for 

obtaining solutions of these equations. 

In the present paper, the hydromagnetic flow and heat transfer characteristics of a 

viscous electrically conducting incompressible micropolar fluid in a parallel plate 

channel is considered.  
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Viscous dissipation and Joule heating effects have also been taken into account. The 

effects of the governing parameters on the flow and heat transfer aspects of the problem 

are discussed. 

2. PHYSICAL AND MATHEMATICAL MODEL 

The problem of the laminar MHD flow and heat transfer of an incompressible 

electrically conducting micropolar fluid between parallel plates is considered. MHD 

channel flow analysis is usually performed assuming the fluid constant electrical 

conductivity and treating the problem as a one-dimensional one: with these two main 

assumptions, the governing equations are considerably simplified and they can be solved 

analytically. 

The physical model shown in Figure 1, consists of two infinite parallel plates 

extending in the x and z-direction. A fully developed flow takes place between parallel 

plates that are at a distance h, as shown in Figure 1. Electrically conductive fluid flows 

through the channel due to the constant pressure gradient and the applied magnetic field. 

A uniform magnetic field of the strength B is applied in the y direction. The upper and 

lower plate have been kept at the two constant temperatures T1 and, T2 respectively. 

The fluid velocity v and the magnetic field B are: 

 =u ,iv  (1) 

 .B jB  (2) 

 

Fig. 1 Physical model and coordinate system 

The described laminar MHD flow and heat transfer is mathematically presented with 

following equations: 
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The no slip conditions require that the fluid velocities are equal to the plate’s 

velocities, boundary conditions for the temperature are isothermal conditions and there is 

no microrotation near plates. The fluid and thermal boundary conditions for this problem 

are represented by equations:  
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In these general equations and boundary conditions, the used symbols are common 

for the theory of MHD flows.  

Now the following transformations have been used to transform equations given 

above into a nondimensional form: 
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The equations (3-5) get the following form: 
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The boundary dimensionless conditions for the equations given above are: 
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After the basic mathematical transformations from equations (8) and (9), the equation 

for velocity is: 

 ” 0,ivu au bu d     (12) 

where: 
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The solution of the equation (12), yields three possible cases: 
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And the solutions of the equations (9) and (10) are, respectively: 
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With the aid of the expressions for velocity, micro-rotation and temperature, we now 

derive the following important characteristics of the flow. 

The flow rate: 
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The shear stress: 
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Nusselt number: 
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3. RESULTS AND DISCUSION 

In the section 2, the mathematical model for the steady flow and heat transfer of an 

incompressible electrically conducting micropolar fluid between two infinite horizontal 

parallel plates under a constant pressure gradient and the applied magnetic field is defined. 

The influences of the Hartmann number, the coupling parameter and the spin-gradient 

viscosity parameter on velocity, heat transfer on the plates (Nusselt number), flow rate and 

skin friction are discussed with the aid of graphs. 

The first three figures, 2 to 4, show the influence of the characteristic parameters on 

velocity profiles.  
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The effect of the Hartmann number on the velocity is shown in Figure 2. It can be 

seen from figure that the velocity, as expected, becomes small for large values of Ha. 

This happens because of the imposing of a magnetic field normal to the flow direction 

which creates a Lorentz force opposite to the flow direction. This fact is used to manage 

the fluid flow. 

 

Fig. 2 Velocity profiles for different values of Hartmann number 

Figure 3 shows the effect of the spin-gradient viscosity parameter on velocity, which 

predicts that the velocity increases as the spin-gradient viscosity parameter decreases. 

This fact leads to the conclusion that the increase of the gyro-viscosity  reduces the flow 

compared to the viscous fluid case. 

 

Fig. 3 Velocity profiles for different values of the spin-gradient viscosity parameter 
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The next figure, Figure 4, shows the effect of the coupling parameter on velocity. 

From Figure 4, it can be observed that the increase in coupling parameter K decreases the 

velocity which means, as expected, that the resistance of the fluid increases with the 

increase of K. In the limit 0K  , the results correspond to the case of viscous fluid. 

 

Fig. 4 Velocity profiles for different values of the coupling parameter 

The influence of the Hartmann number, the coupling parameter and the spin-gradient 

viscosity parameter on the heat transfer on the plates (Nusselt number) are presented in the 

figures 5, 6 and 7. With expression (25), the Nusselt number is defined as a product of the 

constant (ki) and the heat transfer. The next three figures will be used to describe a change 

of the heat transfer on the plates in function of characteristic parameters, neglecting the 

constant (ki). 

 

Fig. 5 Influence of Hartmann number on Nusselt number 
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The increase of the Hartmann number causes a decrease of the Nusselt number on the 

upper plate, while the Nusselt number on the lower plate remains constant with the 

change of the Hartmann number, which is shown in Fig. 5. The increase of the Hartmann 

number causes the decrease of velocity (Figure 2) and as the Hartmann number increases 

the velocity field gets the uniform form between the plates, in that case the temperature in 

fluid flow is constant and there is no more heat transfer on the plates. 

In Fig. 6, the influence of the spin-gradient viscosity parameter on the Nusselt number is 

presented. From this figure it is obvious that for certain values of the spin-gradient viscosity 

parameter, as well as for other parameters, there is a maximum of heat transfer on the upper 

plate. This means that it is possible to control the heat transfer on the plates by changing the 

characteristics of the micropolar fluid. 

 

Fig. 6 Influence of the spin-gradient viscosity parameter on Nusselt number 

 

Fig. 7 Influence of the coupling parameter on Nusselt number 
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Fig. 7 shows the influence of the coupling parameter on the heat transfer on the plates. 

Increasing the coupling parameter K causes the increase of the heat transfer on the upper 

plate. While the coupling parameter K increases, i.e. the additional viscosity  increases, the 

temperature in the fluid flow increases as a consequence of viscous heating and because of 

that there is an increase of the heat transfer on the upper plate. 

The change of the fluid flow Q as a result of the change of characteristic parameters 

is shown in figures 8, 9 and 10.  

From Figure 8, it can be noted that the fluid flow Q decreases while the Hartmann 

number increases. This is the consequence of the Lorentz force which is opposite to the flow 

direction and whose intensity increases with the increase in the magnetic field intensity, i.e. 

the Hartmann number. 

 

Fig. 8 Influence of the Hartmann number on the flow Q  

The influence of the spin-gradient viscosity parameter and the coupling parameter on 

the fluid flow Q is shown in Figures 9 and 10. The tendency of change of the fluid flow 

Q is the same for changes in all characteristic parameters for micropolar fluid. In both 

cases the increase of characteristics for micropolar fluid causes a decrease in the fluid 

flow Q. In the case of the spin-gradient viscosity parameter there is the limit value after 

which the further increase of this parameter does not affect the fluid flow Q. But in the 

case of the coupling parameter, there is no limit value and the fluid flow Q always 

decreases as the coupling parameter increases. 
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Fig. 9 Influence of the spin-gradient viscosity parameter on flow Q  

 

Fig. 10 Influence of the coupling parameter on the flow Q  

The last two figures show the influence of the Hartmann number, the coupling parameter 

and the spin-gradient viscosity parameter on the skin friction. 

Figure 11 shows the influence of the spin-gradient viscosity parameter and the 

Hartmann number on the skin friction. The increase of the spin-gradient viscosity parameter 

causes the increase of the skin friction absolute value, while the increase of the Hartmann 

number causes the decrease of the skin friction. In the case of the spin-gradient viscosity 

parameter there is a limit value after witch the further increase in the spin-gradient viscosity 

parameter does not affect the intensity of the skin friction. 
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Fig. 11 Influence of the Hartmann number and of the spin-gradient viscosity parameter 

on skin friction 

 

Fig. 12 Influence of the Hartmann number and of the coupling parameter on the skin friction 

From Fig. 12, it can be noted that increase of the Hartmann number causes the decrease 

of the skin friction absolute value, but the increase of coupling parameter causes the 

increase of the skin friction. The increase of the coupling parameter is the consequence of 

the increase in the additional viscosity , and thus the increase in the total viscosity, 

therefore the results are as expected. 



 Control of MHD Micropolar Fluid Flow 175 

4. CONCLUSION 

In this paper, the steady flow and heat transfer of an incompressible electrically 

conducting micropolar fluid between two infinite horizontal parallel plates under a constant 

pressure gradient or a constant flow rate has been considered. The upper and lower plates 

have been kept at the two constant different temperatures and the plates are electrically 

insulated. The applied magnetic field is perpendicular to the flow. The general equations 

that describe the discussed problem under the adopted assumptions are reduced to ordinary 

differential equations and closed-form solutions are obtained. The influences of each of the 

governing parameters on velocity, temperature, flow rate and shear stress are discussed with 

the aid of graphs. The obtained results show that the control of flow and heat transfer for 

observed case can be realized by changing the Hartmann number, spin-gradient viscosity 

parameter and coupling parameter. 
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