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Abstract. In this paper a new algorithm for distributed blind macro-calibration of 

Networked Control Systems is presented. It is assumed that the measured signal is 

stochastic and unknown. The algorithm is in the form of recursions of gradient type for 

estimation of the correction parameters for sensor gains and offsets. The recursion for 

gain correction is autonomous, derived from the measurement increments. The recursion 

for offset correction is based on differences between local measurements and utilizes the 

results of gain correction. It is proved that the algorithm provides asymptotic convergence 

to consensus in the sense that the corrected gains and offsets are equal for all sensors. It 

is demonstrated that the adopted structure of the algorithm enables obtaining high 

convergence rate, superior to the algorithms existing in the literature. Simulation results 

are provided illustrating the proposed algorithm properties. 
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1. INTRODUCTION 

Lately, great attention has been paid to numerous topics related to Networked Control 

Systems. A vast literature shows a huge range of deployments within diverse industry fields 

and robotics, as well as in many multidisciplinary areas, such as surveillance, monitoring, 

etc. [1,2] New technologies of sensors and actuators, as basic elements of networked control 

systems, advanced information and communication technologies, as well as powerful 

distributed algorithms, have driven the entire field to an exceptional development. Continuous 

development of new applications has led also to new classes of problems, in the domain of 

both research and development, and engineering applications. 

                                                           

 Received May 17, 2019 

Corresponding author: Maja Stanković 

Telekom Srbija, Takovska 2, Beograd, Republic of Serbia 

E-mail: majastanko@gmail.com 



96 M. STANKOVIĆ, D. ANTIĆ 

Calibration is still one of very important practical problems for wide deployments of 

networked control systems and of sensor/actuator networks, in general [3]. Small network 

control systems and systems in which all sensors are available for adjustments, use the so-

called micro-calibration, which consists of calibration of each and every sensor separately. 

Large networks require specific concepts and methods for calibration, since many sensors 

could be inaccessible, due to operation in variable and unpredictable conditions. Macro-

calibration deals with the calibration problem at the network level [4]. This approach is 

based on observing the overall networked system response [5, 6]. The next step in the 

development of macro-calibration is the so-called blind macro-calibration. Blind macro-

calibration is, in fact, calibration without known stimuli [7-9]. The problem is very complex, 

conceptually related to the problem of blind deconvolution. The basic idea of blind macro-

calibration is that all sensors agree at the network level in such a way that, after calibration, the 

network behaves as a unified and harmonized sensor/actuator system. The existing approaches 

start from different a priori assumptions and use different methodologies, but all require 

centralized actions at the network level [8-10]. The centralized approaches have been found to 

be neither sufficiently efficient, nor reliable. Recently, improved methods for decentralized 

blind calibration have arisen as a response to these problems [8]. It is extremely challenging, 

both conceptually and practically, to develop decentralized algorithms for blind calibration. A 

methodologically consistent approach to distributed blind calibration has been proposed for 

the first time in [7, 11].  

In this paper, an algorithm for distributed blind macro-calibration is proposed. It is based, 

on one hand, on an analogy between the problems of distributed calibration and distributed 

time synchronization, and, on the other hand, on recent insights into the basic idea of forming 

a gradient algorithm for estimation of calibration function parameters in real time [17, 18]. It 

is assumed that the measured signal is stochastic and unknown, and that the environment is 

noiseless. The algorithm results from an attempt to consolidate two methodologies: 

1) The methodology of forming gradient schemes starting from local criterion 

functions of the deviation between the output of the observed sensor and the outputs of its 

neighbors [7, 12]; 

2) The methodology of forming recursive procedures for estimation of the parameters 

in linear calibration functions, suggested within the scope of the time synchronization 

problem.  

Analogies between the problems of sensor calibration and time synchronization can 

be observed from the basic starting assumptions [13-15].  

Namely, in the problem of time synchronization, the basic assumption is that the 

relative time measured by i-th sensor is defined by the relation 

   ( )         (1) 

where   is the absolute time,    the gain (drift) and    the offset. Ideally, these parameters 

should be 1 and 0, respectively. The correction of the sensor output is defined using an 

affine transformation, which produces the corrected time 

   ( )      ( )                   (2) 

where    and    are parameters which have to be estimated.  

In a similar way, in the calibration problem, the output of  i-th sensor can be represented as 

   ( )     ( )     (3) 
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where    is the gain and    the offset, while  ( ) represents the measured signal at the 

moment  . Correction of the sensor output is done by applying the calibration function to 

the sensor output  

        ( )          ( )          (4) 

where    and    are the parameters which have to be estimated.  

It is obvious that these two problems are formally similar: the measured signal  ( ) in 

the calibration problem corresponds to the absolute time   in the time synchronization 

problem; these values are unknown in both cases. However, it should be noted that equating 

the above mentioned problems is not entirely possible, having in mind different nature of 

the functions  ( ) and  , as well as the essence of the technical setting of the corresponding 

problems. As a consequence, these two problems are treated in the literature in different, 

methodologically autonomous ways.  

In one of important papers in the area of time synchronization in sensor networks, the 

authors deal with the problem starting methodologically from the idea of consensus [14]. 

Estimation of gain and offset parameters is done by recursions which generate estimates 

of these two parameters in real time. The authors have proved that it is possible in the 

deterministic case to achieve consensus on local times for all the sensors in a network. 

Estimation of gain correction parameters is done first by a recursive scheme which is 

based on the increments of the input function   (which does not depend on offset). In 

such a way, all sensors in the network asymptotically achieve identical equivalent gains. 

After this step, after applying the previously estimated gain parameter, the offset is 

estimated by a separate recursion, which leads to the complete equalization of the local 

times of all the sensors in the network. Recently, a family of time synchronization 

algorithms based on consensus (CBTS - Consensus Based Time Synchronization) has 

been presented in a unified way in [16, 17]. 

The main idea of this paper is to construct a novel distributed blind macro calibration 

algorithm using as the structure of the CBTS algorithms as a starting point. The calibration 

algorithm which will be proposed in this paper consists of:  

1) Independent recursive gradient algorithm for estimation of the sensor gain correction 

parameters, based on the model of increments of the sensor output signal; 

2) Recursive gradient algorithm for estimation of the sensor offset correction 

parameters, which is based on the current results taken from the algorithm for estimation of 

the gain correction parameter.  

It is to be emphasized that the proposed algorithm for gain correction parameter estimation 

differs structurally from the analogous algorithms from the CBTS family: it is much simpler 

and. moreover, linear-in-the-parameters.  A particular quality of the algorithm in the sense of 

practical engineering applications lies in its computational and communicational simplicity. 

Having in mind the separated estimation of the gain correction parameters, it is to be expected 

that the corresponding convergence rate is superior to the one obtainable with the algorithm 

which estimates both correction parameters together by a higher order gradient scheme [7, 

11, 18].  

In the theoretical part, proofs are provided for convergence of the proposed recursions to 

consensus in the mean square sense. In the experimental part, it is demonstrated by 

simulations that algorithm outperforms all similar algorithms from the literature in the sense 

of convergence rate; this is of an extreme importance for practice.  
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 Formally, the paper is organized as follows. Section 2 deals with the basic setting for 

the proposed algorithms. Section 3 is devoted to the offset correction parameter, 

assuming that the sensor gain is equal to one for all sensors in the network. In this way 

the essence of the algorithm is clearly explained. In Section 4, the algorithm for gain 

correction estimation is presented, while section 5 deals with simultaneous estimation of 

both the corrected gain and the corrected offset. All the convergence proofs are presented 

in extenso. Section 6 is devoted to selected simulation results. 

2. BASIC SETTING 

We consider n distributed sensors measuring a discrete-time stochastic signal  ( ). 
We assume that the output of i-th sensor is represented by 

    ( )     ( )     (5) 

where    and     are, in general, the unknown sensor gain and offset, respectively. By 

sensor calibration we consider the application of an affine calibration transformation, 

which produces the corrected sensor output 

    ( )      ( )        ( )      (6) 

where    and     are the calibration parameters, while         and            
represent the corrected gain and the corrected offset, respectively. Ideally, the role of the 

parameters    and    is to compensate the influence of unknown parameters    and     in 

such a way as to obtain    close to one and    close to zero,          
Assume that the observed sensors form a network with a specific structure, which can 

formally be represented by a directed graph  (   ), where    is the set of nodes and   the 

set of arcs. The adjacency matrix    ,   -,           , is such that       if the j-th 

sensor can send its message to the i-th sensor, and       otherwise; the corresponding arc is 

directed from j to i. Let    be the set of neighboring nodes of the i-th node, i.e., the set of 

nodes j for which       . The aim of the algorithm for distributed blind macro-calibration is 

to estimate the calibration parameters    and    in a distributed manner and in real-time, 

without the explicit knowledge of the measured signal. 

3. ESTIMATION OF THE OFFSET CALIBRATION PARAMETER 

We shall first concentrate on the problem of offset correction (  =1 in (5)). The 

algorithm for estimation of   , without any pretension to offer a complete offset 

compensation for all sensors, should enable, through a global consensus mechanism, a 

dominant influence of well calibrated sensors with respect to those that are not.  

 Assume that  ( ) is a discrete time stochastic process. We introduce, like in [7] and 

[12], the following set of local criteria   

    ∑     {(  ( )    ( ))
 }    

 (7) 

          , where       ,       , are a priori chosen scalar weights which represent 

the relative importance of the in-neighboring nodes. The gradient of (7) is given by  
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   ∑        

 {(  ( )    ( ))} (8) 

From here, it directly follows that a gradient recursion for estimating parameter    is 

given by 

  ̂ (   )   ̂ ( )    ( )∑       ( )    
 (9) 

where  ̂ ( ) is an estimate of parameter    at the moment t,   ( )    is the gain of the 

algorithm (step size) which affects its convergence rate, while    ( )   ̂ ( )   ̂ ( )  

where  ̂ ( )    ( )   ̂ ( )  The initial condition  ̂ ( ), determined as an a priori 

information of sensor characteristics, is set, in general, to  ̂ ( )                 . 

Notice that the recursion (9) subsumes availability of local current corrected sensor 

outputs communicated only by the neighboring nodes,       The underlying idea is to 

achieve  ̂ ( )   ̂ ( )               by minimizing all the local criteria, so that all the 

estimates  ̂ ( )      ̂ ( ) tend asymptotically to the same value. In this respect, it is 

convenient to transform relation (9) in the following way 

  ̂ (   )   ̂ ( )    ( )∑    ( ̂ ( )   ̂ ( ))    
. (10) 

All the recursions from (10) can be represented for all the nodes in the network in a 

compact vector-matrix form  

  ̂(   )  ,   ( ) - ̂( ) (11) 

where 

   ̂( )  [ ̂ ( )  ̂ ( )]
 
 (12) 

  ( )      *  ( )      ( )+ (13) 

 and 

   

[
 
 
 
 
 ∑            
    ∑         
    
        ∑     ]

 
 
 
 

 (14) 

represents a weighted Laplacian of the graph  (   ). 
Recursion (11) represents a linear dynamic system with variable parameters  ( ). It 

can be analyzed, in general, using the methodology of analysis of dynamic discrete 

consensus schemes. Matrix   plays the key role in this analysis; however, the elements of 

this matrix are not real communication gains within the network, but they represent a 

priori determined weights introduced above by the very definition of criteria   (see also 

the related comments below). It should also be emphasized that the communication delay 

is considered to be negligible w.r.t. bandwidth of the measured signal, having in mind 

typical real situations in which the network is implemented using a high speed wireless 

sensor network and the measurements are connected to slow processes, like temperature, 

pressure, humidity, etc. 

In the basic setting, we assume: 

A)   ( )         . 
B)  Graph   has a center node (i.e. a node from which all the other nodes are 

reachable). 
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Assumption A) is typical for gradient schemes in the noiseless case (measurement and 

communication noises are absent). Assumption B) is very common for various problems 

related to dynamic consensus. Intuitively, it means that there is at least one node in the 

network which can communicate with all the other nodes. In such a way, isolation of 

some nodes, which could inhibit the achievement of consensus, is effectively prevented. 

Formal consequences of this assumption are discussed in many papers [6,19-21]. 

Lemma 1: Let Assumption B) be satisfied. Then matrix   has one simple eigenvalue 

at  the origin and the remaining ones have negative real parts. 

Lemma 1 is of key importance for the whole analysis. The proof of Lemma 1 can be 

found in [6, 20-22]. 

Define vector   ,   - . According to [20], this vector represents the right 

eigenvector of    corresponding to the zero eigenvalue. Let   be the corresponding left 

eigenvector, satisfying      and     . According to Lemma 1 and the condition 

    , this eigenvector is unique. 

Lemma 2: Let    ,     (   )-, where    (   ) is a matrix satisfying    

       (   )       . Then   is a non-singular matrix and 

        [
     (   )

 (   )     
]  (15) 

where (n-1) x (n-1) matrix    is Hurwitz. 

 The proof of Lemma 2 is directly based on the Jordan's form of matrix    [7, 12]. 

Theorem 1: Let Assumptions A) and B) be satisfied. Then, there exists a scalar 

     such that for all         in (11)  

         ̂( )        ̂( ) (16) 

where  ̂( )  ,     -
 . 

Proof: We define  ̃( )      ̂( )  Then, from (11) we obtain  

  ̃(   )  (        ) ̃( )  (17) 

According to (13), if   ̃( )  , ̃( ), -  ̃( ), - - , we obtain directly 

  ̃(   ), -   ̃( ), - (18) 

  ̃(   ), -  (     ) ̃( ), - (19) 

where     ̃( ), -    and     ̃( ), -       Having in mind that matrix   has one 

zero eigenvalue and the remaining ones with negative real parts, it follows from Lemma 

2 that matrix    is Hurwitz, i.e., all its eigenvalues have strictly negative real parts. 

Consequently, there exists such      that for all         the condition 

    |  (     )|    is fulfilled. This implies that        ̃( )
, -   , so that we get 

        ̃( )  , ̃( )
, -    -  (20) 

i.e.     , ̃( )
, -    -     ̂( )   

According to the given proof, it is clear that the algorithm (11) achieves the 

asymptotic consensus in such a way that the equivalent offsets for all the nodes in the 
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network become equal. The speed of achieving this condition is exponential. From 

Theorem 1 we can conclude that concrete values of the common equivalent offset depend 

on the unknown sensor offsets and the adopted weighting coefficient values     from (7). 

4. ESTIMATION OF THE GAIN CORRECTION PARAMETER 

Starting from (3), we define    ( )    (   )    ( ) and   ( )   (   )  
 ( ), and get for the increment of the output of i-th sensor 

    ( )      ( )  (21) 

If, in general, the sensor calibration function is given by (6), we get, after correction, that 

   ( )       ( )           (22) 

where         and           . 

The aim of the gain correction algorithm is to estimate parameter    in such a way 

that all the sensors in the network have asymptotically the same equivalent gains 

       . The algorithm will be derived starting from the relation 

    ( )        ( )       ( ) (23) 

using the previously explained methodology in 3. Thus, we define a set of local criteria  

   
  ∑     {(   ( )     ( ))

 }    
 (24) 

and 

 
   
 

   
  ∑     {(   ( )     ( ))    ( )}    

. (25) 

From here we get a gradient recursion for estimating parameter    

  ̂ (   )   ̂ ( )    ( )∑       
 ( )   ( )    

 (26) 

where  ̂ ( ) is an estimate of the parameter    at the moment t,   ( )    is the step size 

of the algorithm, while    
 ( )    ̂ ( )    ̂ ( )  where   ̂ ( )   ̂ ( )   ( ). The 

relation (26) can be represented in terms of the corrected gains in the following way 

  ̂ (   )   ̂ ( )    ( )∑    ( ̂ ( )   ̂ ( ))    
  
   ( )  (27) 

All the recursions from (27) can be represented in a compact vector-matrix form as  

  ̂(   )  ,    ( )  ( )   - ̂( ) (28) 

where  ̂( )  , ̂ ( )   ̂ ( )-
  and       *        +  

Relation (28) is similar to relation (11); the main difference lies is in the presence of 

the stochastic element   ( )  (which is not measurable). Therefore, the related 

methodology of convergence analysis becomes more complicated than the one for the 

offset correction algorithm. 
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For the purpose of convergence analysis, we assume 

C)  *  ( ) |  +    
    

        *  ( ) |  +    
    

where    is the minimal -algebra generated by * ( )  (   )  +. Intuitively, the 

meaning of this assumption is the following: the signal does not have a trivial constant 

value and has the bounded fourth moment; in practice, both conditions are easily 

fulfilled. In general, the assumption about stochastic nature of the signal arises naturally 

from the fact that its samples are unknown for the observer implementing the proposed 

calibration algorithm function. The assumption C) is very mild, easily achievable in 

practice. 

Theorem 2: Let Assumptions A), B) and C) be satisfied. Then there exists       such 

that for all        in (28)  ̂( ) tends exponentially to consensus in the mean square sense. 

Proof: Let    be the transformation matrix which has the same role as the 

transformation   in Lemma 2, but now with respect to the matrix    , which has, also, 

one eigenvalue at the origin and the remaining ones with negative real parts. If we 

assume  ̃( )    
   ̂( ), we get from (28) that 

  ̃(   )  (     
          ( )

 ) ̃( ) (29) 

According to Lemma 2, we obtain 

  ̃(   ), -   ̃( ), - (30) 

  ̃(   ), -  (     ( )   
 ) ̃( ), - (31) 

where   
  follows from the relation 

   
        [

  
   

 ]  (32) 

Like    in Lemma 2, all the eigenvalues of   
  have all the eigenvalues with negative real 

parts. Consequently, there exists such a symmetric positive definite matrix   
  that 

satisfies the Lyapunov equation 

   
    

    
   
     

  (33) 

where   
  is a symmetric positive definite matrix. Further, we define  ( )  

 { ̃( ), -   
  ̃( ), -}. From (31) we obtain 

  (   )   { ̃( ), - [
    *  ( ) |  +(  

    
    

   
 )  

   *  ( ) |  +  
    

   
 ]  ̃( ), -}  (34) 

We shall first analyze the elements of the right side of (34). According to (33), for the 

linear part we have 

   { ̃( ), -   *  ( ) |  +  
  ̃( ), -}      

        (  
 )  { ̃( ), -  ̃( ), -} (35) 

For the quadratic part, we have the upper bound  

     
  { ̃( ), -   

    
   
  ̃( ), -}  (36) 
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If we take into account that for a given n-dimension vector    

    
       (  

 )        (  
 )    

 
 

   
     

 
 

       (  
 )

 

      (  
 )
    

    (37) 

and also  

     
    

   
         (  

 )      (  
    

 )    (38) 

where     
 ( )

      (  
 )

,  we get 

  (   )  (     
      

 ) ( ) (39) 

where   
    and   

    are generic constants. Since the minimum of the quadratic 

parabola       
     

    is at      
  
 

   
   , it follows that there exists such 

       that       
     

      for all         . From this, we obtain that 

 ( )    exponentially when       i.e,  ̃( ), -     exponentially in the mean square 

sense. Therefore,  

        ̃( )  , ̃
, -( )     -  (40) 

As  ̂( )     ̃( ), it follows that 

        ̂( )    , ̃
, -( )     -      ̂( ) (41) 

where    is the left eigenvector of the matrix     corresponding to the zero eigenvalue 

(as in the proof of Theorem 1).  

General statements related to the corrected offset estimation still hold in the case of 

corrected gain estimation. However, the matrix     is now of crucial importance, since 

its left eigenvector is included in the consensus condition for  ̂( ). An unfavorable 

circumstance in this case could be that small values for    could have big influence on the 

i-th sensor, which would contradict to the general logic concerning the asymptotic values 

to be realized in consensus. 

5. SIMULTANEOUS ESTIMATION OF THE GAIN AND OFFSET CORRECTION PARAMETERS 

Discussion in Sections 3 and 4 are related to corrected offsets and gains taken individually. 

Estimation of the corrected offset in Section 3 assumes the gain equal to one. In the general 

case, the corrected output of the i-th sensor, is    

  ̂ ( )    ( )   ̂ ( )     ( )      ̂ ( ) (42) 

and the recursive gradient relation becomes 

  ̂ (   )   ̂ ( )    ( )∑    [ ̂ ( )   ̂ ( )  (     ) ( )]    
  (43) 

It is obvious that the element (     ) ( ) allows neither asymptotic consensus nor 

convergence of  ̂ ( ) to possibly different values. This is a consequence of the stochastic 

nature of signal  ( )  the mean value of which is not equal to zero in the general case. 

However, if we adopt 
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  ̂ ( )   ̂ ( )  ( )   ̂ ( )   ̂ ( )   ( )   ̂ ( )    ̂ ( ) (44) 

the error    ( )   ̂ ( )   ̂ ( ) becomes 

    ( )  ( ̂ ( )    ̂ ( )  ) ( )   ̂ ( )    ̂ ( )    ̂ ( )   ̂ ( )  (45) 

In relations (44) and (45)  ̂ ( ) and  ̂ ( ) are arbitrary estimates of the calibration function 

parameters. If the estimates  ̂ ( ) and  ̂ ( ) had been generated by the algorithm presented 

in Section 4, then the asymptotic consensus would have been achieved, implying    ( )    

in the offset estimation process, having in mind that  ̂ ( )   ̂ ( )    ̂ ( )   ̂ ( )   , 

i.e., all the corrected offsets  would have been equal. The idea of estimating parameters  ̂  

and  ̂  simultaneously follows from this observation, in a such way that: 

1) The algorithm for gain estimation generates  ̂ ( ) according to the procedure (26), 

independently of the offset values; 

2) The  algorithm for offset estimation generates  ̂ ( ) according to procedure (9), in 

which    ( ) is given (45). 

The complete calibration algorithm can be represented now as 

  ̂ (   )   ̂ ( )    ( )∑       
 ( )   ( )    

 (46) 

  ̂ (   )   ̂ ( )    ( )∑       ( )    
 (47) 

where    ( )   ̂ ( )   ̂ ( ), and  ̂ ( )   ̂ ( )  ( )   ̂ ( ). The algorithm (46) and 

(47) implies communication of    ( ) and  ̂ ( ) between the nodes, as well as generation 

of local corrected outputs by using current values of the parameters  ̂ ( ) and  ̂ ( ). The 

nature of recursions (46) and (47) can be better perceived using the form in which  ̂ ( ) 

and   ̂ ( ) are replaced by the corrected gain  ̂ ( )   ̂ ( )   and corrected offset 

 ̂ ( )   ̂ ( )    ̂ ( ).  From (46) and (47) we have 

  ̂ (   )   ̂ ( )    ( )∑    ( ̂ ( )      
 ̂ ( ))  

   ( )  (48) 

 ̂ (   )   ̂ ( )    ( ),      ( )
   ( )-∑    ( ̂ ( )   ̂ ( ))    

   

   ( )∑    ( ̂ ( )   ̂ ( ))    
 (49) 

If we define  ̂ ( )  , ̂ ( )  ̂ ( )-
  we get 

  ̂ (   )   ̂ ( )    ( )∑      ( )( ̂ ( )   ̂ ( ))    
 (50) 

where 

   ( )  [
  
   ( )  

      ( )
   ( )  

] . (51) 

If we adopt  ̂( )  , ̂ ( )   ̂ ( )-
  and  ̂( )  , ̂ ( )   ̂ ( )-

 , we get the 

compact forms of the described algorithms 

  ̂(   )   (   ( )     ( ) ) ̂( ) (52) 

  ̂(   )  (   ( ) ) ̂( )   ( ) ( )  ̂( ) (53) 
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where  ( )      *      ( )
   ( )         ( )

   ( )+. In a similar way, for 

 ̂( )  , ̂ ( )
   ̂ ( )

 - , we get  

  ̂ (   )  (   ( ) ( )    )) ̂( ) (54) 

where  ( )      *  ( )     ( )+, while   denotes the Kronecker matrix product 

[23]. 

We start the convergence analysis from (52) and (53), where the corrected gain and 

offset vectors are separated. It is clear that all the conclusions from Section 4 are valid for 

 ̂( ). It remains to analyze the asymptotic behavior of the algorithm for  ̂( ).  It is clear 

that the conclusions regarding offset estimation from Section 3 are here inapplicable, due 

to a different definition of the equivalent offset and the existence of an additional element 

in  ̂( ) which depends on  ̂( ). This element is stochastic and depends on both  ( ) and 

  ( ). 

Theorem 3: Let the Assumptions A), B) and C) be satisfied. Then, the algorithm 

(50) tends to consensus in the mean square sense, i.e.        *‖ ̂( )     ‖
 +    

and        *‖ ̂( )     ‖
 
+   , where    and    are random variables. 

Proof: Behavior of  ̂( ) directly follows from Theorem 2, where     
  ̂( ) and    

is defined within Theorem 2. We can see that the convergence law is exponential,  i.e., 

 *‖ ̂( )     ‖+      
 , where      and       .  

Properties of the recursion for   ̂( ) in (50) will be analyzed by adopting  ̃( )      ̂( ), 
where   is the transformation defined in Lemma 1; therefore, we get 

     ̂(   )      ̂( )            ̂( )       ( )     
   ̂( ) (55) 

where matrix    is defined in Theorem 2. Considering the form of matrix     (related to 

  ), it is clear that the right eigenvector of this matrix corresponding to the zero 

eigenvalue is equal to vector 1. Since     , it follows that     is the matrix the first 

column of which is composed of zeros. This means that 

     ( )    [
   ( )

, -

   ( )
, -
] (56) 

where   ( )
, - is an (   )-dimensional row vector and   ( )

, - an (   )  (   ) 

matrix. We can see that   ( )
, - and    ( )

, - depend on the random variables   ( ) and  

 ( ). Consequently,   ̃( )      ̂( ) can be decomposed in the following way 

  ̃(   ), -   ̃( ), -      ( )
, - ̃( ), - (57) 

  ̃(   ), -  (     ) ̃( ), -     ( )
, - ̃( ), - (58) 

where   ̃( )  , ̃ ( )
, -   ̃( ), - -  and  ̃( ), - is defined in Theorem 2. The first 

recursion in (57) gives 

        ̃( )
, -   ̃( ), -         ∑   ( )

, -   
    ̃( ), -   ̃( ), -    

   (59) 

Random variable   
  satisfies 

 * |   
 |+      

   
∑  * *‖  ( )

, -‖|  +‖ ̃( )
, -‖+   
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       ∑  {‖ ̃( ), -‖}   

      
       ∑   

    
      

    (60) 

where   
 ,   

 ,   
  i        are generic constants. The second recursion in (58) gives  

  ̃( ), -  (     )    ̃( ), -   ∑ (     )        
     ( )

, - ̃( ), - (61) 

From here it follows that 
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→     

     (62) 

where   
    ,           , since  *‖  ( )

, -‖ |  + is bounded and  {‖ ̃( ), -‖
 
} 

exponentially tends to zero. The conclusion is that in the mean square sense  
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  (  ̂( )    
 )      (63) 

having in mind the structure of matrices   and     .  

The result of Theorem 3 shows that consensus can be achieved simultaneously for both 

calibration function parameters. It should be also observed that in this case random 

variable    
  results, at least partially, from the impact of  ̂( ) on the recursion for  ̂( ). 

It is important that  ̂( ) tends to consensus exponentially. 

6. SIMULATION RESULTS 

Basic properties of the proposed algorithms are illustrated by simulations related to a 

sensor network with ten nodes. Two different cases are taken into consideration:  

1)    – sensor network with randomly chosen weighting coefficient values      

2)    – sensor network obtained from   by removing many of the connections 

between the nodes, but still satisfying assumption B). In this way we get a graph 

with a lower degree of connectedness. 

The measured signal has been generated by a second order constant parameter ARMA 

process with steady state variance equal to one, satisfying assumption C) 

In Figs. 1-3 corrected offsets generated by proposed algorithm in Section 3 are 

represented. Fig. 1 is an illustration of time evolution of the corrected offsets for all ten 

nodes in    with the step size of the algorithm tuned at 0.01. The convergence is obviously 

very fast and it proves the efficiency of the algorithm mentioned above. In Fig. 2 the time 

evolution of the corrected offsets is shown, but with the step size set to 0.001. It is clear that 

in this case the convergence is slower. Fig. 3 shows how the degree of connectedness 

affects the convergence properties. The time evolution of the corrected offsets is shown for 

the case    . From the comparison of Fig. 3 with Fig. 1 it clear that the convergence is 

slower for the sensor network with a lower degree of connectedness. 

 



 Distributed Consensus-based Calibration of Networked Control Systems 107 

 
Fig. 1 Time evolution of the corrected offsets, case   ,           

 
Fig. 2 Time evolution of the corrected offsets, case   ,            

 
Fig. 3 Time evolution of the corrected offsets, case   ,           



108 M. STANKOVIĆ, D. ANTIĆ 

In Figs.4-6 the corrected gains are represented, generated by the algorithm proposed in 

Section 4. Fig.4 shows time evolution of the corrected gains for the case   , with the step 

size set to 0.01.  

Fig. 5 illustrates the influence of the algorithm step size itself. All settings are the same 

as in the case of described for Fig. 4, except for the step size, which is set to 0.001. It is 

clear that the convergence is slower for the lower step size. Fig. 6 corresponds to the case 

G2  with the step size tuned at 0.01. Once again it is shown how the degree of connectedness 

influences the convergence rate - the lower degree of connectedness, the slower convergence. 

 

Fig. 4 Time evolution of the corrected gains, case   ,           

 

Fig. 5 Time evolution of the corrected gains, case   ,            
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Fig. 6 Time evolution of the corrected gains, case   ,           

 

In Figs. 7-9 the simultaneous convergence of the gains and offsets are illustrated.  Fig. 

7 corresponds to the proposed algorithm, and Fig. 8 to the algorithm proposed in [7, 11], 

both with delta = 0.01. It is obvious that the proposed algorithm provides a superior 

convergence rate, as expected. Numerous simulations show that the proposed algorithm 

can serve as a more efficient tool in practice. In Fig. 9 the correction parameters are 

represented in the case of delta=0.0001, as an additional illustration of the influence of 

the step size of the algorithm on the overall convergence rate. 

 

Fig. 7 Time evolution of the corrected parameters for the proposed algorithm with 
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Fig. 8 Time evolution of the corrected parameters for the algorithm proposed in [7, 11] 

with the same gain as in Fig. 7 

 
Fig. 9 Time evolution of the corrected parameters for             

7. CONCLUSION 

In this paper a new algorithm for distributed blind macro calibration of sensor networks 

is presented, consisting of two recursive gradient based algorithms for estimating gain and 

offset correction parameters of all the sensors in the network. The algorithm does not 

require the knowledge of the measured signal. The algorithm for gain correction is derived 

from measured signal increments, and functions independently.  The algorithm for offset 

correction utilizes the gain correction parameters given by the first algorithm and the signal 

measurement error. It is demonstrated that the entire calibration algorithm can be treated as 

two dynamic consensus algorithms. It provides asymptotically equal corrected gains and 

equal corrected offsets for all the sensors in the network.  

The paper contains proofs of the convergence of the offset and gain correction parameters 

taken separately, as well of the whole algorithm based on simultaneous estimation of both 
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gain and offset correction parameters. It is demonstrated that the algorithm provides the 

exponential convergence to consensus. It is also indicated that the proposed algorithm 

structure offers a possibility to achieve a convergence rate superior to the existing similar 

schemes. Selected simulation results illustrate the main properties of the proposed algorithm 

and its advantage over the algorithm proposed in [7, 11] from the point of view of the 

convergence rate. 

Further research could be oriented towards robustifying the presented algorithm with 

respect to the measurement and communication noise containing outliers of high intensity. 

It would be also interesting to study a possible incorporation of a spatial model of the 

measured signal. 
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