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Abstract. In this paper a companding-type approach is presented to designing the 

pyramid two-dimensional quantizer whose cells are obtained by radial spreading of the 

cubic cells. For a memoryless Laplacian source, the optimal radial compression 

function and rate allocation between the radius and location quantizers are determined 

subject to the mean-squared error (MSE) criterion. The results also include formulation 

of a new method for linearization of compression function, based on a compression 

function derivative discretization. It is of special importance since the unclosed-form of 

optimal radial compression function causes certain difficulties in companding 

quantizer implementation. 
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1. INTRODUCTION 

The companding-type approach has been very successfully applied to scalar quantizer 

design by using Bennett’s integral, which for the high resolution case specifies the 

average mean square error (the MSE distortion) as a function of the compression function 

[1], [2]. For dimension 2, the widely used companding model is a model of polar 

quantization where the radius of an input vector is quantized using a scalar compandor, 

while input vector phase is uniformly quantized. In polar quantization, the amplitude and 

phase can be quantized separately, which is characteristic of restricted polar quantization, 

or they can be quantized jointly, when the phase quantization is made dependent on the 

amplitude, specifying model of unrestricted polar quantization [1], [3]. These polar 

quantizers have been utilized to circularly-symmetric sources, such as a memoryless 

Gaussian source. 
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The two-dimensional quantization of a memoryless Lapalcian source based on the 

companding principle, to the best of authors’ knowledge, is not so widely applied. This 

motivates us to focus the analysis toward an N-point two-dimensional quantization of a 

memoryless Lapacian source with the aim to apply the companding-type approach in its 

designing. In order to do that, we assume that the space partition follows the source 

geometry in the sense that the cell size is inversely proportional to the source density. As 

a result we obtain that an amplitude output level consists of points with the same 

densities as well as that the cells are of the equal size on one amplitude level. In other 

words, we quantize an input vector in terms of its intensity, or radius and location vector, 

whereby the nonuniform spacing between amplitude levels is defined by means of a 

compression function. For the case when the number of cells per amplitude levels is 

optimized, the generalized optimal radial compression function was determined in [4], 

[5]. In [6] the two-dimensional quantization model was considered where the -low 

companding quantizer is used for radius quantization, while in [7], the generalized radial 

compression function was derived under the condition that the signal to quantization 

noise ratio (SQNR) is constant over a broad range of input signal variance. In [4], along 

with the unrestricted vector quantization, the pyramid vector quantization was considered 

based on the companding principle, i.e. the restricted vector quantization where vector 

intensity and location vector are quantized independently with the L-level scalar 

compandor and the M-level uniform scalar quantizer respectively, wherein holds 

N = ML. In this paper we perform an asymptotic analysis of pyramid two-dimensional 

quantization at which the quantization cells are different in respect to those from [4-7]. 

Particularly, in [4-7] the lattice cells are assumed, while our cells are obtained by 

performing the radial spreading of cubic cells that are uniformly distributed on the surface 

of the pyramid with unit radius. The proposed space partition eliminates the edge effect 

which appears due to overlapping of lattice cells and amplitude levels. It can also be 

noted that there exists certain analogy between the presented space partition and the space 

partition at the restricted polar quantization. The corresponding counterpart of the 

restricted polar quantizer is a pyramid two-dimensional quantizer presented here. 

With respect to the MSE distortion, an optimization of pyramid two-dimensional 

quantization with cells that are obtained by radial spreading the cubic cells was somewhat 

researched in [8]. The first part of this paper, similarly to [8], is related to the determination 

of the asymptotically optimal number of levels and compression function for scalar 

compandor intended for quantization of input vector radius. In the second part of the 

paper we spread the analysis by researching the possibility for the simplification of the 

nonlinear quantization model defined in the first part of the paper. We develop a novel 

method for the compression function approximation with linear segments, based on a 

compression function derivative discretization. We opt for this kind of linearization in 

order to retain the quantizer structure in accordance with the geometric approach. 

Linearization of the optimal compression function for unrestricted two-dimensional 

quantization, based on segmentation of its first derivative was presented in [9]. 

Additionally, in this paper we assume that the size of segment steps changes in the 

manner to form geometric progression. The change of the step size of successive 

segments by a constant factor is the feature of a widely used standard G.711 [10], while 

as regards the Laplacian source, quantizers with geometric progression of step size were 

described in [11], [12]. 
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2. ASYMPTOTICALLY OPTIMAL RATE ALLOCATION AND RADIAL COMPRESSION FUNCTION 

Let us consider an N-point restricted two-dimensional quantization of a memoryless 

Laplacian source. Then the quantization input is a two-dimensional vector 1 2[ ]x xx  

consisting of independent and identically distributed Laplacian variables xi with zero 

mean and unit variance whose the joint probability density function (joint pdf) is: 

 
 











2

1

2

1

2exp
2

1
)()x(

k k
kk xxffx . (1) 

As discussed in Introduction, we consider quantization scheme in which an amplitude 

output level represents a contour of a constant pdf given by 
2

1
ˆ,  1,2,...,kk

x r i L


  , where 

L is a number of amplitude levels (see Fig. 1 [8]). Similarly, the amplitude decision level 

is 
2

1
,  1,2,...,k ik

x r i L


  . The symmetry observed in the space partition imposes the input 

vector representation in terms of vector intensity, or radius r and the location vector s [8]: 
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where r is defined by: 
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while vector s is the normalized vector x according to the L
1
  norm |x|1 = |x1|+|x2|, so that 

it originates from (0,0) and ends on contour given by 
2

1
1kk

x


 . The radius r of input 

vector x is also a random variable having a pdf [13]: 

 ( ) 2 exp( 2 ), 0rf r r r r   , (4) 

while the endpoint of location vector s is uniformly distributed on the unit pyramid [13]. 

The number of cells per amplitude levels is constant, here marked with M, so that it 

holds:  

 NLM  . (5) 

Hence, the output points are of the form: 

 MjLir jiji ,...,1,,...,1,ˆˆˆ
,  sx , (6) 

which enables the independent quantization of r and s. We assume that the input vector 

radius is quantized by L-level scalar compandor whose compression function 

h(r): [0,+)  [0,1) maps nonuniform amplitude levels into uniform ones and enables 

the following representation for the step size of scalar compandor, i: 

 ˆ1/[ ( )],    1,..., .i iLh r i L   . (7) 

The endpoint of location vector is quantized by M-level uniform scalar quantizer. Since 

the quantization rate is R = 1/2log2N = 1/2log2(LM) it holds: 

 ( ) / 2r sR R R  , (8) 
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where Rr = log2L and Rs = log2M are rates of L-level radius and M-level location scalar 

quantizers, respectively. 

Now it can be noted that for large L, the volume of the quantization cell ci,j, i=1,…,L, 

j=1,…,M can be correlated with the surface of cell Sj that contains the endpoint of sj: 
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where i = ri – ri-1 (see Fig. 1). Also, Fig. 1 shows that the proposed space partition 

eliminates distortion degradation due to the edge effect unlike the two-dimensional 

quantization whose cells are rectangular and where Helmert transformation is not used. 

The figure points out that there is a certain analogy between the presented space partition 

and the space partition of the restricted polar quantization. 
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Fig. 1 An amplitude level in pyramid two-dimensional quantization  

with cells obtained by radial spreading the cubic cells 

In general, the MSE distortion per dimension is [2]: 
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where by combing the sine and cosine formulas the 
2

, )ˆ( jixx  can be expressed through r 

and s: 
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We conduct an asymptotic analysis, i.e. we assume the large L and that r and fx(x) 

vary little inside a cell which allows their approximation with ir̂  and )ˆ( , jif xx , respectively. By 

using these asymptotic approximations and by performing coordinate transformation 

(dx=
ir̂ drds) we can write that asymptotic distortion is: 
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Integral solving in (12) gives: 
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Utilizing (5), (7) and (9) yields: 
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where Pi is the probability that vector x belongs to the ith amplitude level:  
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The Pi can also be expressed as probability that radius of input vector r lies between 

boundaries of the ith amplitude level: 
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By substituting (16) into (14), we get that the asymptotic MSE distortion per dimension 

can be written as follows: 

 
2

2

2 2 2
1 1

ˆ( )1 4
ˆ ˆ( )

ˆ48 [ ( )] 3

L L
r i

i i r i i

i ii

f r L
D r f r

L h r N 

   


  . (17) 

By approximating the sums with integrals ( drrr ii  ,ˆ ), we obtain that the asymptotic 

distortion is: 
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Since 2
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 , (18) can be further transformed into: 
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where: 
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By optimizing the distortion subject to L, i.e by differentiating D, given by (19), with 

respect to L and equalizing with zero, we find: 

 1 4 1 2
0 ( / 2)L l N ,  (21) 
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Eq. (22) shows that for given N, D depends only on scalar variable l0. If we further 

carefully observe the expression for l0, we note that (20) corresponds to the Bennet’s 

integral form for the case of scalar companding quantization [1], [2]. This enables us to 

apply the method from scalar quantization to get the optimal radial compression function 

of pyramid two-dimensional quantization: 
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where () is gamma function. Finally, by substituting (23) in (20), (21) and (22) we 

obtain that asymptotically optimal amplitude level number and distortion are: 

 * 1 3 4 1 22 [ (1/3) / 2]L N  , (24) 

and 

 * 1 2 3 2 12 [ (1/3)]D N   , (25) 

respectively. The expression for distortion coincides with the result from [4], while the 

numbers of amplitudes levels differ which results in small deviations of the corresponding 

values. The difference in number of amplitude levels originates because the cells of different 

shape are assumed in this paper and in [4]. We also compare the distortion, given by (25) with 

the distortion when the number of amplitude levels, as well as the number of cells per 

amplitude levels are optimized and when the cells are cubic (((n+2)/n)^(n+2)/6*N^(-2/n); 

where n = 2 [4], [5], [9]). Comparison shows that the performances are weaker in respect to 

the optimum for 3/ 210log([ (1/3) / 2] /12) = 0.6546 dB.  

With the L
*
 derivation we actually determine the asymptotically optimal relation between 

the rates of the employed scalar quantizers in the pyramid two-dimensional quantization: 

 * * * 2 3/ 2
2log [ /( ) ] 4[2/ (1/3)] 2.58s rR R N L     . (26) 

Equation (26) points out that the difference between rates of scalar quantizers is 

constant and does not depend on N. This dependence along with the equation (8) 

specifies the optimal allocation of rates between the radius and location scalar quantizers. 
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3. COMPRESSION FUNCTION LINEARIZATION BASED ON COMPRESSION FUNCTION 

DERIVATIVE DISCRETIZATION 

In order to simplify the companding model proposed in Section 2, we propose a novel 

method for the approximation of the nonlinear compression function (23) with linear 

segments. We assume L0 segments inside which the constant slope of compression 

function is obtained by performing a discretization of compression function derivative. 

We also assume that slopes of linear segments form a geometric progression. As the first 

derivative of the optimal radial compression function:  

 1/3 1 3( )
2( 2 / 3) / (1/ 3) exp( 2 3)

dh r
r r

dr
    (27) 

is not a monotonous function, we have to distinguish two ranges. The first one, for radii 

between [0,1/ 2)  and the second one, for radii between [1/ 2, ) , where 21  is the 

radius at which the compression function derivative has maximum max (1/ 2)h h  
 

1 32/[3 (1/3)]exp( 1/3)  . Since the step size should be inversely proportional to the first 

derivative of compression function, we assume the smallest step size min for the segment 

that contains 1/ 2  at which the compression function derivative maximum is. We 

distribute the number of segments per previously defined ranges in the following manner: 

L0 = '0L +1+ ''0L , where '0L  and ''0L  are numbers of segments in the first and the second 

region, respectively. We adopt that the number of segments in a range is proportional to 

the probability that the input vector belongs to that range. In that way we get that: 

 

1 2

0 0

0

' ( )rL L f r dr  , (28) 

while 1''' 000  LLL . We assume that the step size is the smallest for segment '0L +1 

and that it increases by the scaling factor s, as the segment number increases or decreases 

in respect to '0L +1. In other words, we define a model whose compression function slope 

per segments is: 
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where s is the scaling factor that defines the geometric progression of the step size, while 

it̂  denotes the input radius at which the piecewise-linear compression function, here 

denoted hPL(r) and the nonlinear compression function, h(r) are equal. Thus, for each 

segment except the first one, the condition PL
ˆ ˆ( ) ( )i ih t h t  provides us with specifying the 

piecewise-linear compression function as follows: 

 PL PL 0
ˆ ˆ ˆ( ) ( )( ) ( ), 2i
i i ih r h t r t h t i L     . (30) 

We obtain the compression function equation for the first segment by performing 

correction which enables that 1
PL (0)h =0: 

 1
PL PL 1̂( ) ( )h r h t r . (31) 
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The continuity of the piecewise-linear compression function implies that the segment 

boundaries, ti are: 
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It should be noted that we linearize compression function that maps [0,+) into [0,1). 

This actually means that the piecewise-linear compression function must not exceed 1, 

which further implies that the segment boundary tL0
 cannot be infinity. Thus, we 

determine tL0
 from condition 0

0PL ( ) 1
L

Lh t  , so that our piecewise-linear radial compression 

function maps [0, tL0
 ) into [0, 1]. The input radii grater then tL0

 are quantized with the 

overload errors, i.e. tL0
 represent the boundary between granular and overload region, 

called the support limit of quantizer. Hence, the overall distortion of the linearized model 

consists of two components. By performing the similar analysis for distortion estimation 

as in Section 2, we obtain that the granular and overload distortions for the pyramid two-

dimensional quantization defined with the proposed piecewise-linear radial compression 

function are: 
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respectively. Then the overall distortion is D
PL

 = Dg
PL

+Do
PL

. 

 4. NUMERICAL RESULTS  

For given N and L0, one can conclude from (29)-(34) that the distortion value only 

depends on scaling factor s, so that we provide the optimal value for the scaling factor, s
*
 

by performing numerical minimization of D subject to s. For such determined s
*
 the 

piecewise-linear radial compression function is shown in Fig. 2. With the increase of L0 

the piecewise-linear compression function expectedly approaches the optimal nonlinear 

compression function. Fig. 2 also shows that support limit tL0
 increases with L0 which 

along with the fact that the support limit increases with N, implies that when N is large 

and L0 is small, the overload distortion can have a considerable contribution to the overall 

distortion. One of the reasons why it happens is that the geometric progression of the step 

size influences tL0 
and restricts its setting to an arbitrarily value. Thus, for a large number 

of amplitude levels and a small number of segments, one can expect not only granular 

distortion deterioration due to the poor approximation of the nonlinear compression 

function, but also the overload distortion deterioration due to the inappropriate value of 

the support limit. 
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In Table 1, for different pairs of (R = 1/2log2N, L0) the optimal value for the scaling 

factor s
*
, the support limit tL0

 and the resulting signal to quantization noise ratio calculated 

as SQNR
PL

 = 10log(1/D
PL

) are tabulated. The last column in table refers to the SQNR of 

nonlinear pyramid two-dimensional quantization model, SQNR
*
 = 10log(1/D

*
), where D

*
 is 

given by (25). The results listed in Table 1 show that s
*
 decreases with the increase of L0 

and increases with R. One can also observe that for a given L0 and a different R, the optimal 

scaling factors differ, which means that for each combination (R, L0) the numerical 

optimization of SQNR in respect to s should be performed. One can see from Table 1 that 

for L0 = 3 the difference between SQNR
PL

 and SQNR
*
, SQNR = SQNR

*
  SQNR

PL
 

increases for about 0.5 dB when the rate increase is 0.5 bits/sample, which confirms 

observations derived from Fig. 2. Similarly, for any given L0 the difference between 

SQNR
PL

 and SQNR
*
 increases with R. That is why the adequate choice of segment number 

should be made in order to achieve small quality degradation due to compression function 

approximation with linear segments. On the other hand, the compression function 

linearization reduces the complexity of the quantizer. Actually, the optimal radial 

compression function is not of a closed-form nonlinear equation (see eq. (23)), which 

means that in order to define the corresponding expandor the transcendental equation 

must be solved. Unclosed-form characteristics of compressor and expandor imply certain 

difficulties in their implementation. Unlike this, the piecewise-linear compressor function 

and its expandor’s counterpart, as linear blocks, can be easily implemented. 
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Fig. 2 The piecewise-linear compression function that approximates  

the optimal radial compression function 
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Table 1 Pyramid two-dimensional quantizer based on piecewise-linear radial 

compression function and its optimal nonlinear counterpart 

R [bits/sam.] L0 s* 
tL0

 SQNRPL [dB] SQNR* [dB] 
SQNR [dB] 

5 3 2.74 6.50 24.664 25.189 0.525 

4 1.93 7.23 25.065 0.124 

5.5 3 3.18 6.86 27.374 28.199 0.825 

4 2.11 7.67 27.953 0.246 

8 1.39 8.12 28.182 0.017 

6 3 3.71 7.22 30.048 31.209 1.161 

4 2.29 8.15 30.836 0.373 

8 1.43 8.59 31.112 0.097 

6.5 3 4.32 7.59 32.653 34.220 1.567 

4 2.46 8.63 33.710 0.510 

8 1.46 8.99 34.035 0.185 

16 1.19 9.07 34.079 0.141 

7 3 5.03 8.02 35.258 37.230 1.972 

4 2.63 9.15 36.594 0.636 

8 1.49 9.410 36.953 0.277 

16 1.20 9.462 37.001 0.229 

7.5 3 5.75 8.453 37.831 40.240 2.409 

4 2.78 9.64 39.470 0.770 

8 1.52 9.87 39.864 0.376 

16 1.21 9.89 39.915 0.325 

8 3 6.48 8.89 40.385 43.251 2.866 

4 2.92 10.12 42.339 0.912 

8 1.55 10.37 42.766 0.485 

16 1.22 10.35 42.821 0.421 

To evaluate the proposed model, in Fig. 3 we show SQNR as a function of R for our 

pyramid two-dimensional quantizer and other companding quantizers intended for 

Lapalcian source quantization. In Fig. 3 we show the performances of both pyramid two- 

dimensional quantizers, i.e. when the linearization is or is not performed. Although the 

number of segments is small (L0 = 8), it is evident that for 5.5 bits/sample  R   10 bits/sample 

the SQNR deterioration does not exceed 1 dB, whereby the deterioration is smaller for 

lower R, which is explained above. In comparison with optimal unrestricted two-dimensional 

quantization, our pyramid quantization based on piecewise-linear compression function 

has SQNR up to 1.6 dB lower. On the other hand, the complexity of the proposed 

quantization scheme is reduced since the radius of input vector and the location vector are 

quantized independently by engaging simple two-component quantizer that consists of 

one scalar compandor and only one uniform scalar quantizer. Fig. 3 shows that the 

linearized pyramid two-dimensional quantizer outperforms logarithmic nonuniform two-

dimensional quantizers proposed in [6] and [7]. Particularly, depending on R the SQNR 

of our pyramid quantizer is for 1 dB to 2 dB higher than that of unrestricted quantizer 

with quasilogarithmic compression characteristic ( = 255) [6]. In comparison with the 

SQNR of the restricted quantizer with semilogarithmic compression characteristic 

(A = 87.6) [7], the SQNR gain of our compandor amounts 2 to 2.5 dB for a given range of 

rates. One can notice that the proposed pyramid two-dimensional quantizer outperforms 

the optimal nonlinear scalar compandor in terms of SQNR, which is not the case with 
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logarithmic two-dimensional quantizers from [6] and [7]. By comparing our two-

dimensional quantizer having 8 segments with the piecewise-uniform scalar quantizer 

having 16 segments, whose geometric progression of step size is defined in [11], the 

SQNR gain of about 2.4 dB can be noted. 
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Fig. 3 SQNR versus bit rate for various models of companding quantization of Laplacian 

source (2DC-two-dimensional compandor, SC-scalar compandor) 

5. CONCLUSION 

In this paper, with respect to the MSE distortion we determine the asymptotically 
optimal rate allocation and radial compression function for the pyramid two-dimensional 
quantizer whose cells are obtained by radial spreading the cubic cells. The derived 

relation between the rates of radius and location quantizers Rs
*
  Rr

*
  2.58 along with 

relation Rs
*
 + Rr

*
 = R specifies the asymptotically optimal rate allocation. It is shown that 

the optimal radial compression function is an incomplete gamma function. This means 
that the asymptotically optimal pyramid two-dimensional quantizer has difficulties 
originating from the nonexistence of a closed-form expression for compression function. 
We eliminate these difficulties by performing linearization of the nonlinear compression 
function. We propose a new linearization method based on compression function 
derivative discretization, where the step size of successive segments changes by scaling 
factor s. We numerically optimize scaling factor s in respect to the MSE distortion. The 
proposed pyramid two-dimensional quantizer with the piecewise-linear radial compression 
function outperforms the optimal scalar compandor in terms of SQNR. Particularly, for 
L0 = 8, the SQNR gain can attain 1.5 dB. 
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