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Abstract. The Hammerstein models can accurately describe a wide variety of 

nonlinear systems (chemical process, power electronics, electrical drives, sticky control 

valves). Algorithms of identification depend, among other, on the assumption about the 

nature of stochastic disturbance. Practical research shows that disturbances, owing the 

presence of outliers, have a non-Gaussian distribution. In such case it is a common 

practice to use the robust statistics. In the paper, by analysis of the least favourable 

probability density, it is shown that the robust (Huber`s) estimation criterion can be 

presented as a sum of non-overlapping l1 - norm and l2 - norm criteria. By using a 

Weiszfald algorithm l1 - norm criterion is converted to l2 - norm criterion. So, the 

weighted l2 - norm criterion is obtained for the identification. The main contributions of 

the paper are: (i) Presentation of the Huber`s criterion as a sum of l1 - norm and l2 - 

norm criteria; (ii) Using the Weiszfald algorithm l1  l2 – norm criterion is converted to 

a weighted l2 - norm criterion; (iii) Weighted extended least squares in which 

robustness is included through weighting coefficients are derived for NARMAX 

(nonlinear autoregressive moving average with exogenous variable) . The illustration 

of the behaviour of the proposed algorithm is presented through simulations.  

Key words: Hammerstein model, non-Gaussian noise, Weiszfald algorithm, weighted 

least squares  

1. INTRODUCTION 

The main components of system identification are: the observed data, a set of 

candidate models, a criterion fit and validation [1]. In that context it is important how to 

model disturbance. In the stochastic frame it is supposed that the probability distribution 

of disturbance is known. In most cases it is supposed that disturbance has a Gaussian 
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distribution. Practice showed that it is not correct owing to [?] the outliers presence [2]. 

Such fact causes that the standard algorithm significantly reduced efficiency. The 

imperative is to design an algorithm which has a low sensitivity to change in disturbances 

distribution. The tool for the design of such an algorithm is the robust statistics [3]. 

The actual research in the field of identification devotes considerable attention to robust 

identification methods [4]. The robust identification of multi-input multi-output models 

using the stochastic approximation is considered in [5] and the robust adaptive prediction is 

presented in [6]. The key ingredient in the robust statistics is the Huber loss function. But 

that function is only the first order differentiable. It means that the second order methods 

(Newton – Raphson methodology) cannot be used. The problem can be avoided by the 

approximation of the Fisher information for the least favourable probability density of the 

stochastic disturbance [7]. The field of machine learning also includes robust estimation 

procedures [8]. 

In this paper we consider a design of a robust recursive identification algorithm. The 

problem belongs to the robust identification of block-oriented nonlinear models [9,10]. The 

nonlinear model has a structure of a NARMAX model. It means that the model consists of a 

static nonlinear element coupled in series with a linear time – invariant dynamic system. 

Such a model is known as the Hammerstein model. The static nonlinearity is described by a 

polynomial function of the input while the linear part is described by an ARMAX model. In 

this paper, we assume that observations include outliers and as a disturbance model a class 

of distributions (mixture of Gaussian and arbitrary symmetric distribution) is used . 

In this paper, it is started  from the fact that the criterion of identification, based on the 

robust statistics (least favourable probability density), is a l1  l2 – norm estimation 

problem. Using the Weiszfald algorithm [11,12], l1 part of the above criterion is 

converted to the l2 - norm. From that it follows that the identification criterion can be 

presented in the form of a generalized l2 - norm estimation problem. The application of 

the Weiszfald algorithm introduces a level of non-optimality in a resultant l2 - norm 

criterion [13]. But the benefits are the significant reduction of [required] computation. By 

using the novel l2 
- norm criterion, a robust recursive algorithm for identification of the 

NARMAX model. is derived. The main contributions of the paper are: (i) It is showed 

that the Huber`s criterion is a sum of non – overlapping l1 - norm and l2 - norm criterions; 

(ii) By using the Wieszfald algorithm the l1  l2 – norm criterion is converted to the 

weighted l2 
- norm criterion; (iii) The design of the novel robust extended least squares 

algorithm; (iv) For derivation of the recursive algorithm the second derivative of Huber`s 

loss function which does not exist is not necessary. 

The paper is organized as follows. Section 2 describes the history of the Wieszfald 

algorithm. In Section 3 a new form of identification criterion is introduced. Section 4 

presents the novel recursive algorithm for NARMAX models. The illustration of the 

algorithm behaviour is given in the Section 5 by simulation and concluding remarks are 

given in the last section.  

2. HISTORY 

The location problem is very important and is the subject of intense research [14,15]. 

In what follows will be described the history of the location problem. 
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At the beginning of the seventeenth century, French mathematician Fermat formulated 

the next problem [16]  

Given three points in a plane, find a fourth point such that the sum of its distances to 

the three given points is as small as possible. 

The Italian physicist and mathematician Torrichelli found a geometrical method for 

soluving the above problem. The extension to four given points in the plane is easy and 

was made by Faguano (1775). The move to more than four given points in the plane was 

made by known mathematicians such as Gauss, Steiner and others. 

At the beginning of the twentieth century, the German economist Alfred Weber made 

a generalization of the Fermat problem by assigning different weights to the known 

points [17]. So the Fermat problem is transformed into an industrial problem in which a 

plant is to located (the unknown point) so as to minimize transportation costs from 

suppliers to consumers (the known points) requiring different amounts of products (the 

weights). Practically, the location of a plant should be chosen so that the transportation 

costs of raw materials and products are the lowest possible. In the literature the location 

problem is often called the Fermate–Weber problem. 

The location problem in the computers science (more specifically analysis in 

computational geometry) is determined 

The minimum number of equal geometrical shapes that are required to cover a 

certain area and the positions of their centroids. 

Generally we can formulate the location problem in a more abstract manner [14]  

Given some metric space and a set of known points, determine a number of additional 

points so as to optimize a function of the distance between new and existing points. 

In what follows we describe the main idea of the Weiszfald algorithm. Let us suppose 

that the process is described with the regression model   

  ( ) ( ) ( )Ty k k e k    (1) 

where 
1( )y k R  is the output of the system, 

1( )e k R  is a stochastic disturbance, 

( ) dR   is a vector of measurement and 
dR  is a vector of parameters. 

The least–modules method can be given by minimization of the criterion [18]  
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The criterion (2) generates the procedure which is outlier robust. 

Minimization of the criterion (2) can be performed by using the linear programming 

and the method of internal point [19,20]. But, in that case the problem becomes 

numerically very complex. 

The Weiszfald method is attractive for solving the problem (2). .Weiszfald developed 

an algorithm that solved the Weber problem with an arbitrary number of customers 

[11,12]. 

The idea of Weiszfeld algorithms lies in performing minimization of non smooth 

functional JL 
by using the iterative procedure. It is considered functional 
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where k  is the number of iterations, weight coefficient 
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And ( 1)k  is the vector of parameters obtained of the preceding iteration. A sequence of 

vector ( )k  is given from the next minimization problem 

  
( ) ( 1)arg min ( , )k k

WJ


    (5) 

Finally we remark that the Weiszfald method remained unknown until the Kuhn seminar 

given in Budapest 1963 [21]. 

3. GENERALIZED IDENTIFICATION CRITERION 

In this part of the paper we will define different norms relevant for determination of 

the identification criterion. Let us suppose that {fk} is the function sequence. A p–norm is 

given as [22]  
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Relevant norms for this paper are 
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We will suppose that the stochastic disturbance e(k), in model (1), has a non-Gaussian 

distribution with next structure 

  
2{ : (1 ) (0, ) ( )}NP P P N g e           (9) 

where [0,1)  is the contamination degree, 
2(0, )NN  is the Gaussian probability density 
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and ( )g e is the arbitrary symmetric probability density. 

According to the Huber`s methodology the least favourable probability density, for 

the class of probability densities (9), is [3] 
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where the relationship between the contamination degree   and the parameter k  is 
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In relation (12) the contamination degree  is unknown. It follows from simulations that 

good performances of the identification algorithm are provided for [2,4]k   [7]. 

In the frame of robust statistics the criterion identification has a form.  

  *( ( )) log ( ( ))p Pk p k        (13) 

From relation (11) and (13) it follows that 
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The analysis of the loss function (14) shows that its form is equivalent to the form of the 

loss function for the Gaussian distribution for ( )p k k   (l2
 
- loss function) and that is 

equivalent to the form of the loss function for the Laplace distribution for ( )p k k   

(l1 - loss function). Based on that, using the concept of empirical functional, equivalent 

criterion identification is 
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The criterion (15) is 1 2l l
 
– identification criterion 

Let us consider the first term in the relation (15). 
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The coefficients {1(k)} constitute a sequence of positive numbers. The coefficients 

1(k) gives different weights to different observations [23]. Most often in algorithms 

1(k) is chosen equal to one. The optimal weighting factor 1(k), in the least squares 

criterion (16) is the inverse of the variance of the stochastic disturbance, i.e. 
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Let us now consider the second term in the relation (15). According to the Weiszfald 

algorithm we have 
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From (18) it follows that  
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Using relation (15), (16) and (19) we have 
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where 
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The relations (14)–(23) show to us that using he Weiszfald algorithm l1  l2 – the 

identification criterion is converted to teh weighted l2 
– identification criterion. Property 

of robustness is contained in the coefficient (k).  

Remark 1. In reference [24] the next loss function is proposed  

  
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2 22 /
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    (24) 

In the relation (24)   R1 is a shape parameter that controls the robustness of the loss 

function and c  R1 c > 0 is a scale parameter that control the size of the quadratic loss 

near x = 0. 
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The loss function (24) is undefined when  = 2 but it approaches l2 - loss function 

(squared prediction errors) in the limit 
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When  = 1 the function (24) is a smoothed form of l1 - loss function 
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The loss function (26) known as the pseudo – Huber function. 

4. RECURSIVE IDENTIFICATION OF NARMAX MODEL 

In this section we consider identification of the NARMAX system using the identification 

criterion (20). We will consider a block–oriented nonlinear model that consists of the 

interaction of linear time – invariant dynamic subsystem and a static nonlinear element. 

It is supposed that the nonlinear part of the nonlinear (Hammerstein) model is a 

polynomial of a known order in the input as follows  

  1 1 2 2( ) ( ( )) ( ( )) ( ( )) ... ( ( ))s sv k f u k d u k d u k d u k           (27) 

with the known basis function 1 2, ,..., s   . For the unique parameterization of the 

Hammerstein model it is necessary that d1 = 1 [7]. 

The linear part of the model is described as an ARMAX model 
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where 
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From (27) – (29) it follows that 

  
1 1 1

1 1 1 1

( ) ( ) ( ) ( ) ( )

( ) ( ( )) ( ) ( )

n m r

i i i

i i i

n m s r

i i j j i

i i j i

y k a y k i b u k i c e k i e k

a y k i b d u k j c e k i e k

  

   

        

       

  

   
    (30) 

Let us define the following vectors 
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Where 0 sn n sm r    and 
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where j = 1,2,...,s and h0(k)  Rn, hj(k)  Rm, h(k)  Rn+sm

  
and (k)  Rn

0. 

From (30) – (32) it follows that 
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In relation (33) the vector 0 ( )k  depends on the immeasureable quantity e(i) 

(i = k  1,...,k  r). The standard procedure in identification is to replace e(k)
 
with the 

estimated prediction error. From that fact we have the following information vector 
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Using the well known methodology from the system identification [23] and relations 

(20), (21) and (34) one can obtain the following recursive algorithm 
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The algorithm (35) – (37) is new. In relation (37) k  
is a Huber`s constant. Three next 

remarks are important for simulations. 
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Remark 2. For the Gaussian disturbance  (x) = x. In that case the recursive algorithm 

has the form 
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Remark 3. Recently Filipovic (2019) proposed the next robust recursive algorithm which 

has the form 
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  ( ) max{ ,min( ( ), )}x k k x x        (44) 

In the simulation section a comparison of the algorithm proposed in this paper and the 

algorithm (38)-(39) and algorithm (40) – (44) will be made. 

Remark 4. Simulations show that the robust recursive algorithm is more sensitive, in 

comparison to the linear algorithm, to initial conditions. Because, the general approach to 

set ˆ(0) 0  , (0)P I , 
410  is necessary to replace on next mode 

a) NFIR and NARX models 

In this case, linear recursive algorithms have initial conditions [23]  
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  
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     

 
0

0 0
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k

k

k P k k y k 

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where 0
ˆdim ( ) dim ( )k k k   . Now 0( )P k  and 0

ˆ( )k are initial conditions for the robust 

recursive algorithm 
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b) NARMAX model 

In this case it is impossible to apply the above methodology owing to the presence of 

a prediction error in the information vector (). The simplest way, which in practice 

works well, is as follows 

i) For the initial condition  ˆ(0) 0   and (0)P I , 
410   the linear algorithm 

works 0 20 30k   iterations 

ii) Given values for 0
ˆ( )k  and 0( )P k now are the initial condition for the robust 

algorithm. 

It is possible to use the described methodology, also, for NFIR and NARX models 

5. SIMULATION STUDY 

The properties of the proposed robust recursive algorithms for identification of 

Hammerstein systems is considered on the simulation level. We will consider the next 

Hammerstein model  

 
2 3 2 3

2 3( ) ( ( )) ( ) ( ) ( ) ( ) 0.65 ( ) 0.35 ( )v k f u k u k d u k d u k u k u k u k           

 
1 1 2 1 2

1 2( ) 1 1 0.58 0.6A q a q a q q q           

 
1 1 2 1 2

1 2( ) 0.8 0.5B q b q b q q q       
 

1 1 1

1( ) 1 1 0.4C q c q q       

It is supposed that the stochastic disturbance has a non-Gaussian distribution 

 
2 2

1 2(1 ) (0, ) (0, )e N N      

where 
2( , )N m  is the Gaussian distribution with mean m and variance 2. In all 

simulations it is supposed that 
2

1 1   and 
2

2 100  . 

The form of estimation error is  
2

ˆE lnk k     

We will consider three types of errors 

ELS – for linear algorithm (38) – (39) 

RELS – for algorithm (35) – (37) 

RELS1 – for algorithm (40) – (44) 
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The simulations can be divided in two parts.  

A) Comparison of algorithms (38) – (39)  and (35) – (37)   

The following degrees of contamination are considered 0.01;0.05;   The Huber’s 

parameter is 2k  . 

 

Fig. 1  Comparison of RELS and ELS for 0.01   

 

Fig. 2  Comparison of RELS and ELS for 0.05   

From the above figures it is possible to conclude that algorithm proposed in the paper 

are superior in comparison with standard ELS (extended least squares). 
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B) Comparison of algorithms (35) – (37)  and (40) – (44)   

the next degrees of contamination are considered 

0.01;    0.05    

The Huber’s parameter is 2k  . 

 

Fig. 3  Comparison of RELS and RELS1 for 0.01   

 

Fig. 4  Comparison of RELS and RELS1 for 0.05   

From the last two figures it follows that the robust algorithm (41) – (47) is better than the 

algorithm proposed in the paper (36) – (38). 
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The global conclusion, based on simulations, is that the algorithm, proposed in the 

paper, is superior in comparison with linear algorithms but is somewhat weaker in 

comparison with one class of the recently proposed robust algorithm. The last fact is the 

price for theWeiszfald transformation. 

6. CONCLUSION 

The paper considers the design of a robust recursive algorithm based on applications 

of robust statistics and the Weiszfald algorithm. The least favourable probability density 

on a class of distributions gives the loss function which consists of the l2 – norm part 

(Gaussian distribution) and the l1 - norm part (Laplace distribution). By using the Weiszfald 

algorithm the above mentioned two criterions are degenerate in the generalized l2 – norm 

criterion. Robustness is included in the weighting factor of the l2 – norm criterion. 

Simulations show that the algorithm, proposed in the paper, is superior in comparison with 

linear algorithms and is somewhat weaker in comparison with the robust algorithm based 

on the l1  l2 – criterion and that is the price for the Weiszfeld transformation. Further 

research is related to the recursive algorithm design for multivariable systems and the case 

when identification criterion is the l1 - norm functional. 
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