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Abstract. In this paper, we research proportional fairness of the optimal pair-wise 

semi-orthogonal user selection (SUS) algorithm used in the MU-MIMO-OFDM system 

compliant with IEEE 802.11ac standard. Zero-forcing beamforming (ZFBF) is applied 

in the system as a precoding technique in order to cancel user interferences. Two different 

scenarios are considered: homogeneous and heterogeneous. Beside the proportional 

fairness, a throughput performance of the MU-MIMO-OFDM system is analyzed for both 

scenarios too. Simulation results show that the optimal pair-wise SUS algorithm is an 

excellent solution to realize the trade-off between the proportional fairness among users 

and the achieved system throughput. 
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1. INTRODUCTION 

There are many reasons why traditional multiple-input multiple-output (MIMO) systems 

have turned into a new technology known as the multiuser MIMO (MU-MIMO). Some of 

them are: more users and more devices per user, strong appetite for data, demands in 

enterprise networks, etc. [1]. Orthogonal frequency-division multiplexing (OFDM) is an 

effective technique to mitigate the effects of the intersymbol interference (ISI) in a 

frequency-selective channel by turning a broadband frequency-selective channel into a serial 

of non-interfering narrow band sub-channels that allow a simple receiver structure to be used 

[2]. Therefore, the combination of MU-MIMO and OFDM is an attractive solution for 

WLANs and 4G mobile cellular wireless systems [3]. In order to exploit all benefits that 

MU-MIMO-OFDM can afford to users, it is required to tackle precoding, resource allocation 

and user selection. 
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Dirty paper coding (DPC) achieves the capacity region of multiple antenna broadcast 

channel and therefore represents an optimal precoding technique from the realized 

capacity point of view. However, the implementation of DPC requires significant 

computational complexity at the receiver and transmitter [4]. On the other hand, linear 

precoding is a low-complexity but sub-optimal technique which can achieve reasonable 

performance. Therefore, scientists are focused on investigation of linear precoding 

techniques such as: zero-forcing beamforming (ZFBF), minimum mean square error 

(MMSE), successive MMSE, block diagonalization (BD), signal to leakage noise ratio-

generalized eigenvalue decomposition (SLNR-GEVD), etc. [5]. Among them, ZFBF is 

characterized as very simple precoding technique, without any computational complexity. 

Moreover, it cancels at the same time both inter- and intra-user interferences [6]. 

MU-MIMO enables multiple independent radio terminals, with one or more antennas, to 

access the wireless network at the same time. MU-MIMO exploits the multiuser gain by 

scheduling multiple users to be able to simultaneously access at the same wireless channel 

using spatial degrees of freedom offered by MIMO. The optimal scheduling is based on 

exhaustive search. In the case when number of users, Nu, is large, it is not an acceptable 

approach, since the size of the search space, 
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 , where NT is the number of transmit 

antennas, becomes prohibitively large. Consequently, one of challenges in MU-MIMO is a 

proper user selection. Among many proposed user scheduling algorithms, random 

(orthogonal) beamforming (RBF) and semi-orthogonal user selection (SUS) are the most 

popular [7]. The RBF algorithm yields poor performance relative to the SUS algorithm in 

the practical set of finite users [8], but it does not require a channel state information (CSI) 

from all users. Moreover, the SUS algorithm in combination with ZFBF gives performance 

reasonably close to one achieved with DPC [6]. In open technical literature, many SUS-based 

algorithms have been suggested to be applied in practice: seminal SUS, simplified SUS, 

generalized multicarrier SUS (GMSUS), pair-wise SUS, optimal pair-wise SUS [6, 9-11]. 

One of recommendations of the IEEE 802.11ac standard is that scheduled users have 

to transmit using the same transmission mode (modulation and coding scheme (MCS)) on 

all subcarriers and all allocated data streams. To this end, the multicarrier MU-MIMO 

processing at transmitter is complemented with the fast link adaptation (FLA) algorithm. 

This algorithm can be based on different mapping techniques. The most popular one-

dimensional mapping techniques, characterized by minor complexity and maximal 

theoretical improvement, are: uncoded BER\raw BER [12], effective SNR [13], mutual 

information (MI) [14], PER indicator [15] and mean MI bit mapping (MMIBM) [16]. 

In this paper we investigate whether the previously proposed optimal pair-wise SUS 

algorithm [10], which has been shown to provide a good throughput performance for the 

low and moderate signal-to-noise ratio (SNR) and an excellent performance for high 

SNR, can be a good solution for a balanced serving of all users in the cell. Therefore, in 

this paper, beside the homogeneous scenario [10], we analyze the heterogeneous scenario 

which represents a more realistic case than the homogeneous one. ZFBF is used as 

precoding technique, while the effective SNR is used as a mapping technique in FLA.   

This introduction ends with notational remarks. The vectors and matrices are denoted by 

lower- and upper-case bold letters, respectively, while scalars are represented with non-bold 

letters. ()
T
  and ()

H
 denote the transpose and complex transpose, respectively, |Q| is the 
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cardinality of subset Q, IL is the L  L identity matrix, ||a|| represents the Euclidian norm of a 

vector a, and R and C are the set of real and complex numbers, respectively. 

2. SYSTEM MODEL 

We consider the downlink of MU-MIMO-OFDM system with NT transmit antennas at 

the access point (AP) and Nu users each equipped with NR (NT  NR) receive antennas. The 

system operates over Nc OFDM subcarriers, out of which Nd are used to transmit data 

while the rest of them correspond to pilots and a guard band. AP serves users with 

favorable channel condition in certain scheduling period, i.e. AP sends information to 

subset 1 | |{ , , },Q uQ u u Q N  , of selected users. 
iuL spatial streams are allocated to 

selected user ui, and LQ 
1

Q

i

Lui
  NT has to be satisfied. Let [ ] R T

i

N N

u q C


H denote the 

MIMO propagation channel between AP and ui -th user over q-th subcarrier. The ZFBF 

precoding is based on the singular value decomposition (SVD), which applied on 

 
iu qH results into 
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unitary matrices containing the left and the right singular vectors of [ ]
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u u u Nq D q q R
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   Σ is a diagonal matrix whose elements on the 

main diagonal are singular values of [ ]
iu qH . In order to eliminate inter-user interferences, 

following post-processing should be applied at the receiver, so now the equivalent channel 

matrix for ui-th user on q-th subcarrier is defined as  

 [ ] [ ] [ ] [ ] [ ] [ ],
i

i i i i i i

H HH
uu u u u u uq q q q q q H U U Σ V Σ V  (2) 

where [ ] R ui

i

N L

u q C


U contains left singular vectors associated to Lui spatial streams 

allocated to user ui. Similar, [ ] T ui

i

N L

u q C


V contains right singular vectors associated to Lui  

spatial streams and [ ] u ui i

i

L L

u q C


Σ contains singular values. 

Inter-user interferences are eliminated with the previously proposed signal post-

processing, while intra-user interferences can be eliminated with the signal pre-processing 

at the transmitter 
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with 
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 W w w  representing the ZFBF precoding matrix on the 

subcarrier q defined as 1[ ] [ ]( [ ] [ ])H H
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1
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s s  is the vector consists of the information symbols sent to 

selected users. In the end, the selected user ui disposes with the following signal 
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1

2[ ] [ ] [ ] [ ],
i i iiu u uuq q q q y P s η  (4) 

where [ ]
iu qη  is a zero-mean circularly symmetric complex Gaussian vector.  

3. OPTIMAL PAIR-WISE SUS ALGORITHM 

The design of the scheduling algorithm is an important issue in MU-MIMO systems. 

In [17], authors point out that the complexity of pair-wise SUS algorithm is smaller than 

its traditional counterpart [6]. Therefore, in [10] we have proposed an optimal pair-wise 

SUS algorithm, applicable in MU-MIMO, which combines both the pair-wise SUS 

algorithm and exhaustive search. The steps of the optimal pair-wise SUS algorithm are [18]: 

Step 1: Initialization  
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Step 2: Determine the degrees of orthogonality, l,p, for this algorithm, between all 

virtual user pairs l p (each spatial stream is treated as a virtual user). 
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where [ ]l qh is the equivalent channel gain vector corresponding to the l-th spatial stream. 

Step 3: Find the pair Pi, from Qi-1, with the smallest degree of orthogonality 

  
1, ,, arg max .

ii l p Q l pP l p 
   

Step 4: Select i-th virtual user to be eliminated as follows 
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If 1 ,i TQ N  go to Step 3. 

Step 5: Apply the exhaustive search, i.e. calculate the realized throughput for all 

combination of virtual users selected in Step 4 and find the combination providing 

maximal throughput, i.e. 
1

argmax ( ).
iS QQ T S
  

4. FLA ALGORITHM 

In this section, we explain the effective SNR mapping technique used in the FLA 

algorithm to allocate the appropriate MCS mode to the user which should be served. 

Namely, once the group of users, Q, and their corresponding number of spatial streams, 
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, 1,
iuL i Q , are selected using some of scheduling algorithms, the adaptive modulation 

and coding algorithm have to be conducted to provide a better throughput system 

performance [19]. The MIMO-OFDM channel is time-varying and frequency-selective, so 

the received signal level varies over time, frequency and spatial streams. So, electing the 

adequate combination of modulation and coding scheme, i.e. adequate MCS mode, m, is a 

very important issue in improving the throughput of a selected user satisfying at the same 

time some predetermined quality of service (QoS). That QoS constraint is usually in the 

form of outage probability of a specified target packet error rate, PER0. The aim of the 

FLA algorithm is to predict PER for different MCSs from a defined finite set, M, and 

select the best one from both, QoS and maximized throughput point of view. 

Since resulting PER depends on many parameters (packet length, allocated MCS, 

signal-to-interference-plus-noise ratio, etc.), it is a cumbersome task to derive analytical 

expression for PER [20]. To overcome this challenge all parameters are mapping into the 

single link quality metric (LQM) associated to a PER value by means of a look-up table 

obtained either by simulation or real hardware measurements. The effective SNR is one of 

LQMs which can be found in the open technical literature. 

The average PER can be approximated in terms of the average bit error rate (BER) [13] as 
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where L is the packet length in number of information bits, Lr is the reference packet length, ui 

is a vector containing SNRs, over each of Nd subcarriers, corresponding to all spatial 

streams, Lui, allocated to the selected user ui, Rm is the coding rate, df is the free distance 

and m is the MCS value allocated to the selected user ui. To evaluate BER depending on 

m, Lr and ui, it is necessary to map all these parameters into one known as LQM, in this 

paper effective SNR, and use look-up table. Effective SNR can be evaluated as 

 1

1 1

[ ]1
( , , ) ( , ) ,

( , )

i
ud i

j

i

i

uLN
v

eff r u r
q jd u r

q
m L m L J J

N L m L



 

  
    

  
  

γ  (6) 

where [ ]i

j

u

v q  is the received SNR for j-th stream  allocated to user ui on subcarrier q, 

(m,Lr) is parameter allowing the model to be adapted to both the packet length and the 

specific characteristic of the corresponding MCS and J() is a model-specific LQM 

function [16], and in case of an effective SNR it is defined as ( ) exp( )J x x    [13]. 

Mapping between the effective SNR and BER can be described with the following 

equation 

 ( , , ) ( , , ( , , )),
i i

AWGN

r u r eff r uBER m L BER m L m L γ γ  (7) 

where ( , , )AWGN

rBER m L  is the curve characterizing BER achieved when system uses 

MCS m to transmit packet length Lr  across the AWGN channel with average SNR .  
Optimal MCS allocated to the selected user ui can be derived as 
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subject to 

 ( , , ) ( , , ),
ieff r u r outm L m L P  γ  (9) 

with ( , , )r outm L P representing a threshold value obtained as the value of ( , , )
ieff r um L γ  for 

which the constrain condition 

  P ( , , ( , , )) ( , ) ,
i

AWGN

r r eff r u o r outBER m L m L BER m L P  γ  (10) 

is satisfied with equality. 

 5. NUMERICAL RESULTS  

In order to investigate the fairness of the optimal pair-wise SUS scheduling algorithm, 

this section presents the simulation results obtained using parameters from the IEEE 

802.11ac standard. The system operates at 5.25GHz carrier frequency with the bandwidth 

of 20MHz that is divided into Nc = 64 subcarriers out of which Nd = 52 are used to carry 

data while the rest correspond to pilot signals and guard intervals. The AP has NT = 4 

transmit antennas, while all users are equipped with the NR = 2 receive antennas. A space-

time-frequency-selective fading channel is presented through B and E channel profile 

[21]. The values of parameters for FLA are taken from Table I in [11]. In this paper, 

unlike the work in [10] where a homogenous scenario is considered, in which all users sit 

on circumference centered at AP and all experience the same average SNR, a more 

realistic scenario is analyzed. It is a heterogeneous scenario in which users are at different 

distances from the AP, and therefore each of them is exposed to a different level of SNR.  

One of the most relevant fairness indicators is the Jain’s fairness index (JFI) [22]  
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 (11) 

where Rui
 (t) is the date rate of user ui. JFI ranges from 1/Nu (only one user is served) to 1 

(all users are served at the same rate). Figures 1 and 2 depict per-user throughput JFI 

versus different number of users and for different schedule algorithms. Two different 

channel profiles (Fig. 1 – B channel, Fig. 2 – E channel) are considered. The B channel 

characterizes environment with little-to-moderate frequency selectivity (small offices and 

houses), while the E channel characterizes an environment with a moderate-to-large 

frequency selectivity (large indoor spaces such as airports or sport halls).  
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Fig. 1 Jain’s fairness index comparison for individual user’s throughput for different 

scheduling algorithms for heterogeneous scenario as a function of the number of users 

for B channel.  

Regardless of the applied environment and degree of orthogonality ( ) related to MSUS 

and PF-MSUS algorithms [11. Eq. (9)], the PF-MSUS algorithm leads to a rather high JFI 

value (> 0.8 for B channel, > 0.7 for E channel). An increase of the number of users does not 

provoke a decrease of JFI, indicating in that way a large degree of fairness which this 

algorithm provides. In contrast, under MSUS, JFI decreases rapidly from ~ 0.7 for Nu = 2 to 

~ 0.2 for Nu = 15 for the B channel, and from ~ 0.5 to ~ 0.1 for the E channel. Let us explain 

that. The large number of users increases probability that one (or maybe a few) user is 

located very close to AP, so its channel condition favors automatically it to be served by AP 

with MSUS scheduling algorithm. Namely, MSUS algorithm does not take into account that 

selected user has been already served in previous scheduling periods, causing unfairness 

between users. Therefore, Jain’s fairness index is low for large number of users in the cell 

for MSUS algorithm, which was. expected [11]. It is also expected that the PF-MSUS 

algorithm would show a worse throughput performance than the MSUS algorithm [11], and 

it is confirmed through Fig. 3. So, a trade-off between the fairness and the realized 

throughput is inevitable, when we speak about these two algorithms. Our previous results 

[10] have shown that the MU-MIMO system with the optimal pair-wise algorithm has 

provided a better throughput performance than the system with the MSUS algorithm for a 

homogenous scenario. Results from Figs. 1 and 2 point out the additional advantage of the 

optimal pair-wise SUS algorithm, besides the realized throughput which is justified in 

heterogeneous scenario too (Fig. 3). It can be classified into the group of proportional fair 

algorithms. Its JFI does not decline with an increase in the number of users. its value is rather 

high and takes values in range between 0.7 and 0.85 for the B channel and between 0.6 and 

0.7 for the E channel. A slightly smaller value of JFI for the E channel can be explained with 

the frequency selectivity which remains in OFDM sub-channels for such type of 

environment.  
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Fig. 2 Jain’s fairness index comparison for individual user’s throughput for different 

scheduling algorithms for heterogeneous scenario as a function of the number of 

users for E channel.  

Let us analyze results presented in Fig. 3. Firstly, these results for MSUS and PF-MSUS 

algorithms are totally in accordance with our previous published results [11]. Secondly, in 

case of a random distribution of users over circular area (heterogeneous scenario) the 

optimal pair-wise SUS scheduling algorithm still provides selection of the user group which 

provides the higher throughput than MSUS and PF-MSUS algorithms. That conclusion stays 

valid for any number of users which should be served by AP and for any power value which 

AP transmits. If we compare results proposed in Fig. 3 with ones in Fig. 1 from [10], we can 

recap that in real scenario, that is heterogeneous, the optimal pair-wise SUS algorithm 

 

Fig. 3 Throughput comparison for different scheduling algorithms for heterogeneous 

scenario for Nu = 3  and Nu = 5. 
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provides the best throughput performance of MU-MIMO system over all range of average 

SNR, even better than in the homogenous scenario.  

Having in mind all presented results and observation from this Section, we can make a 

conclusion that from both points of view, the proportional fairness and realized 

throughput, the optimal pair-wise algorithm can be addressed as the best option for 

practical realization over all considered SUS-based algorithms. 

6. CONCLUSION 

This work has tackled the problem of proportional fairness of the scheduling 

algorithm applicable in the MU-MIMO-OFDM system compliant with IEEE 802.11ac. In 

this aim, we have analyzed the MU-MIMO-OFDM system with the ZFBF precoding 

technique, applied to eliminate inter- and intra-user interferences, while the FLA 

algorithm has been used to realize as much as possible higher throughput satisfying at the 

same time predetermined QoS and IEEE 802.11ac recommendations. 

Excellent throughput performance, confirmed in our previous papers dealing with a 

homogenous scenario, has been once more justified for MU-MIMO system using the 

optimal pair-wise SUS algorithm, in the realistic – heterogeneous scenario. The main 

contribution of this paper is the proof of the proportional fairness of the optimal pair-wise 

SUS algorithm, which favours it as one of endorsed algorithms to be used.. 
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