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Abstract.  Vulnerabilities of smart contract are certainly one of the limiting factors for 

wider adoption of blockchain technology. Smart contracts written in Solidity language 

are considered due to common adoption of the Ethereum blockchain platform. Despite 

its popularity, the semantics of the language is not completely documented and relies 

on implicit mechanisms not publicly available and as such vulnerable to possible 

attacks. In addition, creating formal semantics for the higher-level language provides 

support to verification mechanisms. In this paper, a novel approach to smart contact 

verification is presented that uses ontologies in order to leverage semantic annotations 

of the smart contract source code combined with semantic representation of domain-

specific aspects. The following aspects of smart contracts, apart from source code are 

taken into consideration for verification: business logic, domain knowledge, run-time 

state changes and expert knowledge about vulnerabilities. Main advantages of the 

proposed verification approach are platform independence and extendability. 

Key words: blockchain, Ethereum, semantic technology, smart contract, Solidity, software 

verification 

1. INTRODUCTION 

Since the breakthrough of Bitcoin cryptocurrency in 2009, blockchain has been 

considered as one of the most influential emerging technologies of the last decade [1-3]. 

Back then, its main purpose was to enable decentralized, safe and trustworthy transfer of 

financial assets worldwide without fees or involving intermediary.  

Due to its quickly growing popularity, a large community has been built around 

blockchain technology enthusiasts (including researchers, industry professionals and 

hobbyists), which has led to the development of a new generation of cryptocurrencies. One 

of the most important representatives of the new generation is widely accepted Ethereum
1
 [2, 
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4]. In addition to applications involving financial transactions, there is a whole spectrum of 

novel use cases relying on blockchain. From logistics, robotics, transportation, energy 

trading and government to healthcare [5], there have been many tries to adopt blockchain 

technology to create value-add. 

Smart contracts are of key importance in the blockchain system architecture because they 

describe flow of actions taken during a transaction. They are implemented as a program code 

similar to any other software code. Therefore, it is susceptible to different vulnerabilities, 

such as integer overflow/underflow for example. Several smart contract attacks have been 

identified, such as reentrancy and timestamp exploits [6]. 

Absence of resilience to these vulnerabilities in various domains and use cases can lead 

to huge financial losses and catastrophic results, even physical damage to the environment, 

infrastructure as well as human beings. The changes applied once the transaction is executed 

are immutable, which makes the consequences applied by the exploited smart contract 

permanent. For that reason, the verification of smart contract within blockchain platforms is 

of utmost importance. 

Creating a formal semantic for a higher-level language can enable the creation of verified 

compilers and support verification mechanisms [7]. However, despite popularity of the 

Ethereum blockchain platform, semantics of its accompanying contract specification 

language Solidity
2
 is not completely documented and publicly available. Therefore, adding 

the explicitly defined semantics on the top of the Solidity language would be highly 

beneficial for detection of vulnerabilities [7, 8].  

In this paper, we propose a semantics-based approach to smart contract verification 

aiming the Solidity language used within the Ethereum blockchain platform. The main 

novelty of the idea presented in this paper is based on ontologies for leveraging semantic 

annotations of the smart contract source code combined with a semantic representation of 

domain and expert knowledge in order to perform the verification and detect potential 

vulnerabilities. Moreover, the semantic technology proposed in the paper provides the 

means for novel platform-independent representation of these aspects in a generic way 

enabling much easier extendability and even interoperability between different blockchain 

platforms in case of highly complex business processes and transactions. 

2. BACKGROUND AND RELATED WORK 

2.1. Blockchain 

Blockchain is a data structure that consists of append-only sequence of blocks which 

holds information about the executed transactions [1-3]. It refers to a distributed ledger 

system that stores copies of the former data structure within the peer-to-peer network of 

nodes. Each user (also called node) has alphanumeric address ensuring the user’s anonymity 

as well as transaction record transparency at the same time. In the context of cryptocurrency 

blockchain applications, the transaction represents transfer of a value and ownership of 

digital tokens between sender and recipient, recorded on the distributed ledger [1-3]. Tokens 

are used to represent tangible as well as intangible assets – from cash and physical objects to 

copyrights and intellectual property [1-3]. Each block in the blockchain contains a 
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cryptographic hash of the previous block and timestamp in order to ensure that no one can 

modify or delete them once they are recorded in ledger. The more blocks are in the chain, 

the chain becomes more secure and reliable.  

Two types of blockchain networks can be identified: public and private. Anyone can 

join public blockchain networks while each node maintains its own copy of the ledger. In 

private networks, ledger is often permissioned such that only authorized entities are able 

to act on a ledger. When a new transaction occurs, it has to be validated and accepted by 

all the nodes within the network that act as miners rewarded for the effort they put in [1, 

3]. After the agreement, the ledger is in state of consensus. Several consensus protocols 

are accepted as standard in blockchain networks, such as Practical Byzantine Fault 

Tolerance (consensus based on majority) and Proof-of-Work (based on computing effort 

instead of majority) [1, 3]. The blockchain network is resilient to malicious attack because 

in order to hack the consensus it would be necessary to create a whole new blockchain of 

modified records, which is an enormously expensive and time-consuming task.   

However, there are certain performance drawbacks and limitations of blockchain 

technology. It is not suitable for storing data at high volumes or velocity as the data could 

be too large to be copied to each individual node, while the time and processing effort 

required for validation and verification of a block are often too high [1, 3].  

2.2. Smart contract 

Smart contract is a protocol intended to digitally facilitate, verify, or enforce the 

negotiation and performance of a contract [1, 4]. In the context of the blockchain 

technology, smart contract is a software code that defines and executes transactions on the 

target blockchain platform where performed transactions are trackable and irreversible [1-

3]. Its distinctive feature is that it enables the execution of credible transactions without 

involving third parties. 

A smart contract consists of business logic definition and operations that affect the 

state of the blockchain ledger. It modifies ownership and value of assets (represented as 

digital tokens) [1-3]. It can be implemented using any programming language and secured 

using encryption and digital signing. In the case of Ethereum, smart contracts are written 

using a high-level object-oriented language Solidity, developed by the Ethereum 

Foundation. It is far more expressive and powerful than the Bitcoin’s script language 

originally used for smart contract definition. 

Despite the fact that Solidity seems quite similar to JavaScript, it also includes additional 

features that are used to support the implementation of transaction mechanisms in distributed 

environment of the Ethereum blockchain network. It uses the concept of class for 

representation of smart contracts. Similarly to other object-oriented languages, instances of 

Solidity smart contracts contain fields and methods. While fields represent state of the 

contract, methods represent the contract-specific operations that are be invoked in order to 

perform the transaction. However, when uploaded to the Ethereum network, smart contracts 

are translated to a lower level bytecode executed by the Ethereum Virtual Machine (EVM). 

Once a smart contract enters the blockchain it cannot be removed. 
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2.3. Smart contract vulnerabilities 

The most characteristic known smart contract vulnerabilities [6, 9] identified for 

Solidity language within the Ethereum platform are given in Table 1. 

Table 1 Summary of smart contract vulnerabilities in Solidity 

Vulnerability Description Example 

Reentrancy Calling external contracts that can 

take over the control flow and make 

changes to the data that the calling 

function was not expecting.  

Exploiting the functions that can be called 

repeatedly, before the first invocation of 

the function was finished. This may cause 

the different invocations of the function to 

interact in destructive ways. The possible 

solution to avoid this threat is to use 

transfer() and send() instead of call(), as 

they are safe against reentrancy attacks 

since they limit the code execution to 

2300 gas which is enough to log the 

event. Otherwise, using call(), always the 

internal state modification (such as 

change of balances) should be done 

before the external call. 

Integer 

overflow/under

flow 

Overflow: If uint reaches the 

maximum value (2256) then it will 

circle back to zero which checks for 

the condition. 

Underflow: If a uint is made to be less 

than zero, it will cause an underflow 

and get set to its maximum value. 

If any user apart from administrator can 

call functions that update the value of 

the uint number. 

Timestamp 

dependence  

In Solidity, there are many block state 

variables like timestamp, random seed 

and block number. Since these state 

variables are written at the head of 

each block, the malicious miner may 

modify them in order to get profit/ and 

get profit from it leveraging them to 

make the transactions flow go along 

different program paths. 

Locking contract for a period of time and 

various exploits of conditional statements 

based on time-varying states. 

Revert-based 

DoS  

Causing the malfunction of a system 

by exploiting the unexpected recursive 

calls of revert functions. 

If attacker bids using a smart contract 

which has a fallback function that reverts 

any payment, the attacker can win any 

auction. When it tries to refund the old 

leader, it reverts if the refund fails. This 

means that a malicious bidder can become 

the leader while making sure that any 

refunds to their address will always fail. In 

this way, they can prevent anyone else 

from the bidding function, and stay the 

leader forever. 
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2.4. Ontologies and semantic technology 

The term ontology is used in different scientific fields. It was initially used to define the 

philosophical branch studying ways of being, basic concepts of being and relations between 

them. In computer science, ontology refers to a formal representation of conceptualization 

used for materialization of knowledge about given domain of discourse. This implies 

formalization of knowledge and its representation in a form suitable for use by computers. 

Ontology is often defined as a representational artifact, comprising a taxonomy as a proper 

part, whose representations are intended to designate some combination of universals, 

defined classes, and relations between them [10]. 

Every ontology consists of classes, individuals, attributes, and relations. Classes represent 

abstract groups, collections or types of objects. Individuals are instances of classes. Attributes 

are related properties, characteristics or parameters that classes can have. Relations define ways 

in which classes and individuals can be related to each other. Individuals specified according to 

the conceptualization defined by some ontology are sometimes called facts. Collection of facts 

is often stored separately from the corresponding ontology and called knowledge base. 

Ontology is augmented with a set of rules that are used to generate new knowledge from the 

existing set of facts. Rules are defined within the ontology language used, but can also be 

specified by means of some of the rules definition languages. 

The role of the semantic technology in software systems is to encode the meaning of data 

separately from its content and application code. This way, it is possible for machines to 

understand data, exchange the understanding and perform reasoning on top of it. In the context 

of semantic technologies, ontologies are used to describe the shared conceptualization of a 

particular domain [10]. Semantic descriptions are represented using the RDF
3
 related standard 

languages in the form of (subject, predicate, object) 3-tuples and persisted on the disk in so-

called triple stores. SPARQL
4
 is a language used for querying the RDF semantic triple stores. 

By executing queries against the triple store, it is possible to retrieve the results that may 

support different reasoning mechanisms to infer new knowledge based on the existing facts. 

2.5. Hoare logic 

The Hoare logic refers to a formal system with a set of logical rules enabling reasoning 

about the correctness of computer programs, proposed in 1969 [11]. The central concept of 

the Hoare logic is the Hoare triple. It describes how the execution of a piece of code changes 

the state of the computation. A Hoare triple has form of {P}C{Q}, where P and Q represent 

assertions, while C is an executable command. Assertions are represented as predicate logic 

formulae. P is named precondition; Q is the postcondition. When the precondition is 

satisfied, the command execution will establish the postcondition. 

In [12], AutoProof tool aiming verification of object-oriented programs based on 

concepts of the Hoare logic was presented with promising results. It offers a prover based 

on the Boogie verifier aiming Eiffel programs annotated with full-fledged functional 

specifications in the form of contracts that consist of pre- and postconditions, class 

invariants, and other kinds of annotations.  

                                                           
3 https://www.w3.org/RDF/  
4 https://www.w3.org/TR/rdf-sparql-query/  
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Considering the fact, that Solidity is quite similar to object-oriented languages 

(especially to Eiffel which is based on design by contract), concepts of the Hoare logic are 

adopted in this paper as well. However, the smart contract verification mechanism presented 

in this paper leverages the semantic representations of source code, domain knowledge and 

verification methodology. The assertions related to preconditions and postconditions are 

implemented as queries against the semantic knowledge base interpreted as true (if they 

return at least one instance) or false (if there is no any instance found). 

2.6. Related work 

A summarized overview of the related solutions for smart contract verification is given in 

Table 2. First column is the reference publication for the considered solution, second column 

shows which is the underlying approach to smart contract verification, while third column 

shows the aspects of verification considered by the corresponding verification mechanism. 

Finally, fourth column shows the case study used for the evaluation. 

Table 2 Overview of existing solutions aiming smart contract verification 

Reference Approach Aspects Case study 

(Z. Nehai et al. 

2018) [13] 

model-checking based on 

temporal propositional 

logic 

Business logic, 

overflow/underflow 

Energy transaction in 

electric transmission 

network 

(W. Ahrendt et 

al., 2018) [14] 

meta-theoretical 

reasoning 

Business logic Crowdfunding 

ConCert [15] Static verification 

leveraging Java 

translation 

Reentrancy Reentrancy in casino 

game 

solc-verify [16] Source code reasoning 

using Solidity compiler, 

Boogie and SMT solvers 

 Common vulnerabilities Overflow and reentrancy 

bugs 

Vandal [17] Low-level Ethereum 

Virtual Machine (EVM) 

bytecode converted to 

semantic logic relations. 

Security analysis 

expressed in a logic 

specification 

Both common and specific 

vulnerabilities  

Unchecked send 

Reentrancy 

Unsecured balance 

Destroyable contract 

Use of ORIGIN 

Mythril5 [18] Symbolic execution, 

SMT solving and taint 

analysis used to detect a 

variety of security 

vulnerabilities 

Security vulnerabilities Parity bug 

Most of the existing solutions are designed for specific blockchain technology, types 

of contracts and use case and not easily extendable, on the other side. Note the advantage 

of the solution proposed in this paper related to an ability to easily add the support for 

different blockchain platforms technologies. It is possible to enable verification of smart 
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contracts written in other languages by just providing a parser which performs semantic 

annotation of the source code together with the corresponding ontology. At the same time, 

the representation of domain and verification mechanisms do not need to be changed. 

Moreover, the existing verification mechanisms can be easily extended by adding expert 

knowledge facts, without any modification of the verifier’s source code. 

3. PROBLEM DEFINITION 

The research problem addressed in this paper is how to verify smart contracts before the 

actual execution of the corresponding transaction in a platform-independent way by 

integration of: 1) semantic description of smart contract source code, 2) semantic representation 

of business logic and domain rules, 3) run-time behavior of smart contracts, and 4) expert 

knowledge about known flaws and vulnerabilities of smart contracts. In this way, custom 

verification rules for checking whether certain conditions hold before (pre-conditions) and after 

(post-conditions) the execution of the smart contract could be defined in order to guide the 

verification process in a desired direction. In the context of this paper, verification rule refers to 

the smallest unit of the smart contract verification process. Each verification rule ri consists of 

sets of pre-conditions (pre1…prem) and post-conditions (post1…postn) and refers to a range of 

source code lines from a line a to  the line b within the smart contract s. Verification flow f is a 

set of verification rules  (r1…rp) whose pre- and post- conditions are checked during the 

verification process. 

In the first step of the verification process, before the smart contract execution, each 

verification rule ri within the verification flow f is evaluated by checking whether the 

pre1…˄…prem holds. After that, the specified part of the smart contract s is executed within 

the simulated execution environment. The obtained results and states are interpreted and 

stored within the semantic knowledge base. After the simulated smart contract execution, it 

is checked whether post1…˄…postn holds in a similar way as it is done for the pre-conditions.  

If the smart contract s passes the verification (meaning that both pre1…˄…prem holds 

before the execution, while post1…˄…postn holds after the execution for all verification 

rules within verification flow), then the transaction will be executed and its information 

recorded within the blockchain. 

4. IMPLEMENTATION 

4.1. Semantic framework 

The semantic framework considers the following aspects: 1) semantic representation of a 

smart contract source code, 2) expert knowledge about vulnerabilities, 3) business logic/rules 

and domain knowledge, 4) expert knowledge about verification rules, and 5) run-time 

behavior of the verified contract. In what follows, the proposed ontologies will be proposed 

and described. 

1) Smart contract source code representation ontology (Fig. 1): Each contract consists 

of participants, parameters, functions and attributes. Participants correspond to the parties 

involved in the transaction as either sender or receiver. A function has arguments and 

local parameters. It could affect the state of a set of variables. Moreover, a function can 
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call another function at certain line within the code. There are specific-purpose functions, 

such as revert, which are a subclass of function class. Parameters and arguments are both 

variables with name, type and value. 

Fig. 1 Smart contract source code representation ontology 

2) Vulnerability queries: Refers to a set of queries to the semantic triple store that 

describe the conditions that hold for specific types of vulnerabilities. They are used as asserts 

within the pre- and post- conditions. For the purpose of vulnerability detection (such as 

reentrancy), some specific aspects of smart contracts are captured within the semantic 

description, such as the number of line when a variable becomes zero. 

3) Business rules ontology: Consists of relations and concepts specific to the considered 

domain. The examples are given in section about case studies. 

4) Verification rule ontology (Fig. 2): Each verification rule consists of pre-condition, 

post-condition and targeted smart contract code. Each pre- and post- condition contain a 

query which is used for assert testing. The targeted code can be a whole smart contract or its 

part within a given range of lines of code. A set of verification rules makes verification flow. 

Fig. 2 Verification rule ontology 
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5) Transaction run-time ontology (Fig. 3): The role of this ontology is to describe the 

state before the transaction and after simulated execution of the part of code that is being 

verified. For this aspect, the balance of each participant both before and after the contract 

execution is relevant. Moreover, the timestamp for current time coming from a trusted 

authority at the beginning and end of the execution is also taken into account. 

Fig. 3 Transaction run-time ontology 

The ontologies from Fig. 1-3 are referred to as Smart Contract Ontologies (SCO) in 

SPARQL queries that are given later.  

4.2. Architecture and working principle 

The working principle and underlying architecture of the proposed approach are given in 

Fig. 4.  First, the smart contract’s source code is parsed and semantically annotated based on 

the conceptualization implemented in the smart contract source code representation ontology 

(Fig. 1). During the traversal of its syntax tree, semantic annotations of the code are inserted 

into the semantic knowledge base.  

On the other side, user defines verification rules by means of the verification flow 

modeling environment. The rules are also transformed to the form suitable for ontological 

representation within the semantic knowledge base according to the Verification rule 

ontology (Fig. 2). During checking pre- and post- condition asserts, the queries are executed 

against the semantic knowledge base. The returned query results are interpreted to determine 

whether the specified conditions hold or not. If they hold, the transaction described by the 

smart contract will be executed. Otherwise, there are two possibilities. Either the original 

contract will be fixed (if possible) by inserting additional lines of code or it will not be 

executed. 
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Fig. 4 Overview of the framework for semantic-driven smart contract verification  

1: Semantic annotations of source code 2: Semantically annotated verification flow 

3: Queries/results 4: Semantic annotations of changes occurred as result of execution 

5: Queries/results 6: Transaction execution 7: Modified smart contract 

In Listing 1, pseudocode of the verification process leveraging semantic descriptions is 

given. 

Listing 1 Semantic-driven smart contract verification algorithm 

Input:  smart contract source code, verification flow, first_line, last_line 

Output:  true/false 

Steps:  
 

1. Obtain all the verification rules from the verification flow;  

2. Perform the semantic annotation of smart contract using Smart contract source code 

representation ontology from the beginning to the end of code range; 

3. result:=true; 

4. For each verification rule vr in verification flow; 

result:=result AND ExecuteSPARQLquery(vr.hasPrecond.Assert.hasQuery.Query) 

end for; 

5. SimulatedExecution(smart contract source code, from_line, to_line) 

6. For each verification rule vr in verification flow; 

result:=result AND ExecuteSPARQLquery(vr.hasPostcond.Assert.hasQuery.Query) 

end for; 

7. return result; 

8. End. 
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4.3. Verification flow modeling tool 

As a part of the semantic-driven framework for the smart contract verification, we 

propose the verification flow modeling tool. It gives the ability to the users to define a set of 

verification rules that are used for the process of the smart contract verification. Each 

verification rule consists of: 1) pre-condition, 2) code range, 3) target contract and 4) post-

condition. Once it is created, the verification flow is forwarded from the modeling 

environment to the components responsible for the verification. The implementation of a 

modeling tool is based on Node-RED
6
, built upon SCOR coordination flow editor [19] and 

SMADA-Fog’s adaptation strategy modelling tool [20]. In Fig. 5, an illustration of the 

modeling environment is given. 
 

Fig. 5 Verification flow modeling tool 

5. CASE STUDIES 

5.1. Music sample licensing 

Let us assume that an independent songwriter wants to use loops from the package 

produced by another artists (referred to as loopmaker). They negotiate about the price, 

license duration and distribution rights. At the end, they agree on the following contract 

conditions: the buyer can leverage the samples as much as he wants within the period of 

two years, while each commercial release containing the samples from that library will be 

charged 1 currency unit. After that period, the usage of samples is not possible. The 

described contract is adopted from [21] and given in Listing 2.  

 
pragma solidity ^0.4.21; 

contract SampleLibrary{ 

 uint begin=BeginDate; 

 uint end=EndDate; 

 event Sent(address from, address to, uint amount); 

 function send() public {     

  if (balances[Songwriter] < Price) return; 

  balances[Songwriter] -= Price; 

  balances[Loopmaker] += Price; 

  emit Sent(Songwriter, Loopmaker, Price); 

 } 

} 

Listing 2 Sample license selling smart contract 
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An excerpt from a music license selling platform domain ontology is given in Fig. 6. 

Note that a complete ontology depends on operational details that may be different in 

different practical environments and is not covered in this paper. 

 

Fig. 6 Music license selling platform ontology sample 

 

Next, the descriptions of the verification rules and corresponding SPARQL queries 

used in experiments are given. For this case study, two verification rules were used. First 

verification rule contains a pre-condition that checks if the contract between the involved 

parties is still valid. If it is true, the contract will be executed. Otherwise, the user will be 

informed that contract renewal is required in order to proceed. The corresponding 

SPARQL query for this pre-condition is given as: 

 
PREFIX sco: http://www.example.com/SCO/ 

PREFIX mlspo: <http://www.example.com/MLSPO/> 

SELECT ?c 

WHERE { 

 GRAPH <http://www.example.com/music_verification> { 

  ?c mlspo:hasBeginDate ?bd.  

        ?c mlspo:hasEndDate ?ed. 

        ?c sco:hasPreTime ?cd. 

        FILTER(?cd>?bd && ?cd<?ed) 

       }   

}  

On the other side, the second rule consists of a post-condition that checks if the 

balance after the transaction execution is equal to the difference of the initial value and 

value of transferred tokens. The following SPARQL query is used in this case: 
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5.2. Autonomous car charging 

Let us consider an autonomous car that recharges its battery on a charging station for 

certain amount of energy where charging cost depends on the distribution cost to the target 

charging station. The smart contract code of this case study inspired by [22] is given in 

Listing 3, while the description of the considered verification rules and corresponding 

SPARQL queries are given afterwards.  
 

pragma solidity ^0.4.21; 

contract EnergyTrade{ 

 event Sent(address buyer, address generator, uint amount, uint         

transfer_cost, uint generation_cost); 

 uint price; 

 uint token_price;  

 function trade() public { 

 price=(amount*transfer_cost*generation_cost)/token_price; 

 if (balances[buyer] < price) return; 

 balances[buyer] -= price; 

 balances[generator] += price; 

 emit Sent(buyer,generator,amount,transfer_cost,generation_cost); 

 } 

} 

Listing 3 Autonomous car charging smart contract 

The segment of the underlying domain ontology for energy trading that is relevant for our 

example is shown (Fig. 7). 

 

Fig. 7 Energy trade ontology 

 

In this case study, there are three verification rules (two pre-conditions and two post-

condition). In the following, these verification rules and corresponding SPARQL queries are 

given. The first verification rule contains a pre-condition that checks whether the energy sender 

has enough energy in order to perform the transaction. The SPARQL query used for this rule is: 
 

PREFIX sco: http://www.example.com/SCO/ 

PREFIX eto: <http://www.example.com/ETO/> 

SELECT DISTINCT ?r 

WHERE { 

 GRAPH <http://www.example.com/energy_verification> { 

        ?c sco:hasAmount ?eta.   

        ?r rdf:type sco:Receiver.  

             ?r eto:hasPreEnergy ?pre.     

             FILTER(?pre >= ?eta) 

       }   

} 
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The second verification rule also contains a pre-condition which has to check if 

reentrancy is not present. The corresponding SPARQL query is: 

 
PREFIX sco: <http://www.example.com/SCO/> 

SELECT ?f2 ?variable 

WHERE { 

 GRAPH <http://www.example.com/energy_verification> { 

  ?c rdf:type sco:Contract. 

                 ?c sco:hasFunction ?f1.  

                 ?f1 sco:callsFunction ?f2.  

               ?f2 sco:calledAt ?call_line.  

                 ?f1 sco:affects ?variable.  

                 ?variable sco:becomesZero ?zero_line.     

                 FILTER(?call_line<?zero_line) 

                }    

}    

 

On the other side, the third and the fourth verification rules contain only post-conditions. 

The third is the same as the post-condition rule from previous case study. Finally, the fourth 

verification rule is described as follows. After the transaction, the energy buyer (receiver) 

must have an amount of energy that is equal to the sum of previously available energy and 

the amount of energy that is received from generator (sender). “Before” denotes the 

available energy before the transaction, while “after” denotes the energy state after the 

transaction. The energy generator (sender) must have an amount of energy that is equal to 

the difference of the previously available energy and the amount of energy that is sent to the 

buyer (receiver). For this post-condition the following SPARQL query was used: 

 
PREFIX sco: http://www.example.com/SCO/ 

PREFIX eto: <http://www.example.com/ETO/> 

SELECT ?s ?r 

WHERE { 

 GRAPH <http://www.example.com/energy_verification> { 

  ?s rdf:type sco:Sender. 

                 ?s eto:hasPostEnergy ?post.  

                 ?s eto:hasPreEnergy ?pre.  

                 ?r rdf:type sco:Receiver.  

                 ?r eto:hasPostEnergy ?post2.  

                 ?r eto:hasPreEnergy ?pre2.     

                 FILTER(?post-?pre=?pre2-?post2) 

            }         

}   

6. EVALUATION 

In this section, the evaluation of the proposed approach is presented with respect to the 

execution speed of the verification process. The execution was performed on a laptop equipped 

with Intel i7 7700-HQ quad-core CPU running at 2.80GHz and 16GB of DDR4 RAM and 

RDF triple store deployed in cloud. The results are compared to relevant existing solutions. 

In Table 3, an overview of the obtained results is given, where each row represents a 

single experiment. The first column denotes the corresponding case study for the considered 

experiment. The second column is the reference to the verification rules involved into the 

experiment. Moreover, the third column shows the time needed for smart contract parsing 

and construction of semantic representation. The next column is the time needed for 
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verification based on SPARQL queries. Finally, the last column shows the number of triplets 

inserted into RDF triple store during the experiment. All execution times are given in 

seconds as average of 20 executions. 

Table 3 Smart contract verification evaluation results 

Case study Verification 

rule 

Parsing and semantic 

representation 

[s] 

Verification 

[s] 

Triplets 

Music 1 

1.55 

0.028  

25 Music 2 0.019 

Energy Reentrancy 0.033  

Energy 1 

1.66 

0.026  

Energy 2 0.034 28 

Energy 1 and 2 0.041  

Energy 3  0.029  

According to the achieved results, it can be noticed that most of the execution time 

was spent on parsing and construction of a semantic smart contract representation, while 

the verification itself is much faster. It can be explained by the fact that the construction 

of a semantic smart contract representation involves insertion of many triplets into the 

RDF triple store, while each verification rule is translated to a single SPARQL query.  

Moreover, it is noticeable that processing of the music contract is shorter than energy 

trading, due to fact that the second case included more triplets which were inserted for its 

semantic representation.  

Furthermore, the verification time increases as the number of rules increases, as it 

involves more SPARQL queries to be executed. The queries for the first rule in music 

contract case study and for the second and third rules in energy exchange case study are 

longer than other queries as they involve arithmetic operations.  

Finally, the introduced overhead for the smart contract verification that involves parsing, 

triple insertion and SPARQL query execution does not exceed the order of magnitude of 1s 

in the presented experiments. The achieved overall average execution speed is faster than 

solutions presented in [18] (approximately 84s per contract [23]) and [17] that achieved 

average processing time of 4.15s, while it shows similar performance as [16]. 

7. CONCLUSION AND FUTURE WORK 

In this paper, a semantic approach to smart contract verification and code generation 

to avoid known bugs and vulnerabilities is presented. As an outcome, easily extendable 

framework is proposed and described. The usage of the proposed framework is illustrated 

in two case studies: music industry license selling and energy trading. According to the 

initial results the approach seems promising. In the presented experiments, the overall 

overhead for verification was of order of magnitude of 1s. 

Moreover, one of future goals of the framework proposed in this paper is to leverage 

these semantic annotations in order to generate code that will be added to the original 

smart contract in order to avoid known bugs and vulnerabilities. In that case, the new 

contract is constructed by adding the generated lines of code to the original contract. For 
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each detected vulnerability the additional lines of code are generated and inserted into the 

original smart contract on the specific position.  

The framework is designed to be easily extendable to cover new business cases and 

rules, support other smart contract languages (apart from Solidity) and newly discovered 

smart contract bugs and vulnerabilities by extending the existing semantic knowledge 

base, without the need of making direct modifications to the verification mechanisms 

themselves. However, it is planned in the future to evaluate the aspects of extendability in 

quantitative measurements and adopt it for other blockchain platforms and smart contract 

languages apart from Ethereum and Solidity.  
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