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Abstract. With the overpopulation of large cities, the problems with citizens’ mobility, 

transport inefficiency, traffic congestions and environmental pollution caused by the 

heavy traffic require advanced ITS solutions to be overcome. Recent advances and wide 

proliferation of mobile and Internet of Things (IoT) devices, carried by people, built in 

vehicles and integrated in a road infrastructure, enable collection of large scale data 

related to mobility and traffic in smart cities, still with a limited use in real world 

applications. In this paper, we propose the traffic monitoring, control and adaptation 

platform, named TrafficSense, based on Big Mobility Data processing and analytics. It 

provides a continuous monitoring of a traffic situation and detection of important 

traffic parameters, conditions and events, such as travel times along the street segments 

and traffic congestions in real time. Upon detecting a traffic congestion on an 

intersection, the TrafficSense application leverages the feedback control loop 

mechanism to provide a traffic adaptation based on the dynamic configuration of traffic 

lights duration in order to increase the traffic flows in critical directions at the 

intersections. We tested and evaluated the developed application on the distributed 

cloud computing infrastructure. By varying the streaming workload and the cluster 

parameters we show the feasibility and applicability of our approach and the platform. 

Key words: Big Data, IoT, mobility data, streaming analytics, traffic monitoring, 

traffic adaptation, feedback control loop 

1. INTRODUCTION 

Large cities are facing a lot of challenges in preserving the sustainability and providing 

quality of life of their citizens. Among the most serious challenges that must be urgently 

addressed are the city’s transport and citizens’ mobility that start to overwhelm city’s 

transportation and streets infrastructure. Unsolved or improperly solved transport/mobility 

challenge causes traffic congestions, commute/transport delays, waste of productive time, 
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traffic accidents, and extensive emission of air pollutants (especially CO2, NO and NO2) 

into the environment. The Smart Cities of tomorrow need a significant improvement in 

the way transport and mobility are organized with a traffic that is controlled and adapted 

to the fluctuating and dynamic needs of their citizens. There is an urgent need to exploit 

the large amounts of data generated by sensors carried by citizens, integrated in vehicles, 

and built in the street infrastructure by leveraging advanced Big Data methods and 

technologies to collect, store, process, analyze and visualize traffic and vehicle-related 

data for the improved traffic monitoring and control [1].  

The advanced technologies in autonomous and connected cars equipped with plenty of 

sensors (GPS, LiDAR, street and dash cameras, etc.), and enriched with Vehicle to Vehicle 

(V2V) and Vehicle to Infrastructure (V2I) communications, as well as sensors integrated in 

road infrastructure, such as inductive loop detectors and cameras, generate increasing amounts 

of vehicle and traffic related data. Such Big traffic and mobility Data, fused with data 

originated from citizens’ mobile devices and social media, are characterized by high Volume, 

Velocity, Variety of data sources, and Veracity, and need appropriate methods, technologies 

and systems to generate significant value to Intelligent Transportation Systems (ITS) [2]. 

In this paper, we propose advanced Big mobility and Internet of Things (IoT) data 

processing and analytics architecture and the platform for continuous collection of traffic 

and mobility-related data, that provide control and adaptation of traffic based on current 

situation, conditions and events. The collected traffic and vehicle related data is used for 

continuous (real-time) detection of average speed and travel times along street segments, 

heavy traffic and traffic congestions, as well as traffic patterns and their relations with 

contextual information. The analysis and mining of off-line (historical) Big mobility data 

provide detection of mobility patterns depending on the time of the day/week/month/year, 

a weather situation, mass events in the city, etc. The platform provides prediction of the 

traffic characteristics and conditions leveraging machine learning models and techniques 

and proactive reactions based on such a prediction. 

By implementing architectural components for processing, analysis and visualization 

of Big Data collected by moving vehicles and in-road sensors, we developed the TrafficSense 

platform for traffic monitoring and control that provides a real-time traffic streaming 

analytics and detection of important traffic events and conditions, such as: 

▪ Average travel times over street segments, 

▪ Slow-moving traffic and traffic jams, 

▪ Traffic stop for a longer time, 

▪ Heavy traffic along street segments. 

Upon detection of traffic conditions and events, the platform uses feedback control 

loop mechanism to change and adapt the traffic situation. Traffic control and adaptation 

are performed by changing the duration of the traffic lights at congested intersections and 

changing the street parameters (one-way, close/open lanes, a speed limit, etc.). In that 

way, the traffic adaptation provides a reduction of traffic congestions and heavy traffic 

conditions. 

The main contributions of the paper are: 

▪ We propose the TrafficSense, Big Streaming Data architecture and the platform 

for continuous processing and analytics of massive amount of traffic and mobility 

related data originated from vehicles and street infrastructure sensors. 



 Big Mobility Data Analytics for Traffic Monitoring and Control 89 

▪ We develop the TrafficSense application that employs the feedback control loop 

mechanism to adapt traffic actuators (traffic lights, variable message signs, etc.) 

and traffic monitoring through a Web dashboard application. 

▪ We evaluate experimentally the application and the platform using the realistic 

traffic simulation data, and prove the feasibility and applicability of our approach, 

as well as the performance and scalability with increasing traffic/mobility data 

loads and velocity. 

The rest of the paper is organized as follows. In Section 2, some background information 

and the related work are presented. The architecture and the main components of the 

TrafficSense platform intended for traffic monitoring and control are described and discussed 

in Section 3. In Section 4, the implementation details and runtime behavior of the traffic 

analysis and control and adaptation of traffic lights by the TrafficSense application, are 

presented. The experimental evaluation and its results are presented in Section 5. The 

concluding remarks are given in the last Section along with the outline of future research 

directions. 

2. BACKGROUND AND RELATED WORK 

The increase in the amount and availability of mobile crowd-sensing and IoT data has 

fueled the vision of Smart Cities that will improve every aspect of our urban lives, including 

transport and mobility, health, energy use, environment preservation, manufacturing, etc. 

[3]. Big Data processing and analytics is classified as a batch and stream processing and 

corresponding components are included in the software system architectures proposed for 

data-intensive applications, known as the Lambda and Kappa1  architecture [4]. The 

Lambda architecture comprises the Batch Layer, Speed Layer (Stream layer) and Serving 

Layer. The Batch processing and analytics is suitable for performing long-running queries 

over a data lake, and for analysis that leverages data mining and machine learning 

techniques to find patterns in data and extract knowledge. The Kappa architecture focuses 

only on the streaming data processing and finds its applications in the real-time detection 

and analytics of events. While the Hadoop2 framework is primarily designed for the batch 

processing based on the MapReduce paradigm, there are several Big Streaming Data 

frameworks suitable for the Speed (Stream) Layer and the implementation of the Kappa 

architecture, such as Apache Storm3, Heron4, Spark5, and Flink6 [4]. The traffic stream 

processing enables performing data analytics on the fly, and a real-time detection of events 

and conditions based on data originated from vehicles, loop detectors, street sensors/cameras, 

weather data, etc. The results of the streaming analytics are often real-time and proactive 

responses and notifications to drivers and traffic control operators. 

Torre-Bastida et al. [5] present the up-to-date research related to Big Data methods, 

technologies and tools in supporting transport and mobility applications, such as navigation, 

route planning, traffic monitoring, network design, and others. The paper provides an 

 
1 http://milinda.pathirage.org/kappa-architecture.com/ 
2 https://hadoop.apache.org/ 
3 https://storm.apache.org/ 
4 https://heron.incubator.apache.org/ 
5 http://spark.apache.org/ 
6 https://flink.apache.org/ 
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extensive literature review and an analysis of contributions in modeling, processing, 

analyzing and visualizing transport and mobility Big Data and concludes with trends and 

challenges that open up new research and advances in the field of transport and mobility. 

The survey of Big Data analytics in the ITS framework is given in [2] along with the 

review of data collection and analytics methods and platforms, as well as Big Data 

analytics application categories. The authors describe several case studies and discuss 

open challenges of Big Data analytics applications in ITS, including road traffic accidents 

analysis, road traffic flow prediction, public transportation service plan, personal travel 

route plan, and others. 

Guerreire et al. [6] propose an architecture based on Apache Spark and MongoDB 

technologies for batch processing of traffic related information collected from road 

sensors and telematics data. Almost the same authors in [7] propose a scalable 

architecture for the traffic management capable of processing the real-time traffic data 

captured from inductive loop counters integrated in a road network. Their approach 

enables real-time monitoring of the road network and detection of traffic events, based on 

the Apache Storm Big Streaming Data framework. They performed experimental 

evaluation and validation obtaining performance metrics that justify the use of Big Data 

streams management system with the real world, large-scale traffic loop sensor data. 

The research performed within the CityPulse7 EU FP7 project and presented in [8] 

focuses on the Smart City framework for processing large-scale IoT data streams. The 

main goal is to enrich large-scale traffic data streams with semantic annotations, enabling 

adaptive processing, aggregation and federation of data. The authors discuss the challenges of 

smart adaptation and integration of various sensory data sources in extraction of useful 

knowledge intended for citizens and city authorities. 

The application of Complex Event Processing (CEP) rules to detect events and 

congestions in traffic data streams is presented in [9]. The authors propose a dynamic 

adaptation and optimization of CEP rules and their thresholds by using clustering 

techniques and demonstrate the usefulness and applicability of their approach using a 

real-world use case of ITS to detect congestions in near real-time. 

Ta-Shma et al. [10] propose so-called "hut" architecture for ingesting and analyzing 

IoT data, which combines both historical and real-time data and performs the batch data 

analysis to provide a context for real-time analysis. The authors implement the proposed 

architecture using the open source Big Data technologies and components and 

demonstrate the feasibility of their solution in two real-world Smart City use cases for 

transportation and energy management. 

Amini et al. [11] propose a flexible architecture based on a distributed computing 

platform for real-time traffic control. The part of the architecture is implemented using Big 

Data technologies with intention to send information and messages to the traffic control 

logic. They demonstrate the proposed approach on a case study of controlling the opening 

and closing of a freeway hard shoulder lane based on the traffic density and crowdedness. 

Schmid et al. [12] focus on self-adaptation in a large-scale vehicle navigation system. 

They present a novel approach based on the system model characterized by essential input and 

output parameters and provide a self-adaptation of the navigation system based on an analysis 

of streaming data coming from the system. They develop a system and a tool named the 

Crowdsourced Navigation system (CrowdNav), based on the SUMO traffic simulator [13], 

 
7 http://www.ict-citypulse.eu 
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that provides a dynamic adaptation of navigation instructions according to the current traffic 

status and conditions through the open source RTX8 framework. 

A novel architecture, named Theta, intended for adaptive data-driven systems that can 

change and adapt used data sources and data analysis algorithms at runtime to preserve 

the target quality of its outcome, is proposed in [14]. The authors present and describe an 

example of a vehicle management system where the adaptive Big Data analytics based on 

Theta architecture, could be successfully applied. 

In [15], the authors present a Big Data platform, named Sipresk, to support analytics 

over large traffic data collected from various data sources. They provide an adaptation of 

the platform to the changing environment, such as the high workload, and the network 

failure, by leveraging a MAPE-K loop [16] based solution. The Sipresk platform is deployed 

and validated on the several use cases, such as finding average speed and congested segments 

in the major highways in Greater Toronto Area. 

In contrast to some of the existing solutions, the TrafficSense architecture and the 

platform for processing and analytics of Big Streaming Data were developed by 

extending the Kappa architecture. We use historical (offline) traffic and mobility data to 

setup the configuration parameters for the traffic streaming analytics methods. As in [15], 

our platform implements feedback control loop mechanism based on the MAPE-K 

architecture for self-adaptive systems, but with the intention to perform the adaptation of 

the physical system under monitoring and control (i.e. traffic), not the platform itself in 

order to cope with high workload and failures. In contrast to [11], our platform performs 

the traffic adaptation through the traffic light duration control, as a more complicated 

scenario than just the opening and closing a shoulder lane on a highway. We demonstrate 

that our approach is feasible, applicable, scalable and can be easily deployed and operated 

in a real-world ITS scenario for traffic control and adaptation. 

3. THE TRAFFICSENSE PLATFORM ARCHITECTURE 

Continuous monitoring, collection and analytics of massive amounts of traffic sensor, 

IoT and mobility data (Big Data) require high resource usage for processing and analytics 

along the data/control pipeline, increase computational costs required to analyze data, 

consume significant storage, and increase network usage. To provide streaming processing 

and analysis of relevant and up-to-date traffic-related information, and generation of 

proactive responses and notifications, we propose a distributed Big mobility data analytics 

architecture and the platform, TrafficSense. The TrafficSense platform is based on the edge-

cloud compute continuum providing modular and distributed components and services for 

Big Data storage, processing, analytics and visualization. It supports the extraction of the 

high-level representations of the traffic features and conditions by exploring aggregation, 

fusion and analytics of IoT sensor and mobility data in real-time to provide continuous 

monitoring and prediction of critical traffic events and conditions. 

The architecture of the TrafficSense platform, highlighting the basic components that 

play appropriate roles in Big Data processing and control flow, is shown in Fig. 1. The 

architecture consists of components deployed and executed on IoT/mobile devices and 

edge gateways at the edge of the architecture for: i) Sensor data collection and actuator 

 
8 https://github.com/Starofall/RTX/ 
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control ii) Sensor fusion and context enrichment, iii) Local processing, streaming analytics 

and event detection. The TrafficSense platform for management of Big streaming and 

offline data on a cluster/cloud computing infrastructure includes components for: iv) Big 

traffic streaming data processing and analytics, v) Storage, aggregation and mining of Big 

traffic data, and vi) Visualization and visual analytics by a dashboard application. The 

communication between TrafficSense IoT/mobile/edge components and the cluster/cloud 

components relies mainly on asynchronous message-passing and publish/subscribe 

mechanism supported by a message broker middleware.   

Edge
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IoT Sensor data collection & actuator 

control

Big traffic streaming data 

processing and analytics

TrafficSense server application 
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Query/Response
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TrafficSense IoT/mobile & edge 

application

 

Fig. 1 The TrafficSense platform architecture 

The edge components of the platform are based on the IoT and mobile sensor devices 
to collect data necessary for traffic monitoring and control. The data come from various 
sources, devices built in the vehicles, or integrated in the road infrastructure, such as 
induction loop detectors, video surveillance cameras, RFID tags, GPS, microwave radars, 
etc. The extensive review and the classification of the various traffic data collection 
methods and technologies can be found in [2, 17]. Such data can be enriched and correlated 
with external and environmental data sources collected within a Smart City infrastructure 
(weather conditions, environment pollution/noise, temperature, city events, social media, 
etc.). The fusion, context enrichment and streaming analytics of IoT and mobility traffic-
related data are performed within TrafficSense IoT/mobile devices and edge computing 
components providing efficiency and minimal latency in detection of critical traffic events 
and conditions that require prompt actions. The processing and analysis of Big IoT, 



 Big Mobility Data Analytics for Traffic Monitoring and Control 93 

mobility and traffic data streams are performed within a computer cluster and/or public, 
private or hybrid cloud infrastructure within the TrafficSense server (back-end) components. 
Also, the storage, aggregation, and mining over Big traffic-related data provide detection of 
mobility patterns depending on the contextual information, such as the time of the 
day/week/month/year, the weather situation, the mass events in the city, etc. 

The results of Big streaming and offline data analytics are provided to a traffic control 

center and traffic operators through tailored visual analytics, dashboard application 

providing human-in-the-loop principle. The TrafficSense platform provides support for the 

development and operation of specific ITS applications with components deployed at the 

IoT/mobile and edge devices, as well as the cluster/cloud computing infrastructure.  Such 

applications relies on the TrafficSense components for the Big traffic and mobility data 

processing and analytics tailored for specific application scenarios such as traffic flow 

prediction, traffic signal control, public transport management, emergency management, etc. 

The TrafficSense architecture and the platform implement a feedback control loop 

mechanism and adhere to the MAPE-K model and architecture principle for self-adaptive 

systems [16]. The MAPE-K architecture includes Monitor, Analyse, Plan, Execute 

modules and a shared Knowledge base. The Monitor module collects data from sensors in 

environment, sends them for Analysis of monitored data, Planning response actions, and 

Execution of these actions through the actuators integrated in the environment. All 

modules are based on the common Knowledge representation of the system under 

monitoring, control and self-adaptation. The TrafficSense IoT/mobile/edge components 

implement Monitor features, Analyse and Plan functionalities are implemented and 

spread across the TrafficSense edge and cloud data processing and analytics components, 

while Execute capabilities are provided by TrafficSense IoT/mobile actuators, closing the 

feedback control loop. All mentioned components of the TrafficSense platform along the 

edge-cloud compute continuum provide analytics and machine learning capabilities and 

include the Knowledge component of MAPE-K required for making decisions about 

personalized traffic services, control and adaptation. 

4. TRAFFIC STREAMING ANALYTICS FOR TRAFFIC LIGHTS ADAPTATION 

The traffic monitoring and adaptation scenario explored in this paper is based on the use 

of Floating Car Data (FCD) or, more specifically, the GPS probe data, consisting of the 

location (latitude, longitude) and the time, collected from vehicles moving along the city’s 

streets. The Big traffic and mobility data streams are collected by IoT mobile devices and 

edge gateways, and processed by traffic streaming analytics application in a traffic control 

center. The processing and analytics provide detection of traffic conditions and events in 

real-time, such as average speed along the street segments and traffic congestions at 

intersections. By employing a feedback control loop the application provides the traffic 

adaptation through traffic actuators, traffic lights and variable message signs (VMS).  

Instead of real IoT and in-vehicle devices, and dedicated TrafficSense IoT/mobile 

application for traffic data collection, we use SUMO9 [13], an open source, microscopic 

and continuous traffic simulator, developed by the Institute of Transportation Systems at 

the German Aerospace Center to achieve realistic traffic and mobility data (FCD) 

 
9 https://www.eclipse.org/sumo/ 
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generation (Fig. 2). We implemented the TrafficSense server application for traffic streaming 

analytics and traffic adaptation using contemporary Big Data technologies. 

 

Fig. 2 SUMO microscopic traffic simulator 

In order to provide the control of the simulation and traffic parameters, TraCI10 (Traffic 
Control Interface) is used. TraCI provides programming access to the running traffic 
simulation, allowing retrieval of values that characterize simulated vehicles in motion and 
manipulation of their behaviour "on-line". The streaming mobility (FCD) and traffic data 
originating from the SUMO simulator are published to the specific topics of the Apache 
Kafka11 message broker. We choose Kafka broker among other alternatives, such as 
RabbitMQ12, due to its high efficiency and message throughput, as well as scalability when 
deployed to the cluster/cloud infrastructure. The Kafka message broker receives and collects 
mobility and traffic data published to a specific topic by various sources,in our scenario only 
the SUMO simulation data, but in a real settings, also data from RFIDtags, inductive loops, 
street sensors/cameras, etc.. The data are received by the subscribed TrafficSense back-end 
application that is based on the server components of the TrafficSense platform for 
processing and analytics of Big Streaming Data related to traffic and vehicle mobility. The 
TrafficSense application is implemented using the Apache Spark framework and Spark 
Core, Structured Streaming and SparkML components that provides APIs for batch and 
streaming data processing and analytics at the massive data scale. Comparing to other Big 
Data frameworks, such as Apache Storm and Heron, Apache Spark includes components 
for both batch and streaming data analytics and machine learning, and also is more mature 

 
10 https://sumo.dlr.de/docs/TraCI/Interfacing_TraCI_from_Python.html  
11 https://kafka.apache.org/ 
12 https://www.rabbitmq.com/ 
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than the Apache Flink framework. In the future developments we will consider use of 
Apache Beam13, an open source, unified model for defining both batch and streaming data 
processing pipelines that can be executed by supported distributed processing frameworks, 
such as Apache Flink, Apache Spark, and Google Cloud Dataflow [4]. 

To provide control and self-adaptation of the traffic simulation generated by SUMO we 
extended CrowdNav14 tool with the self-adaptation functionalities (CrowdNav-SA) that can 
change and adapt the traffic simulation and simulated vehicle parameters in a real-time 
using TraCI interface. CrowdNav-SA can subscribe to receive messages on the particular 
Kafka topics and, based on local JSON configuration, performs adaptation of the traffic in 
real time while the simulation is running. Upon receiving Kafka messages published by 
TrafficSense application that inform on congestions on particular streets and intersections, 
CrowdNav-SA calls the SUMO operations via TraCI API to change the simulated traffic 
parameters and re-configure the simulation. In this way, the TrafficSense application and 
the CrowdNav-SA tool implement Analyse-Plan-Execute actions of the MAPE-K framework 
and close the feedback control loop for traffic control and adaptation. 

The TrafficSense application 
provides dashboard functionality 
through a real-time Web dashboard 
application for monitoring of traffic 
and mobility of vehicles implement-
ed using Leaflet15 JavaScript map 
library and MapBox16 API for 
providing background geographic 
maps. To provide dynamic visualiza-
tion of traffic congestions occurring 
and a slow traffic over particular 
street segments, Eclipse Vert.x17, an 
event-driven application framework, 
was used. We have implemented the 
Vert.x service and the Web dash-
board application connected through 
Web Socket interface that visualizes 
the vehicles in motion, dynamic 
travel times along the street seg-
ments, and traffic congestions, as the results of the processing and analysis performed by 
Spark Structured Streaming jobs (Fig. 3). 

The TrafficSense platform and the application were implemented, deployed and evaluated 
on a cluster of computers running the Apache Spark platform and Apache Hadoop/HDFS 
using container virtualization for maximum flexibility and scalability. The Docker images for 
SUMO simulator, the CrowdNav-SA tool, and the Kafka message broker have been created 
and deployed at the master computer node, and started as containers. Traffic simulation data 
generated by SUMO are published to dedicated Kafka topics and consumed by the subscribed 
TrafficSense application executed as a series of Spark Structured Streaming Jobs. The 

 
13 https://beam.apache.org/ 
14 https://github.com/Starofall/CrowdNav 
15 https://leafletjs.com/ 
16 https://www.mapbox.com/ 
17 https://vertx.io/ 

 

Fig. 3 The screenshot of the TrafficSense dashboard  
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application continuously processes and analyses incoming streaming mobility (GPS 
probe) data and stores the results on a HDFS and Cassandra NoSQL database. Based on 
OpenStreetMap18 street network data, TrafficSense continuously detects the number of 
vehicles on the street segments, the average speed along street segments, and the number 
of slow or non-moving vehicles on the intersections that cause traffic congestions. Upon 
detection of congested street segments and intersections, the TrafficSense application 
publishes appropriate messages to the Kafka topic that is consumed by the subscribed 
CrowdNav-SA traffic adaptation tool. The CrowNav-SA tool provides methods and 
operations to change and adapt the simulation parameters of the running SUMO simulation, 
such as the duration of street lights in certain directions at intersections, the speed limit in 
crowded streets, the traffic mode (one/two ways) for certain street segments, etc. This 
reconfiguration performs the feedback control loop mechanism and cause self-adaptation of 
the traffic to overcome traffic congestions and heavy traffic [16].  

The general architecture of the TrafficSense server application indicating technologies 

used for the implementation, is shown in Fig. 4. 

IoT & mobility data 
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Traffic Sense dashboard
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adaptation
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Kafka

MapBox & Leaflet 
OpenStreetMap

Traffic Sense
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Apache Spark & Spark 

Streaming, SparkML 

HDFS
Cassandra

 
Fig. 4 TrafficSense application for traffic streaming analytics – used technologies  

We have performed several experiments for the traffic adaptation through re-configuration 
of the traffic lights duration for the main city square in the city of Niš for various parameters 
related to the traffic conditions and stream processing and analytics. The parameters that 
enable detection of a vehicle that is almost stopped at the intersection are the minimal 
speed Smin (close to 0 km/h) and the time period in which a vehicle moves at that speed or 
slower. The detection of traffic status at the intersection is defined by the threshold values 
representing the number of stopped vehicles at that intersection (Vmin, Vmax): 

▪ Number_of_ stopped_vehicles < Vmin   →  Low traffic 
▪ Vmin < Number_of_stopped_vehicles < Vmax    →  Normal traffic 
▪ Vmax < Number_of_stopped _vehicles  →  Heavy traffic 

Two other configurable parameters are related to traffic lights. The TLinc represents 
the percentual increase of the traffic light duration, and TLdec – the percentual decrease of 
the traffic lights duration to allow more or less vehicles passing in that direction. It 
means, when the application detects a heavy traffic in particular direction at the 
intersection, it adapts and increases the traffic light duration for TLinc%. In contrast to it, 
when the light traffic is detected, the TrafficSense application decreases the duration of 
traffic light for TLdec% for that direction at the intersection. Regarding the streaming data 
processing and analytics, there are several parameters that can be configured before the 
simulation and evaluation start, such as window size, sliding windows, watermark, etc. 

 
18 https://www.openstreetmap.org/ 
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We have executed several SUMO simulations varying simulation parameters to collect 
large (simulated) traffic data and empirically determine the most suitable values of the 
TrafficSense application parameters related to the main intersection, shown in Fig. 3. In the 
future research, we plan to provide a dynamic determination and calculation of these 
parameters by using the continuous traffic analytics and application of machine learning 
techniques. In a real world scenario, to appropriately define these parameters, the application 
should also take into the account the traffic context, such as the time of the day/week/year, the 
weather conditions, the city mass events, and similar conditions and situations that affect the 
city traffic. 

We performed several traffic simulations with varying parameters and achieved significant 
improvement in the traffic flow at the main intersection leveraging the feedback control loop 
mechanism and the traffic lights adaptation. The experiment performed for 1000 of vehicles 
moving in the city of Nis, at the main intersection, where the durations of green traffic lights 
are 25s and 14s, for going straight and turning left respectively. The other parameters are 
defined as: Smin = 0 km/h, Vmin = 4, Vmax = 8, TLinc = TLdec = 50%. 

The Fig. 5 shows the traffic conditions at the 5th and 10th minute of the traffic simulation, 
without (a), (c) and with (b), (d) traffic lights control and adaptation. 

   
 (a)  (b) 

   
 (c) (d) 

Fig. 5 The traffic conditions at the main intersection without (a), (c) and with (b), (d) traffic 

lights adaptation at 5th minute (a), (b) and 10th minute (c), (d) of the simulation 
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We have continuously collected the number of stopped vehicles at the main 

intersection during 30 min of simulation without and with traffic lights control and 

adaptation (Fig. 6). According to the average number of stopped vehicles during the 30 

minute long simulation (dashed lines) we can conclude that the traffic flow is improved 

for about 39.4% (for TLinc = 30%) and 49.75% (for TLinc = 50%) when the traffic lights 

control and adaptation are applied. 

 

Fig. 6 The continuous number of stopped vehicles at the intersection without (red) and 

with (green) traffic lights control and adaptation in time 

5. EXPERIMENTAL EVALUATION 

We performed experiments to evaluate the performance and scalability regarding the 

processing and analytics of Big Streaming Data related to traffic and mobility. For the 

purpose of testing and evaluation of the TrafficSense platform and the application for 

traffic streaming analytics and adaptation, we deployed the application on the two Future 

SOC Lab computing architectures: 

▪ The cluster of 9 virtual machines: 1 master (8 Cores-2GHz and 8GB RAM), slaves 

(4 Cores-2GHz and 4GB RAM) 

▪ Multi-core computer with Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, with 

two sockets, 40 CPU cores, 256GB RAM. 

Apache Hadoop/HDFS, Spark, Kafka and Cassandra were installed and configured on 

both platforms, and the containerization of Spark and Cassandra using Docker were 

performed on the multi-core computer. The CrowdNav-SA tool and the TrafficSense 

application were developed using Python programming language and PySpark API is 

used for accessing Apache Spark Core and Structured Streaming and ML features. 

For the cluster of nine virtual machines, TrafficSense is executed using one Spark 

Driver running at the Master node and eight Spark Executors running at Worker nodes, 

allocating 2.5GB RAM each and executing on all available CPU cores. Also, the HDFS 
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and Spark daemons are executed in the background, consuming at least one core. In the 

multi-core computer setting, one Spark master and 2 Spark workers are started as 

containers, executing 10 Executors each consuming 4 cores and 16GB of RAM. 

We evaluated the maximum workload with 10000 simulated vehicles that report 

location/time data each second, generating more than 25 million messages sent by three 

independent streams to the dedicated Kafka topic. The TrafficSense application processed 

and analyzed the whole streaming workload for about 15 minutes, so the peak throughput 

is almost 28000 messages/second. This means that the application can receive 28000 

messages from the Kafka traffic topic at each second, perform processing and analytics to 

detect the status of the traffic at each street segment and intersection, and generate and 

publishe control and adaptation messages to the another Kafka topic to be consumed by 

CrowdNav-SA that dynamically re-configures SUMO simulation parameters (traffic 

lights duration). The tests with six streams sending 50 million of messages shows similar 

performance, and the application completes the streaming workload for about 32 minutes. 

The experiments shows that even the experimental cluster with configuration of 9 

commodity computers (virtual machines) would successfully monitor and control traffic 

lights in a real-world deployment, with more than 10000 vehicles reporting their position 

at each second. In the multi-core computer setting, the TrafficSense application shows 

similar performance in average for completing processing and analysis of both 25 million 

and 50 million of messages and adapting traffic lights at the crowded intersections. The 

experiments proved the usability of the proposed platform and the application in a real 

world scenario. To evaluate the performance limits of the application, in the simulated 

scenario, we defined that each simulated vehicle reports its location every 1 second.In the 

real world scenarios, such high location reporting rate is usually not applied; vehicles 

expect to report their locations at 10-30 seconds interval. The average number of CPU 

cores employed at each Worker nodes by Spark Executors and their tasks during the 

duration of the simulation is shown in Fig. 7, presenting the workload of the cluster over 

time. 

 

Fig. 7 The average workload of CPU cores at each Worker nodes during execution 
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We did not perform experiments to detect the TrafficSense application performance 

limits that would be reached mainly because of the communication bottleneck between 

CrowdNav-SA tool and the application via Kafka. The main advantages of the TrafficSense 

platform and the application are their openness and scalability owing to the foundational 

Big Data technologies, Apache Kafka and Spark. Both the Kafka broker and the Apache 

Spark framework are fully scalable, and can easily scale-out to a large number of computer 

nodes without any change in the application. Such scalability provides improved 

performance and throughput for more voluminous and faster streaming workload and the 

TrafficSense platform and the application could be employed even in the heavy traffic 

scenario, e.g. during the rush hour in the city of Belgrade. 

6. CONCLUSION 

In this paper, we propose the TrafficSense architecture and the platform for traffic 

monitoring and control and implement the TrafficSense application for traffic adaptation 

through dynamic traffic lights duration based on processing and analytics of large-scale 

vehicle location data streams. We developed the application using open source Big Data 

technologies and tools, leveraging feedback control loop techniques through MAPE-K 

approach for self-adaptive systems. 

The feasibility of the proposed architecture and the platform is demonstrated in the 

TrafficSense application using realistic microscopic traffic simulator and near real-world 

use case of traffic adaptation in the city of Nis. We demonstrate the application 

functionality through a successful real-time control and adaptation of traffic congestions 

at the intersections and the system scalability and feasibility using experiments with large 

number of vehicles whose locations are collected through several high-speed data streams 

entering the system. The application operates more than satisfactory both in terms of 

functionality, as well as performance and scalability.  

Currently the system threshold values and configuration parameters necessary for the 

adaptation are defined by using historical traffic data analysis for each simulation/scenario. 

One of the prominent directions for the future research and development is to advance the 

TrafficSense platform for the more realistic scenarios providing run time adaptation of the 

system configuration and parameters, depending on the traffic context and situation, 

weather and road conditions, and other external data sources. Also, the adaptation for each 

intersection is currently performed independently of others. The future research will provide 

the integrated traffic light control and adaptation that depends on the several connected 

intersections depending on the traffic flow and detected traffic patterns (e.g. home-work 

during week days, residential area – center of nightlife for weekend evenings). The future 

improvements of the TrafficSense platform will include a fusion of various traffic and street 

sensor data and the integration of new traffic control mechanisms, such as variable message 

signs, speed limits, and street directions (one/two ways), and their run time control and 

adaptation through feedback control loop mechanism. 
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