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Abstract. Aquatic insects and other benthic macroinvertebrates are mostly used as 

bioindicators of the ecological status of freshwaters. However, an expensive and time-

consuming process of species identification represents one of the key obstacles for 

reliable biomonitoring of aquatic ecosystems. In this paper, we propose a deep learning 

(DL) based method for species identification that we evaluated on several available 

public datasets (FIN-Benthic, STONEFLY9, and EPT29) along with our Chironomidae 

dataset (CHIRO10). The proposed method relies on three DL techniques used to 

improve robustness when training is done on a relatively small dataset: transfer 

learning, data augmentation, and feature dropout. We applied transfer learning by 

employing a ResNet-50 deep convolutional neural network (CNN) pretrained on 

ImageNet 2012 dataset. The results show significant improvement compared to original 

FIN-Benthic, STONEFLY9, and EPT29 contributions and confirm that there is a 

considerable gain in accuracy when there are multiple images per specimen. 

Key words: Convolutional neural networks, image classification, transfer learning, 

data augmentation, biomonitoring 

1. INTRODUCTION 

The diversity of genes, species, and ecosystems are declining globally faster than at 

any time in human history [1]. The aquatic ecosystems are showing among the highest 

rates of decline with the alarming acceleration of biodiversity loss. That poses a need for 

the development of proper and cost-effective tools for monitoring aquatic biota diversity.  
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A traditional morphological identification approach in biomonitoring requires ‘as high 

as possible’ taxonomic resolution in data [2]. However, the identification of macroinvertebrate 

taxa based on morphological features can be problematic, as the number of misidentified 

taxa increases with taxonomic resolution. In addition, morphological identification is a 

time-consuming process, which is not cost-effective for routine monitoring and requires 

taxonomic expertise for many aquatic biota groups (e.g. non-biting midge) [3], [4]. All 

such drawbacks of traditional biomonitoring have created a need for developing alternative 

approaches in macroinvertebrate sample processing. Recent advances in computer vision, and 

especially image classification, which have been introduced using convolutional neural 

networks (CNN) and deep learning (DL), have paved the way for reliable automation of the 

identification processes. 

Image classification in computer vision is a problem where, based on a set of images 

with known categories, a model is built that can predict a category, with certain accuracy, 

for some new images. The task itself is not easy due to the different variations present in 

the images. Typically, a data-driven approach is used to solve this problem. Instead of 

trying to describe each of the classes that need to be identified, many examples are used 

for each of the classes to train a particular model (classifier) to be able to identify them. 

In order to evaluate the quality of the trained model when classifying new samples, a 

certain part of the starting set is put aside and used for testing purposes. 

The traditional approach to the problem of image classification relied on ‘hand-crafting’ 

various image feature extractors that were later used to train the classifier [5]–[8]. Although 

artificial neural networks (ANN) have been used before [9], major advances in this area have 

been made with the introduction of CNNs [10]. CNNs combine three architectural ideas that 

help them achieve a certain level of invariance to translation and distortion: local receptive 

fields, shared weights, and spatial subsampling [11]. CNNs came into the focus of interest in 

2012 after a network called AlexNet [12] won in the ImageNet Large Scale Visual 

Recognition Challenge [13] (hereafter abbreviated as ImageNet). AlexNet had a top-5 error of 

15.3%, which was 10.8% better than the second-placed solution. This result was possible due 

to the application of Graphical Processing Units (GPU) for the training, which is considered a 

turning point for the development of DL. Over the next few years, both deep CNNs and the 

results they achieved in the ImageNet competition undergo huge improvement. The 2013 

winner was ZFNet [14] with a top-5 error of 14.8%. The importance of this solution is 

predominantly in the developed visualization technique by mapping learned filters into 

images. The coming year brought huge improvement and two significant solutions. VGGNet 

[15] achieved a top-5 error of 7.3% while promoting simplicity and depth. The winner of 

2014, with a top-5 error of 6.7%, is GoogLeNet [16], which, in addition to a significantly 

better result, also had 12x fewer parameters than AlexNet. The following year, ResNet [17] 

recorded a top-5 error of 3.6%, which was almost twice as good as the previous year. The 

ResNet architecture is inspired by the philosophy of VGGNet with the introduction of a 

residual learning approach to facilitate the training of deep networks. The network that won in 

2015 is a 152-layer variation of ResNet. In the proposed method for species identification, we 

used the ResNet-50 variation of this architecture as an encoder, i.e., a network that extracts 

features from input images.  

The importance of ImageNet competition goes beyond its original goal which 

involves the classification of images into 1,000 categories. Since few real applications 

can match the ImageNet set by the number of samples (about 1,200,000 training 

samples), the idea is to use the networks previously trained on the ImageNet dataset as 
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general feature extractors or a starting point for further training. The approach is called 

transfer learning [18], [19] and is one of the key elements of the proposed solution. 

The rest of the paper is organized as follows. Section 2 presents related work, while 

Section 3 provides an extensive description of the datasets we used and the preprocessing 

we performed. In Section 4 we describe the proposed method, including details specific 

to the implementation. Details about conducted experiments and achieved results, along 

with the corresponding discussion are given in Section 5. Finally, Section 6 concludes the 

paper and suggests topics for future research. 

2. RELATED WORK 

The use of deep CNNs represents the current state-of-the-art for image classification tasks 

in general. This approach has become very popular in the domain of biology and medicine 

[20]–[24] where the aim is to replace human experts in the diagnostic process. Transfer 

learning, in the form of ImageNet pretrained feature extractors, also proves to be very useful 

in the field [21] despite the very different nature of the images being processed. When it 

comes to image-based species identification, according to Wäldchen and Mäder’s review 

[25], deep learning-based approaches represent current state-of-the-art and pretty much 

revolutionized the domain. 

The problem of automated image-based taxonomic identification of benthic 

macroinvertebrates is addressed in [26]–[31]. Lytle et al. [26] developed one of the first 

systems to address this problem. Their BugID system used the Scale Invariant Feature 

Transform (SIFT) descriptors [32] in combination with Random Forests (RF) classifier that 

was previously described in [33]. When tested on images from 9 larval stonefly taxa 

(STONEFLY9 dataset [26], [34]), BugID correctly identified 94.5% of specimens.  

Larios et al. [27] used a stacking classification approach that combines the results from 

multiple classifiers, having the benefit of allowing each classifier to handle a different 

feature space. As base feature extractors they used Histogram of Oriented Gradients 

(HOG), Beam Angle Statistics (BAS), and SIFT. For testing purposes, they created a 

dataset which contains 4722 images with 29 aquatic insect species, belonging to the 3 most 

common orders used to assess the aquatic ecosystem health: Ephemeroptera (mayflies), 

Plecoptera (stoneflies), and Trichoptera (caddisflies). The dataset is known as EPT29. The 

best result of 88.06% was obtained using spatial-pyramid kernel support vector machines 

(SVM) applied to stacked 3-feature-types combination. All the experiments were 

performed with a stratified 3-fold cross-validation setup. 

Another ‘pre-deep learning’ approach to address the problem of cost-intensive manual 

taxonomic classification and retrieval of macroinvertebrate specimens was introduced by 

Kiranyaz et al. [28]. The benthic macroinvertebrate image dataset used in this work consists 

of 1350 images representing 8 different taxonomic groups. For feature extraction, they 

applied ImageJ, a public domain Java-based image processing software, that produced a 15-

D feature vector of each macroinvertebrate image from the dataset. Obtained feature vectors 

were used for training different classifiers: SVM, Bayesian Classifiers (BC), and two ANN 

models: Multi-Layer Perceptron (MLP) and Radial Basis Function Network (RBFN). To 

evaluate the effect of the data partitioning, they randomly selected 10 different training and 

test partitions each with 650 training and 700 test samples. SVM classifiers showed slightly 

better performance than BCs with classification errors (CEs) ranging from 4.86–7.86% 
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compared to 5.71–7.86% achieved by BCs. MLP outperformed all other approaches with 

recorded best CE of 3.57% on the test set. RBFNs, on the other hand, showed the worst 

results. 

Joutsijoki et al. [29] used the same dataset and feature extraction methodology as in 

[28] to examine the suitability of ANNs for automated taxa identification of 

macroinvertebrates. They experimented with different training algorithms of MLP, 

Probabilistic Neural Network (PNN), and RBFN. The best classification accuracies they 

achieved are 95.3% for MLP, 92.8% for PNN, and 95.7% for RBFN. It is important to 

mention that these results were achieved using a different training methodology, i.e. 80% 

(1080) of images were used for training, 10% (135) for validation, and 10% (135) for 

testing. The reported accuracies are mean values calculated after training 100 models on 

different data splits.  

Raitoharju et al. [30] made publicly available benchmark datasets (FIN-Benthic) that 

enable the evaluation of classification methods for distinguishing visually similar categories 

of aquatic macroinvertebrate taxa. There are three overlapping datasets with 64, 29, and 9 

categories. The number of images per category ranges from 7 to 577. They also proposed a 

methodology for taking photos of the specimens using two cameras from two different 

directions. This helps in the identification process since it is possible to combine predictions 

for two images to determine the species of the specimen. Another important property of the 

datasets is that they have 10 explicit splits in train (50%), validation (20%), and test (30%) 

subsets. This removes ambiguity and helps with comparing results. The experiments they 

conducted, for the first time, included direct use of CNNs, i.e. AlexNet [12] in particular. 

They achieved mean classification accuracies of 75.74% on Dataset 1, 81.04% on Dataset 

2, and 90.14% on Dataset 3. Besides direct use of CNNs, the paper also shows comparative 

results when previously trained AlexNet is used to extract features (output of ‘fc7’ layer, 

4096-D feature vector) and more traditional classification methods are applied. However, 

end-to-end training proves slightly better than the best alternatives like SVMs.  

A paper by Milošević et al. [31] represents our contribution to the field of automated 

species identification of non-biting midges (Diptera: Chironomidae). The research 

involved the development of a chironomid image dataset of 10 morphologically similar 

species from the same genus or subfamilies, comprising 1846 images (one per specimen). 

We used the same deep CNN model based on pretrained ResNet-50 encoder. The 

difference between the approach of the present paper and that of our previous paper is 

that the latter used larger images (512×512 pixels) and a single data split (80% for 

training, 20% for validation). In our previous paper, we presented the results of three 

experiments with datasets on chironomid species, genera, and subfamilies levels. The 

final models achieved an accuracy of 99.465% for species-level identification, while at 

the genus and subfamily level all images were correctly assigned (100% accuracy).  

3. DATA 

The basis for our research was our chironomid dataset comprised of 1846 images of 

10 chironomid species [31] (will be further referred to as CHIRO10 dataset). Species 

selection included morphologically similar (same genus), moderately different (different 

genera), and highly different species (different subfamilies). The images show chironomid 

larvae head-capsules photographed from the ventral point of view which is most informative 
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in terms of species-specific morphological characteristics. The images were obtained 

using Leica MZ16A stereomicroscope with 150x magnification and Leica DFC320 Digital 

Camera system. 

The size of the original images is 2088×1550 pixels. In our previous experiments [31] 

we used input images of size 512×512 pixels, where we added a black margin on the top 

and bottom of the image to make it square size. Since we decided to unify all experiments 

in this paper to use images of 256×256 pixels, to keep most of the relevant data in the 

image, we applied horizontal cropping to square size of 1550×1550 pixels. The idea was 

to keep the chironomid head-capsule in the center of the cropped image, so we used the 

following preprocessing pipeline (see Fig. 1): blur image using median filter, convert to 

grayscale, remove vignette effect, normalize, threshold, find connected components, find 

bounding box of the biggest component, calculate crop bounding box, and crop image. 

The final step in the dataset preparation was to resize all images to a dimension suitable 

to be used as CNN input, which in our case was 256×256 pixels. An illustration of the 

CHIRO10 dataset with the number of images and 6 random samples per species is shown 

in Fig. 2. Please notice that the number of images per species is around 200, except for 

Polypedilum laetum where we only have 79 images. 

 

Fig. 1  Illustration of preprocessing steps applied to CHIRO10 images 

The division of the dataset was made according to the method used in [30] (FIN-

Benthic), i.e. 50% of the images are used for training, 20% for validation, while remaining 

30% are used for testing and results reporting. To reduce ambiguity related to the selection 

of samples into one of these three subsets, 10 different partitions were made and explicitly 

saved as a tabular text file whose format resembles the one used in [30]. The partitions were 

made by rotating pattern (train, test, train, test, train, val, train, test, train, val) one element 

to the left for each new specimen. Table 1 contains a sample from the dataset definition file 

that illustrates the structure of the file and shows how 10 partitions are specified rotating the 

previous pattern. The pattern has 5 train, 2 val, and 3 test entries which roughly results in 

the desired split for each of the 10 partitions. Please notice that im_num parameter is always 

1 since our dataset has one image per specimen. 
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Fig. 2  Illustration of the CHIRO10 dataset 
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Fig. 3  Illustration of preprocessing steps applied to STONEFLY9 and EPT29 images 

Table 1  Sample from dataset definition file showing how 10 partitions are specified 

10_data_partitions im_num im_path cls_name cls_id 

train test train test train val train test train val 1 Orthocladius_sp\\100.jpg Orthocladius_sp 4 

test train test train val train test train val train 1 Orthocladius_sp\\101.jpg Orthocladius_sp 4 

train test train val train test train val train test 1 Orthocladius_sp\\102.jpg Orthocladius_sp 4 

test train val train test train val train test train 1 Orthocladius_sp\\103.jpg Orthocladius_sp 4 

train val train test train val train test train test 1 Orthocladius_sp\\104.jpg Orthocladius_sp 4 

val train test train val train test train test train 1 Orthocladius_sp\\105.jpg Orthocladius_sp 4 

train test train val train test train test train val 1 Orthocladius_sp\\106.jpg Orthocladius_sp 4 

test train val train test train test train val train 1 Orthocladius_sp\\107.jpg Orthocladius_sp 4 

train val train test train test train val train test 1 Orthocladius_sp\\108.jpg Orthocladius_sp 4 

val train test train test train val train test train 1 Orthocladius_sp\\109.jpg Orthocladius_sp 4 

Table 2  Details of the datasets used in this study 

Dataset name Subsets Categories Specimens Images 
Images per 

specimen 

Images per 

category 

CHIRO10 

Set 1 10 

1846 1846 1 

79‒207 (~186) 

Set 2 5 199‒684 (~369) 

Set 3 2 199‒1647 (~923) 

FIN-Benthic 

Set 1 64 7705 15074 1‒2 (~2) 7‒577 (~235) 

Set 2 29 6038 11832 1‒2 (~2) 230‒577 (~408) 

Set 3   9 1692   3272 1‒2 (~2) 322‒395 (~363) 

STONEFLY9 ‒   9   774 3845 1‒5 (~5) 119‒532 (~427) 

EPT29 ‒ 28 1608 4794 1‒4 (~3) 27‒366 (~171) 

By applying the described method, we created three dataset definition files: on species 

(Set 1), genus (Set 2), and subfamily (Set 3) levels. The only differences in these files are 

cls_name and cls_id values which reflect a different grouping of specimens. 
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In addition to the results obtained on CHIRO10 datasets, we also applied our method to 

previously mentioned, publicly available datasets: FIN-Benthic [30], STONEFLY9 [26], 

[34], and EPT29 [27]. Since the FIN-Benthic dataset had already prepared, i.e. cropped and 

resized images (256×256), so as 10 predefined partitions, there was no additional effort to 

apply our method to it. On the other hand, images from the other two datasets needed to be 

preprocessed first. Again we applied a preprocessing pipeline that used the following steps 

(see Fig. 3): blur image using median filter, convert color from RGB to HSV model, extract 

background (blue) using hue values range, invert mask and apply dilation morphological 

operation, find connected components, calculate bounding box of the biggest component, 

enlarge and fit bounding box to an image, and finally crop and resize image to 256×256 

pixels. Both STONEFLY9 and EPT29 originally used 3-fold cross-validation, but to unify 

the method across all datasets we created 10 partitions following the same split rule of 50% 

for training, 20% for validation, and 30% for testing. To do so, we applied the same method 

previously used for the CHIRO10 dataset. One additional note about the downloaded 

EPT29 dataset is that it had only 28 categories, while the total number of images was 4799. 

During image preprocessing we discovered that 5 images did not have a subject in it, so we 

removed them from the resized set, ending with a total of 4794 images. Table 2 shows a 

summary of the datasets used in this study. 

4. METHOD 

Our method of image-based species identification relies on DL, i.e. on using deep residual 

CNN and end-to-end learning. To enable robustness when training a model with a limited 

number of sample images, we applied the following techniques when designing the classifier: 

1. Transfer learning 

2. Dropout 

3. Data augmentation 

Transfer learning is one of the key techniques that allows using of deep CNN to solve 

problems with a relatively small dataset. It relies on using a network pretrained on some large 

dataset such as ImageNet 2012. Training the network on the ImageNet dataset ensures that it 

will build a hierarchy of different features that can be found in photos in general and can be 

used to classify new photos. To enable such transfer, it is necessary to replace the top of the 

network, which is responsible for the classification, and train the new one using features 

extracted by the deep CNN (see Fig. 4). Typically, the part of a CNN responsible for feature 

extraction is called an encoder. Depending on the nature of the dataset, this approach may be 

sufficient. However, in our case, the input does not represent something that is typically found 

in the photographs that are used for the initial training, so it was necessary to carry out two-

phase training. After training the classifier in the first phase, the whole network was fine-tuned 

in the second phase. Fine-tuning is nothing more than end-to-end training of the entire 

network. The term ‘fine’ is used to indicate that a very small learning rate is used to preserve 

initial network parameters. 

Another technique that was used to improve classifier robustness is called dropout 

[35]. The appropriate layer was added after the encoder so that in each training step, a 

certain percentage (in our case 50%) of the extracted features is discarded. This is done 

only in the training phase, while during evaluation all outputs are considered, but scaling 

is performed for the appropriate dropout rate. The scaling is applied to adjust the average 
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output value to the one we had during the training. The effect achieved by applying 

dropout is that the classifier learns to rely on many different features when ‘making the 

decision’. The dropout technique prevents overfitting and tends to provide better results 

on the validation set. 

 

Fig. 4  Illustration of transfer learning 

Training a neural network to classify images requires determining features that can be 

easily classified into a certain category. This process requires a large number of training 

samples to build a hierarchy of features and to produce a classifier resistant to the different 

variations that may appear in the images. When we have a relatively small amount of training 

data, and we use a high capacity model, the model can easily ‘remember’ all the training 

samples, and thus give a poor result on the validation set. A typical technique used to avoid 

such behavior is called data augmentation. Data augmentation involves applying random 

transformations over the input images so that in each training cycle the network is presented 

with something it has not ‘seen’ before. Depending on the nature of the dataset, typical 

transformations include flipping, rotation, translation, scaling, skewing, changing brightness 

and contrast, etc. 

4.1. Network architecture 

Following the previously described principles, we adopted the architecture based on the 

ResNet-50 [13] encoder that is depicted in Fig. 5. The choice of the ResNet-50 network, 

pretrained on ImageNet 2012 dataset, to be used as the encoder was influenced by several 

factors: good results on ImageNet 2012 dataset, network size in terms of the number of 

parameters, memory usage during training that allows bigger batches, reasonable training 

time, and model availability in the software environment used in the implementation. In 

general, ResNet architecture is very often a good initial choice because of its good ratio 

between representation capacity and training time. 

ResNet-50 encoder has 23,564,800 parameters, while the output is 2048-dimensional 

feature vector. The outputs are obtained by applying global average pooling on the last 

feature map. For input images of 256×256 pixels, this map dimension is 8×8×2048. The 

good property of ResNets and global average pooling is that the size of the output feature 
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vector does not depend on the size of the input image, which implies we can train the 

network with images of a certain size and later evaluate it using images of different size.  

 

Fig. 5  Schematic representation of the proposed architecture based on ResNet-50 encoder 

The resulting 2048-dimensional feature vector is subject to a 50% dropout. That 

means, in the training phase, half of it, i.e. 1024 randomly selected elements are set to 

zero. The feature vector modified this way is fed to a fully connected layer of N neurons 

where each output corresponds to a single class (N=10 for CHIRO10). The layer has 

N*(2048+1) parameters that are trained in the first phase. A softmax activation function 

(1) is applied to the outputs, giving this layer the role of a classifier of features that are 

provided by the ResNet-50 encoder. The outputs of the softmax function represent the 

probabilities that a sample belongs to one of the classes. In other words, the individual 

outputs have values from the interval (0, 1) and the sum of all outputs is equal to 1. 
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4.2. Implementation and training 

To implement the proposed architecture, we relied on the Python programming 

language and the Keras library. Keras is a high-level library that defines a simplified interface 

for implementing deep neural networks, and in our case, it relies on the TensorFlow library as 

a backend engine. 

Within the applications module, Keras has several deep CNN architectures pretrained 

on the ImageNet 2012 dataset. Instantiating ResNet50V2 class with appropriate 

parameters provided the encoder for our model. The rest of the model included one 

Dropout layer and one Dense layer with softmax activation. Since in the first phase of the 

training weights of the ResNet-50 encoder should remain frozen, we needed to set the 

trainable attribute to False for all convolution layers in the encoder. 

The created model was compiled using the RMSprop [36] optimization algorithm 

(optimizers module), sparse_categorical_crossentropy loss (losses module), while 

sparse_categorical_accuracy (metrics module) was used as the metric for accuracy. This 

optimization algorithm was chosen because of its fast convergence and relatively low 

memory footprint, while the loss and the corresponding accuracy functions are the 

standard choices for classification problems.  

For data augmentation, we relied on Keras built-in ImageDataGenerator class, which 

is located in the preprocessing module, submodule image. When constructing a 

corresponding image generator, we specified parameters for the various transformations 
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that will be randomly applied. Data augmentation included horizontal and vertical image 

flipping, rotation up to ±90°, translation up to ±15% in both directions, shear up to ±10%, 

and scaling up to ±20% (see Fig. 6). Data augmentation is only applied to the training set, 

while for validation purposes we used unmodified images.  

 

Fig. 6  Illustration of the used data augmentation 

Since we used an image generator for data augmentation, training was done using the 

fit_generator method. Additional control of the training process in Keras is possible 

using callback objects. The corresponding classes are located in the callbacks module and 

we used the following ones: LearningRateScheduler, EarlyStopping, ModelCheckpoint, and 

CSVLogger. 

LearningRateScheduler is used to specify an arbitrary function for calculating the 

learning rate depending on the current training epoch. We used this callback to implement the 

so-called cosine annealing [37]. In cosine annealing, the learning rate decreases following 

cosine function from some initial value to some minimum value during a certain number 

of epochs (period). In our implementation, with each new period, the initial learning rate 

was decreased by factor of 0.7. We used the initial value of 10-3 for the first phase of the 

training and 10-5 for the fine-tuning. The minimum value was 0.01 times the initial value. 

The appropriate schedule is shown in Fig. 7. 
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Fig. 7 Cosine annealing schedule used for controlling the learning rate during the training 

process 

EarlyStopping callback, as the name suggests, is used to stop the training process if 

there is no progress on a given parameter in some number of epochs. In our case, 30 

epochs were used and accuracy on the validation set was monitored. CSVLogger callback 

is used to record loss and accuracy on the training and validation sets during the training 

process. Finally, ModelCheckpoint was used to save the current best model in terms of 

accuracy achieved on the validation set.  

The fine-tuning was done in an almost identical way, with a few minor modifications. 

After loading the model obtained from the first training phase, training was re-enabled for 

all the layers of the ResNet-50 encoder (set the trainable attribute to True). The second 

change affected the initial learning rate that was reduced to 10-5 to avoid significant 

weight changes in the encoder. The results we obtained are presented in the next section.  

5. EXPERIMENTS 

For the evaluation of the proposed method, for each dataset, we trained 10 models, 

one for each partition.  The results are obtained by evaluating each of the trained models 

on the corresponding test set that contains 30% of the specimens from the dataset. We 

would like to emphasize that images from the test set are not used in the training process, 

so the obtained results should fairly represent the model’s expected performance. 

Since all the datasets, except CHIRO10, contain more than one image per specimen, 

as a basic metric for comparison we calculated specimen-level accuracy. To compare 

how different methods of acquiring multiple images per specimen influence the results, 

we also calculated image-based accuracy. Specimen-level accuracy is calculated by 

averaging the predictions, i.e. probability distributions, obtained for each of the specimen 

images, and then assigning the most probable class. For example, if we have 3 classes and 2 

images for the specimen, and if the model predicts (0.6, 0.1, 0.3) and (0.1, 0.4, 0.5), the 

average would be (0.35, 0.25, 0.4), so the specimen would be assigned to the third class.  

Table 3 presents a summary of the evaluation done on test sets where the specimen-

level accuracy is shown, for all the datasets and partitions, including mean and standard 

deviation values. In Fig. 8–12 corresponding normalized confusion matrices for 

CHIRO10 Set 1, FIN-Benthic Set 3 and Set 2, STONEFLY9, and EPT29 datasets are 

depicted. The matrices show mean specimen classification accuracies per class, so as 

standard deviation. Finally, Table 4 shows a comparison of the obtained results with the 

results reported in the original contributions (FIN-Benthic [30], STONEFLY9 [26], 

EPT29 [27]), and with the results obtained when image-level accuracy is calculated.  
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Fig. 8  Confusion matrix for CHIRO10 Set 1 

 

Fig. 9  Confusion matrix for FIN-Benthic Set 3 
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Fig. 10  Confusion matrix for FIN-Benthic Set 2 

 

Fig. 11  Confusion matrix for the STONEFLY9 dataset 
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Fig. 12  Confusion matrix for the EPT29 dataset 

5.1. Analysis and discussion 

The proposed method showed significant improvement in species identification 

accuracy on all external datasets that range between 4.55% and 9.56%. The only worse 

results were on CHIRO10 datasets compared to our results presented in [31]. The reason 

for that is a different evaluation strategy that involved much fewer images for training 

(50%) than in the previous paper (80%). The evaluation based on an independent test set, 

instead of the validation set, also has a negative impact on the accuracy. If we look at the 

confusion matrix shown in Fig. 8, the Polypedilum laetum class has the lowest accuracy 

of 82.7±8.1%. The reason for that is that all other classes have ~200 images, while this 

one has only 79. There are just not enough images for proper training. Tvetenia 

calvescens took penultimate place with an accuracy of 87.2±5.4%, but this time most of 

the misclassified specimens (11.3±4.4%) went to the Tvetenia discoloripes class which is 
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very similar (the same genus). To determine the impact of the smaller image collection 

that is used compared to our previous paper, we conducted two additional experiments 

where we trained 10 models per dataset joining train and test images, while results were 

evaluated on the remaining 20% of validation images. In the second experiment, we used 

an image size of 384×384 pixels that corresponds to the level of details we previously 

had on 512×512 images without cropping. Then we conducted the third experiment using 

images of 384×384 pixels with standard 50‒20‒30% split. The detailed results of these 

experiments are shown in Table 5. The mean accuracies for the second experiment 

(80‒20% split, 384×384 pixels) are 99.13% for Set 1, 99.84% for Set 2, and 99.86% for 

Set 3, which closely resembles the previously reported results. The third experiment 

recorded an increase in accuracy for 0.88% on Set 1, 0.20% on Set 2 and 0.25% on Set 3 

compared to the results presented in Table 3. If we compare per-class accuracies for 

Polypedilum laetum and Tvetenia calvescens, we can observe that in the first case it 

remains nearly the same (82.6±7.8), while in the second case it is significantly improved 

(93.7±4.7%). This result was expected, since the number of images for Polypedilum 

laetum stayed the same, while the increased level of details (384×384 image size) helped 

better distinguish similar species. 

Table 3  Specimen classification accuracy 

Dataset name CHIRO10 FIN-Benthic STONEFLY9 EPT29 

Subset / Part. Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 ‒ ‒ 

1 97.11 98.56 99.10 80.73 86.68 97.66 98.71 97.72 

2 95.67 98.92 99.46 80.44 85.53 96.88 99.57 97.93 

3 96.75 99.46 99.82 80.31 85.14 95.70 97.84 97.51 

4 98.01 99.64 99.46 81.42 85.64 96.68 99.57 96.68 

5 96.21 98.74 99.46 80.01 87.01 96.29 98.71 97.72 

6 97.11 99.46 98.56 82.02 85.31 95.70 99.57 97.10 

7 97.11 98.92 99.64 80.99 85.53 97.46 98.28 96.89 

8 95.85 99.28 99.64 81.33 85.53 96.48 99.14 96.89 

9 96.93 99.46 99.10 82.61 84.59 95.90 99.14 97.93 

10 97.11 99.28 99.10 80.14 85.47 97.07 99.57 97.93 

Mean 96.79 99.17 99.33 81.00 85.64 96.58 99.01 97.43 

Std 0.70 0.36 0.37 0.85 0.70 0.70 0.61 0.49 

Table 4  Comparison of the obtained results with original contributions 

Dataset name FIN-Benthic STONEFLY9 EPT29 

Subset Set 1 Set 2 Set 3 ‒ ‒ 

Original contributions 75.74 81.04 90.14 94.50 88.06 

Our results 81.00 85.64 96.58 99.01 97.43 

Increase +5.29 +4.60 +6.44 +4.55 +9.56 

Our results per image 76.59 81.19 93.63 97.69 95.37 

Increase per specimen +4.41 +4.45 +2.95 +1.32 +2.06 
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Table 5  Comparison of classification accuracies on CHIRO10 datasets 

Configuration 
CHIRO10 

80‒20%, 256×256 

CHIRO10 

80‒20%, 384×384 

CHIRO10 

50‒20‒30%, 384×384 

Subset / Part. Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 

1 97.83 100 100 98.92 100 100 97.65 99.64 99.64 

2 98.64 100 100 99.19 100 100 96.39 99.46 99.46 

3 98.65 99.73 99.73 99.73 99.46 100 96.75 99.64 99.82 

4 97.30 99.73 99.73 98.65 99.46 99.73 98.73 99.46 99.82 

5 97.56 99.73 100 98.92 100 100 98.74 98.74 99.46 

6 98.37 99.46 100 99.19 100 99.73 97.65 99.64 99.28 

7 98.37 99.73 99.46 99.46 100 99.73 97.47 99.46 100 

8 98.10 99.73 100 98.92 100 100 97.47 99.10 99.64 

9 97.83 98.92 100 99.19 99.73 100 98.38 99.10 99.10 

10 98.37 99.46 99.73 99.19 99.73 99.46 97.47 99.46 99.64 

Mean 98.10 99.65 99.86 99.13 99.84 99.86 97.67 99.37 99.58 

Std 0.46 0.31 0.19 0.31 0.23 0.19 0.77 0.30 0.27 

When it comes to the other datasets used in this research, the same rule regarding the 

number of images per class applies. For example, if we look at Fig. 12 where the 

confusion matrix for the EPT29 dataset is shown, three lowest accuracies correspond to 

the classes with the least image count: Per 64.8% ‒ 17 specimens / 51 images, Kat 75.5% 

‒ 16 / 48, and Lphlb 78.3% ‒ 17 / 27.  

The impact of specimen-level classification, compared to image-level classification, 

showed an increase of accuracy between 1.32% and 4.45%. It appears that FIN-Benthic's 

method of taking two images per specimen from two different directions has a better impact 

on specimen-level accuracy. When compared to corresponding STONEFLY9 and EPT29 

datasets, that use 5 and 3 images per specimen but taken from the same direction, FIN-Benthic 

Set 3 and Set 2 show more than two times bigger increase of specimen-level accuracy. 

Finally, the quality, i.e. level of details present in the images also plays an important 

role. The FIN-Benthic Set 2 has 29 classes, 6038 specimens, and 11832 images. On the 

other hand, the EPT29 dataset, has 28 classes, 1608 specimens, and 4794 images. These 

two datasets are comparable by the number of classes, while the number of specimens 

and images goes in favor of FIN-Benthic. The method of taking two images per specimen 

using two cameras also favors FIN-Benthic. Nevertheless, the accuracy for FIN-Benthic 

Set 2 is 85.64%, while on EPT29 we achieved staggering 97.43%. The reason for this, in 

our opinion, is a much lower level of details present in the FIN-Benthic images compared 

to the other sets. Interestingly, this EPT29 result also shows that more classes do not 

necessarily mean much lower accuracy. 

6. CONCLUSIONS 

In this paper, we proposed and evaluated an approach for species identification for 

aquatic biomonitoring. The proposed method relies on three DL techniques used to 

improve robustness when training is done on a relatively small dataset: transfer learning, 

data augmentation, and feature dropout. We applied transfer learning by using ResNet-50 

deep CNN pretrained on ImageNet 2012 dataset. For the evaluation, we used our CHIRO10 
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dataset, along with several available public datasets (FIN-Benthic, STONEFLY9, and 

EPT29).  

To be able to compare results for different datasets, we tried to unify the training 

process by using images of 256×256 pixels, splitting the data the same way, and using 10 

partitions to effectively measure the mean and standard deviation. The results showed 

significant improvement compared to the original contributions, confirmed that there is a 

considerable gain when multiple images per specimen are used, showed that image 

quality plays an important role in the overall accuracy, and also showed that the number 

of samples per class must be carefully selected. 

Future research might go in several directions. Trying to determine what is the 

optimal number of specimens that each class should have in order to build a classifier that 

outperforms human capability. The second direction may concern demining the best 

pretrained encoder network suitable to the problem, and possibly using some sophisticated 

method instead of a brute force. Finally, the third direction would be to examine how an 

ensemble of different models would perform on these datasets. 
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