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Abstract. Under influence of data transparency initiatives, a variety of institutions have 
published a significant number of datasets. In most cases, data publishers take advantage 
of open data portals (ODPs) for making their datasets publicly available. To improve the 
datasets' discoverability, open data portals (ODPs) group open datasets into categories 
using various criteria like publishers, institutions, formats, and descriptions. For these 
purposes, portals take advantage of metadata accompanying datasets. However, a part of 
metadata may be missing, or may be incomplete or redundant. Each of these situations 
makes it difficult for users to find appropriate datasets and obtain the desired information. 
As the number of available datasets grows, this problem becomes easy to notice. This 
paper is focused on the first step towards decreasing this problem by implementing 
knowledge structures to be used in situations where a part of datasets' metadata is 
missing. In particular, we focus on developing knowledge structures capable of 
suggesting the best match for the category where an uncategorized dataset should belong 
to. Our approach relies on dataset descriptions provided by users within dataset tags. We 
take advantage of a formal concept analysis to reveal the shared conceptualization 
originating from the tags' usage by developing a concept lattice per each category of open 
datasets. Since tags represent free text metadata entered by users, in this paper we will 
present a method of optimizing their usage through means of semantic similarity 
measures based on natural language processing mechanisms. Finally, we will 
demonstrate the advantage of our proposal by comparing concept lattices generated using 
formal the concept analysis before and after the optimization process. The main 
experimental research results will show that our approach is capable of reducing the 
number of nodes within a lattice more than 40%.  
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  1. INTRODUCTION 

In the past decade, there is a growing data transparency initiative which strives towards 

data openness of public and private institutions [1]. Open data initiative, as an idea to make 

public data available to anyone to use and republish, without restrictions from copyrights, 

patents or other controlling mechanisms [2], has influenced the governments’ data 

transparency worldwide [3]. As one of the results, a significant number of Open Data Portals 

(ODPs) has been created. These portals offer anyone an ability to exploit the data and generate 

added value out of the data [4]. Due to its scale and a variety of subjects, government data is 

particularly interesting to both research and development communities [5]. 

Government data covers diverse areas, like statistics, transportation, environment, permits, 

licenses, budget, geography, elections, and etc. The scale of available data published by 

different countries and Open Data Portal (ODP) instances is growing every year. For example, 

a research regarding various data quality dimensions and end-user preferences conducted in 

2018 by Neumaier, Umbrich and Polleres took into consideration 259 open data portals 

(ODPs) originating from 43 different countries, which all together hold more than 10TB of 

datasets [4]. Published data is organized into datasets which aggregate different data fields 

used to describe a particular dataset. These fields represent datasets’ metadata - descriptive 

pieces of information, obtainable via Application Programming Interface (API), presented in a 

structured format that eases usage and data discovery. Metadata is organized as key-value 

pairs (meta-keys and values), where the key represents the property label while the value 

holds a numerical or textual representation [4]. Different ODPs organize metadata differently 

but every ODP controls the metadata usage through schemas consisting of pre-defined fields 

for specific information. In most cases, schema elements vary [6], but there are some common 

elements, like: title, description, groups, publisher, tags, resources and etc. 

Majority of open data portals (ODPs) offer users an ability to further describe the 

content and structure of datasets by defining dataset tags. Tags present expressions that 

describe a specific open dataset. Each dataset’s metadata contains a meta-key labeled as 

“tags” and values associated with this key that represents a particular tag(s). Thus, tag 

values can also be considered as a means to categorize open datasets or describe them. 

Although tags represent free text metadata, their usage in some cases becomes the basis 

for datasets search and discovery. Furthermore, if tag usage can be used to distinguish 

categories of datasets, tag sets can be observed as folksonomies of different open data 

portals (ODPs). Although folksonomy existence introduces various opportunities, the tag 

value folksonomy will not explicitly state a conceptualization shared among users. To do 

so, a separate data structure should be created with a purpose of revealing shared 

conceptualization originating from tags' usage. The optimal development of this structure 

is the focus of our research. In this paper we will take advantage of Formal Concept 

Analysis (FCA) to reveal the shared conceptualization originating from the tags' usage by 

developing a concept lattice per each category of open datasets. 

2. RELATED WORK 

2.1. Formal Concept Analysis  

Formal Concept Analysis (FCA) is a mathematical method with a growing popularity 

across various fields of research and development. Although used in various fields, FCA 
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is often considered a clustering technique. In the epicenter of its definition, FCA holds 

the term “concept”: a unit of thought constituted of two parts, its extent and its intent.  

Formal Concept Analysis was introduced as a mathematical theory for the formalization 

of concepts. The following definitions constitute the foundation of FCA formal description: 

Definition 1 [14] A formal context is a triple K := (G, M, I) which consists of a set G 

of objects, a set M of attributes, and a binary relation I ⊆ G × M. (ɡ, m) ϵ I is read as 

“object g has attribute m”. 

Definition 2 [14] For A ⊆ G, let AI := {m ϵ M | ∀ ɡ ϵ A: (ɡ, m) ϵ I }, and dually, for B 

⊆ M, let BI := { ɡ ϵ G | ∀ m ϵ B: (ɡ, m) ϵ I }. 

If the following conditions are met: A ⊆ G, B ⊆ M, AI = B, BI = A, then a pair (A, B) 

is a formal context. Set A is named concept extent while set B is named concept intent. 

Definition 3 [14] The set S(C) of all concepts of a formal context C together with a 

partial order (A1, B1) ≤ (A2, B2) ↔ A1 ⊆ A2 (which is equivalent to B1 ⊇ B2) is a complete 

lattice of C. 

FCA derives concepts from incidence matrix, as shown in Figure 1, which uses the 

relationship between a particular set of objects and a particular set of attributes.  

 

Fig. 1 An example of formal context [25] 

The main output of FCA is a concept lattice. The concept lattice is a collection of formal 

concepts logically organized into a hierarchy of concepts interconnected using subconcept-

superconcept relations. Thus, the concept lattice reflects the generalization and specialization 

between formal concepts. In Figure 2 we can see a concept lattice generated for a formal 

context depicted in Figure 1. It is easy to notice that concept lattice reflects the generalization 

and specialization between formal concepts within a single formal context [16]. 

FCA has proven to be applicable in various domains and for various purposes. Over 

the last 20 years, literature reports extensive usage of FCA in knowledge discovery, 

software engineering and information retrieval. One of the best statements regarding the 
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FCA applicability is stated in [17]: “FCA enables the discovery and reasoning with concepts 

in data, discovery and reasoning with dependencies in data, and visualization of data, 

concepts, and dependencies”. 

 

Fig. 2 The concept lattice of the formal context in Figure 1 [16] 

2.2. Open dataset classification  

From the users' perspective, open dataset should be visible and easily discoverable. 

Metadata can have a crucial role in satisfying both demands. The more metakeys have 

corresponding values, the more the dataset visibility increases and the more frequently it 

appears in search results. 

To improve discoverability, OPDs commonly organize datasets into categories, which 

eases finding, discovery and combining data across different open data platforms. As a 

consequence, common use-case is that users will browse datasets from a certain category 

or perform the bulk download for the whole category and analyze the data. Depending on 

the ODP characteristics, categories may be static or dynamically determined based on the 

value of meta-key used to define dataset’s category. In case a more precise and narrower 

collection of search results is necessary, majority of open data platforms rely on the tag 

based navigation. Thus, tag values can also be considered as a mean to categorize open 

datasets or describe them. 

Although open data portals (ODPs) use both categories and tags to categorize datasets, 

their values originate from completely different sources - categories are mostly chosen from 

a controlled vocabulary while tags are entered at will (user defined). Since their values are 

predefined and controlled, categories enable the intuitive browsing of datasets [7]. The 

same assertion cannot be directly applied to tags - they express low consistency due to their 



 Generating Knowledge Structures from Open Datasets' Tags - an Approach based on Formal Concept Analysis  25 

origin. Nevertheless, tag values represent free text expression of the way users understand 

the available data already assigned to a particular category. Thus, their meaning is tightly 

coupled with dataset category. 

While browsing datasets, it can be easily noted that many of the available open data 

portals (ODPs) contain significant amount of datasets with missing values for meta-keys. 

Furthermore, this is the case with meta-keys describing the dataset’s category. Since 

dataset’s category plays the crucial role in data discovery and usage, datasets become 

difficult to use if these pieces of data are missing. A number of questions arises from 

such situation: How to position an uncategorized dataset, into an existing set of 

categories? If a categorization is to be performed, what data is most appropriate to be 

used for these purposes? Can it be done automatically or at least semi-automatically? 

Previous research reported various methods applicable to data categorization based on the 

relevant text attributes, text content, metadata analysis and metadata usage. Currently, 

machine-learning algorithms, including decision tree, nearest neighbor, Bayesian and neural 

networks are dominant when a text categorization should be performed [8]. Aside from 

previously mentioned approaches, dealing with categorization problems involves 

preprocessing (tokenization of a document), indexing (transformation into a vector model), 

feature selection (labeling important words or features in the document) and classification 

(determining a category using a-priori knowledge of already categorized data) [9]. Feature 

selection is particularly interesting since it influences the dimensionality of the feature space. 

If features are properly selected and reduced, there is a possibility to perform less computation 

and achieve a higher classification accuracy [10]. 

As for previous research using FCA, FCA-based approaches proved their potential as 

excellent classification methods. Prokasheva et al. present an excellent overview of simple 

classification methods based on FCA. According to [18], classification methods based on 

FCA are grouped into the following categories: hypothesis-based classification, concept 

lattice-based classification, classification based on Galois sub-hierarchies and cover-based 

classification. Definitions used for constructing concept-based hypotheses can be found in 

[19] and [20], while method examples can also be found in [21] and [22]. Various 

implementations have shown that a significant drawback of concept lattices is that the 

number of concepts may be exponential in the size of the relation. Thus, systems like 

CIBLe [23], CLNN&CLNB [24] and LEGAL [25] use a polynomial-size representation of 

the lattice while preserving the most relevant information. These systems build a Galois 

sub-hierarchy to reduce the exponential algorithmic complexity of generating a lattice. 

Another path already taken is the construction of concept cover - a part of lattice 

constructed using only pertinent concepts. IPR (Induction of Product Rules) [26] and the 

AdaBoost.M2 algorithm [27] benefit from using a local optimization of a measure function 

that defines pertinent concepts.  

As previously mentioned, implementations dealing with the concept lattice construction 

and representation suffer from the lattice magnitude, in terms of a number of generated 

concepts and relations. Many of these algorithms and systems focus on reducing a search-

space scale to achieve a higher efficiency. Research results we present in this paper make a 

step in the same direction - optimizing the formal context extent by optimizing the volume of 

relevant data. 
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3. METHODOLOGY 

To propose a solution to the problem of uncategorized datasets, we focus on determining 

similarity between datasets. Datasets' metadata can be a useful source for similarity matching 

between datasets [11]. If dataset categorization should conform to users expectations, we find 

tags meta-key to be particularly significant. Descriptive knowledge of dataset’s content and 

structure, as comprehended by a user, is contained within tags meta-key. Whether it holds 

simple or semantically rich terms, tags are the basis for datasets discovery [12]. The process of 

revealing the way tags meta-key is used can reveal the conceptualization shared among users. 

If conceptualization is determined, it becomes a powerful tool for categorization. For these 

reasons, we have decided to use tags and apply Formal Concept Analysis (FCA) on 

uncategorized datasets to suggest a match for the category. Further, we decided to apply 

semantic similarity measures based on natural language processing mechanisms with a 

purpose of reducing tag value space used for conceptualization determination. 

FCA has received a significant attention from research and development communities 

of various fields. This method can be perceived as a clustering technique [13] that builds 

upon the definition of the term “concept”: a unit of thought constituted of two parts, its 

extent and its intent [14]. Rudolf Wille introduced Formal Concept Analysis as a 

mathematical theory [14] for formalization of concepts. FCA provided us with the ability 

to extract a collection of formal concepts logically organized into a hierarchy of concepts 

(a concept lattice) starting from a set of objects and a set of attributes. Together, these 

two sets constitute a formal context. In our case, a set of object consists of datasets 

gathered from open data portals (ODPs), while a set of attributes contains a group of tags' 

values. The concept hierarchy generated starting from such formal context represents 

categories of datasets logically interconnected using generalization and specialization 

relationships according to tags usage. Our expectations are rather straightforward - users 

with similar interests are expected to use tags with similar meaning and this usage will in 

turn converge to a shared vocabulary of tags. By applying FCA to a shared vocabulary of 

tags, we have transformed it into shared tags category hierarchy. Generated hierarchy, 

represented via concept lattice, is capable of categorizing uncategorized datasets by 

examining their tags originating from datasets' metadata. 

Due to the nature of the tags [15] and the fact that tags used for describing a dataset 

can be assigned an arbitrary value, the number of distinct tag values used across ODPs 

can be very large. Being so, within this research special attention was devoted to the fact 

tag values express low consistency due to their origin. This characteristic affects both 

computational time needed for generating shared tags category hierarchy and its 

structure, in terms of the scale of generated concepts. It is our opinion that the number of 

distinct tag values can be reduced by determining the same or very similar tag value 

meanings. To do so, we apply semantic similarity measures based on natural language 

processing mechanisms. As a result, we reduce the complexity of the generated hierarchy, 

represented by concept lattice. As the same time, our proposal will retain all necessary 

information regarding the meaning of distinct tag values thus retaining categorization 

capabilities of the generated knowledge structure, e.g. concept lattice. 

Within this research we create relations between the tags and hierarchical order 

among them using Formal Concept Analysis on the combination of tags appearing in the 

datasets within the same category. Our approach gathers dataset metadata and per 

category formal contexts, thus generating concept lattices which contains the hierarchical 
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order of all tags appearing as a part of datasets for each category. Before FCA is performed, 

we reduce formal contexts using semantic similarity measures. The overall process is shown 

in Figure 3. In the current state of implementation, we are using a custom tool we previously 

developed for generating concept lattices. This tool implements the Next Closure algorithm 

and was developed using the Microsoft .NET framework.  

 

Fig. 3 Context reduction and lattice comparison 

Since the concept lattice scale is proportional to the number of distinct tag values used 

to generate the formal context, open dataset categorization optimization is possible if an 

analysis of tag values meaning is performed. For this purpose, our approach relies on 

determining the tag values semantic similarity. Since the tag value is not necessarily a 

single word, each tag value is considered to be a sentence. Therefore, our approach uses 

GloVe (Global Vectors for Word Representation) model [28], trained on Common Crawl 

data with 840 billion words, to determine the similarity between sentences e.g. between 

tag values. GloVe model is a global log-bilinear regression model that combines the 

advantages of the two major model groups: global matrix factorization, such as latent 

semantic analysis (LSA) [29] and local context window methods, such as the skip-gram 

model of Mikolov et al. [30]. The model we use contains 2.2 million words, each represented 

via 300-dimension vector. We have chosen this model since it contains a large number of 

words gathered from different contexts and we consider it appropriate for our research 

because tag values contain a small number of words. Each tag value is first divided into 

words, whereby each word is defined by a vector contained within previously described 

GloVe model. When comparing two tag values, we have used the cosine similarity between 

each two vector pair corresponding to words generated by dividing tags being compared. Such 

measure can be applied for any pair of words or even syntagmas in majority of cases. Tag 

similarity is defined as the largest similarity between any two vectors of words belonging to 

tags being compared. 
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Table 1 Input reduction – per category comparison  

Category 
Original Replaced  

DSN DCN DCNRPL PCT (%) 

agriculture 622 601 436 27.45 

arts_music_literature 18 80 76 5 

economics_and_industry 66101 2756 1973 28.41 

education_and_training 232 381 260 31.76 

form_descriptors 67864 967 825 14.68 

government_and_politics 64248 1973 1400 29.04 

health_and_safety 1235 1578 1234 21.8 

history_and_archaeology 98 155 136 12.26 

information_and_communications 442 651 504 22.58 

labour 602 604 404 33.11 

language_and_linguistics 38 109 87 20.18 

law 406 303 218 28.05 

military 39 134 120 10.45 

persons 2360 610 437 28.36 

processes 76 201 161 19.9 

science_and_technology 5699 1686 1312 22.18 

society_and_culture 1463 1513 1154 23.73 

transport 668 625 508 18.72 

DSN – number of datasets per category 

DCN – number of distinct tags per category before reduction 

DCNRPL – number of distinct tags per category after reduction 

PCT – reduction of distinct tags in percents 

Two tags are considered similar if the similarity value exceeds the pre-defined similarity 

threshold. In our case, the similarity threshold was set to 0.8. In this way, a group of similar 

tags is defined for each tag in the observed set of tags. The next step is a comparison of 

generated groups. The content of each group, in terms of tags belonging to it, is checked 

against the content of every other group. If an intersection of groups contains more than one 

tag, each tag contained within intersection becomes a replacement candidate. Replacement 

candidates are further replaced in the group they originate from using a tag whose group of 

tags is considered similar (intersection contains more than one tag) to a group of tags 

replacement candidate belongs to. Thus, the size of the formal context used to generate 

concept lattice is effectively reduced. On the basis of the reduced context, a reduced 

concept lattice is generated while retaining dataset classification capabilities.  

We have performed a comparison of the concept lattices generated before and after the 

reduction of the formal context is performed. A set of data used for reduction and 

comparison purposes was collected from the https://open.canada.ca/en open data portal 

(ODP), whereas the analysis was performed on a sample of tag values extracted from more 

than 80000 datasets. Overall results include per category comparison of inputs (distinct 

tags) and generated concept lattices, as shown in Tables 1 and 2, respectively. By analyzing 

the results, it can be determined that the approach we presented reduces complexity of both 

input and lattice structure. Also, reduction is not limited to categories containing large 

number of distinct tags, although reduction results for these dataset categories outperform 

the result generated for categories containing smaller number of distinct tags.  
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Table 2 Lattice reduction – per category comparison  

Category 
Original Replaced Reduction (%) 

NLVL NNO NLVL NNO NLVL NNO 

agriculture 10 435 8 347 20 20.23 

arts_music_literature 7 26 6 28 14.29 -7.69 

economics_and_industry 14 2557 9 1777 35.71 30.5 

education_and_training 7 200 7 129 0 35.5 

form_descriptors 11 1036 10 956 9.09 7.72 

government_and_politics 14 1484 10 1288 28.57 13.21 

health_and_safety 11 978 8 753 27.27 23.01 

history_and_archaeology 6 82 6 85 0 -3.66 

information_and_communications 9 396 9 331 0 16.41 

labour 13 435 8 249 38.46 42.76 

language_and_linguistics 6 49 6 50 0 -2.04 

law 9 216 7 177 22.22 18.06 

military 4 50 4 53 0 -6 

persons 15 739 13 455 13.33 38.43 

processes 8 88 7 86 12.5 2.27 

science_and_technology 10 1277 10 1025 0 19.73 

society_and_culture 15 1271 13 1107 13.33 12.9 

transport 10 313 9 298 10 4.79 

NLVL – number of levels in the concept lattice 

NNO – number of nodes in the concept lattice 

Concept lattice complexity reduction (reduced number of levels and nodes) is more 

noticeable in lattices with originally higher number of levels. In smaller lattices, the number of 

levels remained unchanged in some cases. At the same time, the number of nodes in the 

concept lattices was reduced in almost all categories. This was not the case in few very small 

lattices. The overall reduction of the number of nodes for category economics_and_industry is 

30%, for category persons 38% and goes up to 43% for category labour. The average 

reduction of the number of nodes is 14.6% for all categories. 

4. CONCLUSION AND OUTLOOK 

Governments around the world are adopting transparency and efficiency strategies. 

Publishing open datasets is a part of these strategies and results in a large amount of open 

datasets becoming publicly available. As the amount of open data grows, search and 

discovery capabilities become essential for end users. These capabilities often rely on 

metadata to offer users the ability to discover data and generate new knowledge out of it. 

For that reason, it is very important for an open dataset to be adequately described through 

metadata coupled with it and this process usually starts with defining open dataset category 

within a particular open data portal (ODP). 

In this paper, our aim was to start migrating research focus from metadata content to 

metadata meaning by analyzing data used to categorize open datasets. To do so, we have 

analyzed tag values used to describe the content and meaning of a particular dataset. 

Since tags represent free text metadata entered by users, we have focused on using the 
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meaning of tags to reduce the heterogeneity of tag values while retaining the meaning of 

tags for a particular open dataset category. Although presented approach can be improved 

in terms of semantic similarity measures used to reduce the number of distinct tag values, 

our approach shows promising result and effectively reduces computational time needed 

for developing an auxiliary structure used for categorizing open datasets. 

Regarding further improvements, it is also necessary to implement a mechanism to 

extend the existing concept lattice in terms of including new tag values. This would 

enhance created knowledge and discovery data structure with learning capabilities. During 

the analysis we presented in this paper, concept lattice creation proved to be long-running 

task - in some cases couple of weeks. The variable that influences time the most is the 

number of datasets, the number of tags and the number of different combinations of tags per 

category in a single open data portal (ODP). There are various proposals regarding 

algorithmically improved concept lattice creation, for example the Parallel Recursive 

Algorithm for FCA and the In-Close algorithm. It is our aim to use some of them instead of 

the Next Closure algorithm we are currently using for lattice development. Further, in cases 

a new tag value appears, we plan to develop a separate service for this situation. The new 

service would implement the ability to perform incremental lattice construction and remove 

a necessity to reconstruct the whole lattice for this case. Up to our knowledge, parts of 

existing algorithms, such as the FastAddExtent algorithm, can be used for these purposes. 
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