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Abstract. In real situations the presence of outliers is unavoidable and that is why the 

distribution of a disturbance is non-Gaussian. A synthesis of an algorithm of 

identification based on the Newton-Raphson method is considered for this case. The 

method requires that the loss function should be twice differentiable. Huber loss 

function, relevant for the treatment of outliers, has just the first derivative. In order to 

overcome the problem, the pseudo- Huber loss function is introduced. This function 

behaves similarly to the Huber loss function and has derivatives of an arbitrary order. 

In this paper, the pseudo- Huber loss function is used for the second derivative of 

functional in the Newton-Raphson procedure. The main contributions of the paper are: 

(i) Design of a new robust recursive algorithm based on the synergy of Huber and 

pseudo – Huber functions; (ii) The convergence analysis. 

Key words: Robust identification, Huber function, Pseudo – Huber function, 

convergence analysis  

1. INTRODUCTION 

Identification of a system is a very developed scientific field. There are numerous 

theoretical results [1-3]. One class of problems is dealing with robustness in the statistical 

sense including very low sensitivity to changes of the probability distribution of disturbance. 

For such class of problems the main tool is robust statistics [4]. The methodology is actual in 

various areas [5-7]. 
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Practical researches have shown that the outliers are present in a real disturbance 

[8,9]. That is why the distribution of a disturbance is non-Gaussian. This fact is reflected 

in selection of the criteria of identification [10], which has a direct impact on the algorithm of 

identification. 

The well known approach is based on the Huber loss function depending on the most 

unfavorable probability density of a disturbance. This function has only a derivative of 

the first order and the application of the Newton-Raphson method is not possible. In 

references [11] the problem is overcome by approximation of the relevant Fisher information. 

A smooth version of the Huber loss function is introduced in this paper (pseudo - Huber loss 

function) which has derivatives of an arbitrary order [12-14]. 

The paper proposes the Newton- Raphson algorithm in which the Huber loss function 

is used for the first derivative of functional, while for the second derivative of functional 

pseudo – Huber loss function is used. In the obtained algorithm, the gain matrix explicitly 

depends on the second derivative of the pseudo-Huber loss function. 

The convergence analysis with probability one, based on the martingale theory [15], was 

performed for the proposed algorithm. Convergence problems are directly related to the 

presence of the pseudo - Huber function in the matrix gain of an algorithm. Conditions of 

persistent excitation depend on the conditional mathematical expectation of the matrix gain 

trace. For the Gaussian distribution they degenerate to standard conditions [16]. Also, the 

generalized strictly positive conditions are introduced through passive operators. 

The main contributions of the paper are: 

(i) The new robust recursive identification algorithm is proposed based on the Newton – 

Raphson algorithm, Huber`s loss function and pseudo - Huber loss function. 

(ii) The convergence analysis of algorithm 

2. ARMAX MODEL 

The ARMAX model has a form  

 
1 1 1( ) ( ) ( ) ( ) ( ) ( )A q y k B q u k C q e k− − −= +  (1) 

where u(k)  R1, y(k)  R1 and e(k)  R1 are input, output and stochastic disturbance 

respectively. Polynomials A(q−1), B(q−1) and C(q−1) are polynomials in the shift operator 

q−1y(k) = y(k − 1)  with 
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A common assumption is that the probability distribution of the stochastic disturbance 

e(k) is known exactly. In what follows we will introduce the more realistic assumption 

about a class of distributions to which the disturbance belongs. The form of a class of 

distributions is  

 
* *{ : (1 ) ,   is symmetric}DP P P N G G  = = − +  (3) 
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where *  [0,1) is the contamination degree, G is an arbitrary symmetric distribution and 

ND is a normal distribution  
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=    (4) 

The contamination model (3) for probability densities has a form  

 * 2 *{ : (1 ) ( )(0, ) ( )}N DP p p p e g e   = = − +  (5) 

where 

  
2

2

1
( ) exp

22 NN

e
p e
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 
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  (6) 

and g(e) is a symmetric function. 

Vector form of model (1) is  

  0( ) ( ) ( )Ty k k e k= +    (7) 

where  

 1 1 1[ ,..., , ,..., , ,... ]T

n m ra a b b c c=  

 

 0 ( ) ( 1),.., ( ), ( 1),.., ( ),e( 1),..,e( )T k y k y k n u k u k m k k r= − − − − − − − −  

In the equation (7)  0 (k) depends from the immeasurable quantity e(i) (i = k − 1, k − 2,…, 

k − r). The standard procedure in identification is to replace e(k) with an estimated prediction 

error. We have 

   ( ) ( 1),.., ( ), ( 1),.., ( ), ( 1),.., ( )T k y k y k n u k u k m k k r = − − − − − − − −   (8) 

where 

  ˆ( ) ( ) ( ) ( 1)Tk y k k k = − −    (9) 

In relation (9) ˆ( )k is the estimate of the parameter . 

3. NEWTON–RAPHSON ALGORITHM 

Applying the Huber methodology [4], the least favourable probability density for a 

class of probability densities (5), is 
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  (10) 

where the relationship between the contamination degree  and parameter k of the Huber 

function is given with the next relation 
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The last equation depends on the variables  and k. In practice, the contamination 

degree is unknown. Earlier intensive simulations [17] show that good performance of 

robust algorithms is provided for k  [2, 4].  

The Huber loss function is 

 
 

*( ) log ( )p e e  = − =   (12) 

or explicitly 
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Derivative of ( )   is a Huber function 
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Usually in practice we take 
2 1.N =  

As one can see from relation (14) the Huber function is not differentiable in the two 

points ((k) and (−k)) . Owing to that fact the Huber loss function (13) is only first – 

order differentiable and it follows that is not applicable to second order method (for 

example Newton – Raphson algorithm, which is considered in this paper). Because we 

consider a smooth version of the Huber`s loss functions, the pseudo - Huber loss function 

which has derivatives of all degrees. [12-14]. 

In our case pseudo - Huber loss function has a form 
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The functions ( )   and ( )p  are close [13]. 

The derivatives of the loss function ( )p   (first and second) are 
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The derivatives of ( )p   (that is pseudo - Huber function) and ( )p   are bounded 

and Lipschitz continuous [13]. 

Let us introduce next identification criteria  

 ( ) { ( ( ))}J E k=    (18) 

 ( ) { ( ( ))}p

pJ E k=    (19) 

The corresponding empirical functionals are 
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In this paper we consider the following form of the modified Newton – Raphson algorithm 

 2 1 2 1ˆ ˆ( ) ( 1) [ ( )] [ ( )] ( 1) [ ( )] [ ( )]p p

k k k kk k J J k k J k J   

− −= − −   = − −           (22) 

As in reference [11] we have  

 ˆ( ( 1)) ( ( )) ( )kk J k k k   − = −    (23) 
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Let us introduce  
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Applying the matrix inversion lemma from relations (22) – (25) we have recursive 

identification algorithm 

 ˆ ˆ( ) ( 1) ( ) ( ) ( ( ))k k k k k = − +  P   (26) 
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with corresponding initial conditions. 

Remark 1. Using approximation 

 ( ( )) ( ( ))a pk k     
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It is possible to get the algorithms as in [10] and [17]. This approximation has a small 

influence on the behavior of gain of recursive algorithm.  

In what follows we study the convergence of algorithms (26) – (27). 
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4. CONVERGENCE ANALYSIS 

The convergence property of the algorithm (26)-(27) will be investigated using the 

martingale theory [15]. Throughout the following text we shall assume that {e(k)} is a 

martingale difference sequence with respect to an increasing sequence of  - fields 

{Fk : k  Z+} defined on the underlying probability space (, F, P). We shell require the 

following conditions to hold. 

A) Hypotheses for stochastic disturbance 

(A1) {e(k)} is a sequence of independent and identically distributed random variables 

with symmetric distribution 

(A2) All zeroes of the polynomial C(q−1)
 
are outside the unit circle 

B) Hypotheses for the nonlinear function  () 

(B1) The function  () is odd and continuous everywhere 

(B2) The function  () is uniformly bounded 

C) Hypotheses for the pseudo-Huber function 
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D) Hypotheses for the conditional mathematical exception for trace of matrix gain P(k)  
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E) Hypotheses for generalized strictly positive real conditions 

(E1) There exists the strictly passive operator H such that  
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F) Hypotheses about persistent excitation condition 

(F1) There exists a constant 0c   such that 
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The presented conditions (A-F) cover a large class of probability distributions 

(different choice of g(e) function). A special case is the Gaussian distribution. 
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Remark 2. The persistent excitation (condition F1) is 
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Now condition (F1) has a form 
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and that is standard condition for linear algorithms [16]. 

Remark 3. The condition (E1) is based on the theory of passive operators [19]. 

Now we prove the following lemma. 

Lemma: Consider the model (7) – (9) and algorithm (26) – (27) subject to the assumption 

(C1), (C2) and (D1). Then 
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Proof: Let us define the matrix  
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where  denotes the determinant. 

Let us notice 
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For the prediction error is 
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Using relation (31) and condition (D1) and (C2) we have 
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From assumption (D1) it follows that  
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From relation (36) it follows that 
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For matrix gain and sequence ( )r k  is valid 
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From (38) and (39) it follows  
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In the relation (42) two facts are used 
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The last equation follows from relation (35). From relation (40) and (42) it follows the 

statement of Lemma. ▪  

Now we shall formulate the main result. The proof of the theorem is similar to the 

proof in the reference [18], but is given for completeness. 

Theorem: Let us suppose that for model (7) – (9) and algorithm (26) – (27) the 

assumptions of the Lemma are fulfilled and assume that the following hypotheses are 

satisfied: (A1) – (A2), (B1) – (B2), (E1) and (F1). Then  
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Proof: Let us introduce the stochastic Lyapunov`s function 
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We now define next function (using relation (32)) and according with assumptions 
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−

    − − − 
 −  −   

    

 −
−  − + 

  

   

   
 

P
 (51) 

From (E1) it follows that  
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  (52) 

Let us define a quantity 

 
( ) ( )

( ) ( ) ,  ( )
log ( ( )) log ( ( ))c a c a

p p

S k V k
T k R k R k

k r k k r k 

= + =   (53) 

From (51 – 53) it follows that 

 1 1

( ) ( ) ( )
{ ( ) } ( 1)

log ( ( ))

T

k c a

p

k k k
E T k F T k k

k r k

−  − +
 P

  (54) 

From relation (25), Lemma and martingale convergence theorem we have 

 lim ( ) *
k

T k T
→

=   (55) 

From the last relation one obtains  

 lim ( ) *,  . .1
k

R k R w p
→

=   (56) 

Further we have  

 

2 2
11

min

1
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{ ( ) } ( ) ( ){ ( ) ( ) ( )}
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log ( ( )) log ( ( )) log ( ( ))
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k

  





−−

−

=  =
   PP

P

  (57) 

From assumption (F1) and relation (56), (57) follows the proof of theorem. ▪ 

5. SIMULATION STUDY 

We will consider the next ARMAX model 

 
1 1 1( ) ( ) ( ) ( ) ( ) ( )A q y k B q u k C q e k− − −= +    

 
1 1 2 3( ) 1 0.85 0.6 0.7A q q q q− − − −= − + −    

 
1 1 2( ) 0.8 0.5B q q q− − −= −  

 
1 1( ) 1 0.4C q q− −= −  

It is supposed that the stochastic disturbance has a non-Gaussian distribution 

 
* 2 * 2

1 2(1 ) (0, ) (0, )e N N   − +    

where 
2(0, )N  is a Gaussian distribution with mean m and variance  2. It is supposed that 

 
2 2

1 21  ,  100 = =  
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Fig. 1 Comparison of RELS and ELS for  * = 0.1 

 

Fig. 2 Comparison of RELS and ELS for  * = 0.2 

The form of the estimation error is 

 
2

ln ( )kE k = − . 

We will consider the following types of errors 

ELS (Extended least squares) - for standard linear algorithms ( ( ) )x x =  

RELS (Robust extended least squares) – for robust algorithms (26) – (27) 

It is considered to have the following degrees of contamination: * = 0.1; 0.2. The Huber 

parameter is k = 3. 

From above figures it is possible to conclude that the algorithm proposed in the paper 

is superior in comparison with ELS (extended least squares). 
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6. CONCLUSION 

Paper considers the Newton–Raphson algorithm for the case when observations have 

outliers. The method requests that the loss function, relevant for criterion identification, is 

second order differentiable. The Huber loss function has only the first derivative. The 

pseudo - Huber`s loss function has derivatives of all degrees and behaves similarly as the 

Huber loss function. The recursive algorithm is based on the synergy of both functions. The 

convergence analysis is performed. Further investigations will be related to identification of 

nonlinear and multivariable systems. 
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