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Abstract. The paper presents modeling of TM plane coupling to horizontal thin-wire 

conductor above homogeneous lossy soil. The main purpose of this work is to compare 

results of the current distribution obtained by using two approximate approaches based 

on: complex image theory and transmission line theory with respect to a rigorous 

electromagnetic approach. A detailed parametric analysis clearly illustrates the 

validity domain and possible limitations of approximate models in EMC studies.  
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1. INTRODUCTION 

The electromagnetic field coupling to overhead wires has been analyzed in many 

electromagnetic compatibility (EMC) studies. Different strategies for modeling have been 

developed, ranging from transmission line theory to an exact approach based on 

electromagnetic theory [1-3]. In this paper the authors compare two approaches of 

modeling an electric field coupling to overhead wires. The first approach is based on 

transmission line (TL) theory by using three formulations for per unit length impedance 

based on [9, 10]: 1) Bridges's integral formulation; 2) Sunde's integral formulation; and 

3) Sunde's approximate logarithmic Formulation. The complex image model is based on 

a complex image approximation of the Green's functions that arises in the 

electromagnetic model. The verification is done by comparison with the results obtained 

by electromagnetic (EM) model which is based on Method of Moments (MoM) solution 
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of the exact Mixed Potential Integral Equation (MPIE) for the electric field. The main 

purpose of this work is to analyze the domain of applicability of the derived approximate 

models for the use in EMC studies.   

2. MATHEMATICAL MODELS 

2.1. Physical model 

We consider x–directed horizontal thin-wire conductor of radius a and length L 

located at height h above lossy soil, as shown in Fig. 1. The air (medium 0) is 

characterized by permeability μ0, and permittivity ε0. The homogeneous lossy soil 

(medium 1) is characterized by permeability μ0, permittivity ε1=εrε0 and conductivity 1. 

The wire is illuminated by a uniform plane wave of normal incidence and 
j te 

 time 

dependency with electric field vector defined by 0

0
ˆ jk zi

xi E eE .  

 

Fig. 1 Horizontal wire above lossy soil illuminated by a plane wave of normal incidence 

2.2. Electromagnetic model 

The electromagnetic model (EM) [4] is used as a referent model. It is based on a full-

wave theory, more particularly, on the integral formulation of the electric field due to 

filaments of current and charge induced along the axis of the conductor, which is solved 

by using Galerkin formulation of method of moments with roof-top bases and test 

functions along overlapping wire segments of length ln. The boundary conditions 

regarding the tangential component of the electric field at the wire surface are satisfied 

approximately in an average (weighted) way.  

The current distribution is obtained by solving the following matrix equation [I] = 

[Z]
1

[U], where [Z] is a generalized impedance matrix, and [U] is excitation matrix. Fig. 

2 shows simplified approximation of the current with roof-top basis functions and the 

excitation matrix model [U]. The elements of matrix [U] are determined by 
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n

n n

l

U Edl  ;   
i rE E E  , (1) 

where E is the total electric field, sum of the incident and reflected field, tangential to the 

wire-conductor. 

 

Fig. 2 Modeling of the excitation in the mathematical model 

The elements of matrix [Z] are defined by  
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where 
xx

AG  is x–component of the dyadic Green's function for the magnetic vector 

potential, and GV is scalar potential Green's function for the given problem [5, 6]: 
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The integrals in (3) are of Sommerfeld type where J0() is zero-order Bessel 

function of the first kind. The solution of Sommerfeld integrals is obtained by direct 

numerical integration similarly to the approach in [3]. 

The term Gdir in (3) is so called direct term that represents a spherical wave radiated 

from horizontal electric dipole (HED) located at (0, 0, z') in unbounded free space (air) 

with respect to the observation point in (x, y, z), where  is a radial distance between the 

source HED and the observation point 
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In (3) the Fresnel reflection coefficients are 
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This model is assumed with at least approximations that arise due numerical 

calculation procedures for solving Sommerfeld integrals that arise in the rigorous 

formulation (3). 

2.3. Complex image model 

The complex image model (Cimg) is based on quasi-static approximation u0   and 

Wait-Spies [7] and Bannister's [8], where d = 2[ j0 (1 + j1)]
1/2

  is complex depth. 

By this, we obtain the following approximation 
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This leads to the following approximate expressions that are easily solved in a closed 

form 
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The term GCimg in 
xx

AG corresponds to the field of the  so called complex image of the 

HED located at complex depth (0, 0, (z' + d )) [7]. In GV the term Gimg represents the 

spherical field of the image of the source HED at (0, 0, z'). 

2.4. Transmission line model 

The transmission line (TL) equations for a horizontal thin-wire conductor above lossy 

soil excited by electric field plane wave of normal incidence can be derived from the 

Maxwell's equations and expressed in terms of voltage and current induced along the 

conductor [2] 
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where per unit length impedance Z and admittance Y are defined by: 
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 Bridges's integral formulation 
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 Sunde's integral formulation 
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 Sunde's integral formulation 
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The solution for the current distribution is obtained by 
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where 
1

1 2
0Z ZY    

  is the characteristic impedance, and  
1

2
1 1ZY jk  .  

3. NUMERICAL RESULTS 

To examine the domain of applicability of the presented approximate models we have 

compared the current induced along a horizontal conductor above lossy soil excited by a 

plane wave of normal incidence. The results obtained by using the EM model are used as 

reference. 

The studied cases are: L = 20-m and L = 200-m horizontal conductors located at 

height h: 0.1 m; 0.5 m, 1 m, and 3 m above homogeneous lossy soil with r = 10. The soil 

conductivity 1  is: (low) 0.001 S/m (medium) 0.01 S/m; and (high) 0.1 S/m. The 

excitation is TM plane wave of normal incidence E
i
 = 1 V/m in frequency range from 

0.01 to 10 MHz.  
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The accuracy of the approximate models with respect to EM model is measured by 

the rms current distribution error [11] 
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where IEMi and Iapproxi are phasors of the current samples along the conductor computed by 

EM model and by using both TL and the Cimg approximate models. N is number of 

samples (basis functions). 

3.1. 20-m horizontal conductor 

Fig. 3 shows variations of the current magnitude at the centre of a 20-m wire- conductor at 

heights h: 0.1 m, 0.5 m, 1 m and 3 m above homogeneous soil (1 = 0.01S/m) calculated by 

EM model. As may be observed, the maximum of the current magnitude at the resonant 

frequency increases when the wire height h decreases.  

 

Fig. 3 Magnitude of the current in the centre of a 20-m wire at various height h above 

lossy soil (1=0.01S/m) 

In Fig-s. 4, 5, 6 and 7  the corresponding rms error (10) may be observed. The results 

clearly show that the applicability of the approximate models (TL and Cimg) is very 

sensitive for frequencies around the resonant when maximal rms errors are obtained.  

As may be observed, all TL models introduce rms error that varies from 20% to 

>100% at the resonant frequency. At low frequencies rms error varies from 2% (when 

h = 0.1 m) to 10% (when h = 3 m).  
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Fig. 4 rms error of the current along a 20-m wire at 0.1 m above lossy soil (1=0.01S/m) 

 

Fig. 5 rms error of the current along a 20-m wire at 0.5 m above lossy soil (1=0.01S/m) 

The Cimg model introduces rms error which is in range (10 - 15)% at the resonant 

frequency. For other frequencies the rms error is less than 2%. It may be observed that the 

height h has no significant influence on the accuracy of the Cimg model. 
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Fig. 6 rms error of the current along a 20-m wire at 1 m above lossy soil (1=0.01S/m) 

 

Fig. 7 rms error of the current along a 20-m wire at 3 m above lossy soil (1=0.01S/m) 

Next, in Fig-s. 8 and 9 it is shown that the rms error calculated in the case when the 

20-m conductor is at height h = 3 m above low conductive soil (1 = 0.001S/m) and high 

conductive soil (1 = 0.1S/m). 
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Fig. 8 rms error of the current along a 20-m wire at height 3 m above soil (1=0.001S/m) 

 

Fig. 9 rms error of the current along a 20-m wire at height 3 m above soil (1=0.1S/m) 
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As may be observed, the accuracy of all models is dependent on the soil conductivity. 

The rms error due to Cimg model is practically below 1% in all frequency ranges when 

the soil is highly conductive. However, when the soil is low conductive, the rms error 

increases (around 40%). TL models also show better accuracy when the conductivity is 

high for frequencies out of resonances. Again, for the resonant frequency the peak of the 

rms error increases (200% when 1 = 0.1S/m) 

3.2. 200-m horizontal conductor 

Similarly as previous,  Fig. 10  shows the changes of the current magnitude at the 

centre of a 200-m wire at heights h from 0.1 m to 3 m above lossy soil (1=0.01S/m) with 

respect to frequency.    

 

Fig. 10 Magnitude of the current in the centre of a 200-m wire at various height h above 

lossy soil (1=0.01S/m) 

The corresponding rms error is shown in Fig-s. 11, 12, 13 and 14. The results confirm 

the previous conclusions that the accuracy of approximate models is strongly dependent 

on resonant frequencies when maximal rms error occurs. All TL models show much 

better accuracy when the conductor is close to the soil surface, whereas Cimg models 

show almost no dependence with respect to  the wire height h. When the wire is long, the 

peaks of the rms error are within 15%. 
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Fig. 11 rms error of the current along a 200-m wire at 0.1 m above lossy soil (1=0.01S/m) 

 

Fig. 12 rms error of the current along a 200-m wire at 0.5 m above lossy soil (1=0.01S/m) 
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Fig. 13 rms error of the current along a 200-m wire at 1 m above lossy soil (1=0.01S/m) 

 

Fig. 14 rms error of the current along a 200-m wire at 3 m above lossy soil (1=0.01S/m) 

The influence of the soil conductivity on the accuracy of TL and Cimg models in case 

of a long wire is shown in Fig-s. 15 and 16. As may be observed in case of high 

conductive soil (Fig. 16) the calculation error of Cimg model is within 2% for all studied 
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frequencies.  The peaks of rms error due to Cimg model decrease when increasing the soil 

conductivity. Contrary, the peaks of rms error due to TL models increase when decreasing 

the soil conductivity.  

 

Fig. 15 rms error of the current along a 200-m wire at height 3 m above soil (1=0.001S/m) 

 

Fig. 16 rms error of the current along a 200-m wire at height 3 m above soil (1=0.1S/m)   



V. ARNAUTOVSKI-TOSEVA, L. GRCEV 88 

4. CONCLUSION 

The EM modeling of high frequency behavior of wire conductors in the presence of 

lossy soil is considered as numerically most precise. However, in the EMC studies in 

practice, often most simplified models are needed. In this paper the authors analyze the 

accuracy of two approximate approaches: Cimg (complex image) model and three varia-

tions of TL (transmission line) model. The results of the rms current distribution error 

may be summarized in: 

 The accuracy of Cimg and TL models show strong dependence on the resonant 

frequencies. 

 The Cimg model shows very good agreement with the reference EM model rms 

error < 10-15% at resonant frequencies), except when the soil is low conductive 

(1=0.001S/m). The peaks of the rms error decreases when increasing the soil 

conductivity.  

The TL models show good agreement for medium to highly conductive soil, and 

when the conductor is close to the soil surface. Otherwise, the rms error at  resonant fre-

quencies might be very high. The peaks of the rms error increase when increasing the soil 

conductivity. 
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