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Abstract. This paper looks at some of the most important aspects related to sensory 

characteristics and examples of applications of color characteristics to define the quality 

of food products. The purpose of the study is exploring the possibilities of combining data 

from different sensors in order to increase the accuracy of classification of food products. 

For the assessment of quality there is used probabilistic neural networks. The procedure 

has been successfully tested to increase the accuracy in data experiments for quality 

classification citrus juices. The results show the potential of the proposed type of 

classifiers to be used as a rapid, objective and non-destructive tool for quality assessment 

on real recognition systems in the near future. 
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1. INTRODUCTION 

Quality control is an important aspect of food production and processing from the 

point of view of providing foods of acceptable nutritional value, and for providing safety 

of products. Several characteristics such as size, shape, density, maturity, moisture content, 

oil content, flavor, firmness, tenderness, color, defects, blemishes, etc., are routinely used in 

the quality control of agricultural and biological food products. Most analytical techniques 

used in quality control required isolation of the food component. The original properties of 

the product are, therefore, destroyed during sample preparation and analysis. Oftentimes, 

such analyses are expensive, time consuming, and require sophisticated instrumentation, 

and hence are not suited for "on-line" quality control of food products. Recent progress in 

the development of instrumentation utilizing of food products has provided several non-

destructive techniques for quality evaluation.  Some of the nondestructive methods, which 
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employ optical, vibration, electrical, nuclear magnetic resonant and gas analysis techniques, 

have potential for commercial application [1,3]. 

The paper gives an overview of the main sensory characteristics defining the quality of 

food, as basic attention is paid to the determination of color characteristics. First attempts 

were made to unify the color and spectral features for classification purposes. 

2. SENSORY CHARACTERISTICS 

Determining how food products affect consumer‟s senses is one of the most important 

goals of the food industry. It also is a primary concern for nutritionists and dietitians. 

Because our five senses act as the gatekeeper of our bodies, the benefits of healthy food 

will be reaped only if our senses accept it. Therefore, consumer reaction, as perceived by 

the five senses, is considered a vital measure of food development. 

People accept food on the basis of certain characteristics that they define and perceive 

with their senses. These attributes are described in terms of sensations and are sometimes 

referred to as qualitative or sensory qualities. They include perceptions of appearance factors 

such as color, size, shape, and physical aspects; kinesthetic factors such as texture, viscosity, 

consistency, finger feel, and mouth feel; and flavor factors or sensations combining odor and 

taste. Table 1 shows the some essential indicators of food products [1]. 

Table 1 Components of qualities 

External Qualities 

Size (weight, volume, 

dimension) 

Shape (diameter/depth ratio) 

Color (uniformity, intensity) 

Defect (bruise, stab, spot) 

Internal 

Qualities 

Flavor 

Texture 

Nutrition 

Defect 

Sweetness, Sourness, 

Astringency, Aroma 

Firmness, Crispness, Juiciness 

Carbohydrates, Proteins, 

Vitamins, Functional property 

Internal cavity, Water core, 

Frost damage, Rotten 

Since its emergence in the 1940s, however, sensory evaluation has developed as an 

exciting, dynamic, constantly evolving discipline that is now recognized as a scientific 

field in its own right. The sensory professional is routinely confronted with problems 

which call upon an extensive skill set drawn from a range of disciplines, e.g. biological 

sciences, psychology, experimental design and statistics and will often be required to 

work with other specialists from these areas. Additional challenges are presented by 

working with a human „measuring instrument‟ that is highly variable [7, 14]. 

Sensory evaluation can be divided into two categories of testing: objective and 

subjective. In objective testing, sensory attributes of a product are evaluated by a selected 

or trained panel. In subjective testing, the reactions of consumers to the sensory properties 

of products are measured. The power of sensory evaluation is realized when these two 

elements are combined to reveal insights into the way in which sensory properties drive 
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consumer acceptance and emotional benefits. Linking sensory properties to physical, 

chemical, formulation and/or process variables then enables the product to be designed to 

deliver optimum or appropriate consumer benefits [15]. 

Sensory evaluation is a science that measures, analyses and interprets responses of 

people to products as perceived by the senses. For decades, sensory scientists have 

researched and developed methods to capture reactions of people to various kinds of 

stimuli and better understand the perceptual process, while others have used sensory 

information to identify successful consumer products [14]. 

The measurement of sensory properties and determination of the importance of these 

properties to consumer product acceptance represent major accomplishments in sensory 

evaluation. These achievements have been possible as a direct result of advances in 

sensory evaluation, in the application of contemporary knowledge about the measurement 

of human behavior, and in a more systematic and professional approach to testing. 

Methods based on electromagnetic radiation correspond to the highest level of modern 

requirements for objective determination of quality. Fig. 1 presents some indication of the 

entire electromagnetic spectrum and region thereof visible to humans (VIS) range of 380 

nm to 780 nm (26315.7 cm
-1

 and 12820.5 cm
-1

) in which one sees the colors of the 

rainbow violet to red. The rest of the spectrum is invisible. 

 

Fig. 1 The electromagnetic spectrum 

3. COLOR CHARACTERICTICS 

The importance of color of agricultural commodities and processed foods cannot be 

overstressed. An important problem is discoloration or the fading of colors of various raw 

and processed fruits and vegetables. In some cases, color changes are accompanied by 

undesirable changes in texture, taste, or odor. Overage cheese, beer, meat, and fish all 

develop off-color, which the consumer recognizes as being associated with poor flavor 

quality. The maturity of many fruits and vegetables is closely associated with color 

development or changes in color. In other cases, a color change may not be actually 

detrimental, but nevertheless reduces consumer acceptance. Consumers expect certain 



4 T.P. TITOVA, V.G. NACHEV, C.I. DAMYANOV 

foods to have certain colors, and deviation from those colors may cause sales resistance. 

Many of these prejudices are altogether irrational. 

Obviously, far too little is known about the significance of color perception in food 

acceptance. Observers do associate certain colors with acceptance, indifference, or rejection. 

Colored lights are used to mask color differences and reduce some influence of color on 

sensory evaluation, but the psychological effect of colored lights has not been adequately 

measured. These effects may be direct, on the appeal of the food as a whole, or indirect, in 

influencing odor, taste, or texture thresholds. Various interrelationships suggest themselves. 

The human eye has a remarkably fine qualitative discrimination for color, but is not a 

quantitative instrument. Consequently, precise color measurement requires modern 

instruments. This need is particularly felt where food products are blended to a certain 

standard from raw materials that differ somewhat in their color properties. The effect of 

climate and time of harvesting have a marked influence on the color of the raw material 

from which many processed foods are made. 

 In food related research projects, color measurement is of special significance because 

often we need to quantify color changes, which will bear significant correlations with 

process parameters or sensory parameters. 

As the color varies with the amount or intensity of mixture of primary colors which form 

innumerable color shades, color measurement is somewhat complex. With the increasing 

need of reliable color measurement or color quantification methods, it has remained the 

focus of several research works throughout the world [2, 11, 16]. 

Color models. We will look at three of the most commonly used color models. 

Lab model. The CIE (International Commission on Illumination) is the international 

authority on light, illumination, color, and color spaces. It recommended color measurement 

in terms of values. The CIE system of color measurement forms the basis of any color 

measurement system. The first color space that is mathematically defined was by the CIE in 

1931. The color space is perceptually uniform and the most complete model defined by the 

CIE in 1976 to serve as a device-independent, absolute model to be used as a reference. It is 

based on  XYZ color space as an attempt to linearize the perceptibility of color differences, 

using the color difference matrix described by the Macadam ellipse. The non-linear relations 

are intended to mimic the logarithmic response of the human eye. Here, is the luminance 

or lightness component, which ranges from 0 to 100, and parameters (from green to red) 

and (from blue to yellow) are the two chromatic components, which range from –120 to 120. 

Before the advancements in the computer field, this was a difficult task, but with leaps and 

bounds of computer advancements, suddenly there seems to be abundant ways of 

determining surface color properties. The values are often used in food research studies [2, 

10, 13]. 

RGB model. RGB model is an additive color model that uses transmitted light to 

display colors in which red, green, and blue light are added together in various ways to 

reproduce a broad array of colors. The name of the model comes from the initials of the 

three additive primary colors, red (R), green (G) and blue (B). Various proportions and 

intensities of these three primary colors are used to create cyan, magenta, yellow, black 

and white. The model relates closely to the way human eye perceives color on the retina. 

The model is device dependent, since its range of colors varies with the display device. 
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When one of the components has the strongest intensity, the color is a hue near this 

primary color (reddish, greenish, or bluish), and when two components have the same 

strongest intensity, then the color is a hue of a secondary color (a shade of cyan, magenta 

or yellow). A secondary color is formed by the sum of two primary colors of equal 

intensity: cyan is green+blue, magenta is red+blue, and yellow is red+green. The color is 

expressed as an RGB triplet, each component of which can vary from zero to a defined 

maximum value [7, 15]. 

CMYK model. CMYK model is a subtractive model based on complementary colors (Cyan, 

Magenta, Yellow, and Black) with respect to additive color in RGB color model. In additive 

color models such as RGB, white is the “additive” combination of all primary colored lights, 

while black is the absence of light. In the CMYK model, it is just the opposite: white is the 

natural color of the paper or other background, while black results from a full combination of 

colored inks. Since RGB and CMYK spaces are both device-dependent spaces, there is no 

simple or general conversion formula that converts between them. 

It is important to reiterate that the RGB and CMYK models are device dependent. The 

L
*
a

*
b

*
 model has the largest gamut encompassing all colors in the RGB and CMYK 

gamut. While those color models are useful, their limitations should also be observed. For 

example, the spectrum of colors seen by the human eye is wider than the gamut (the range 

of colors that a color system can display or print) available in any color model [2, 10, 13]. 

4. MATERIALS AND METHODS 

The purpose of the experiment is to unite the spectrophotometric data with color 

features to increase the accuracy of quality classification natural citrus juices.  

Spectral properties of each product generate individual (specific and often unique) 

profile. This profile can potentially be used as a fingerprint to identify a particular type of 

quality (presence of GMOs, forgery, maturity, freshness, etc.). In this study methodology 

as shown in Fig. 2 was used. 

The specific problem relates the determination of three classes of juice: fruit juice 

(consisting of 100% product); fruit nectar (no less than 25-50%) and fruit drinks (even 

lower content of fruit juice). Determined for the main quality parameters of citrus juices 

are collected spectral reflectance characteristics in the range of 144 samples 400-1000nm 

natural citrus juices of different brands available on the Bulgarian market. Reflectance 

spectra of the three types of product are collected using a standard cell in the black 

background.    

The instrumental analysis for all samples include evaluation of five colors to 

coordinate system CIEL
*
, a

*
 and b

*
. Determining the color characteristics (L

*
, a

*
, b

*
, 

Cab
*
, hab) is measured in mode total transmission. In this case, there was used USB4000 

fiber optic spectrometer (Ocean Optics, USA). 

 



6 T.P. TITOVA, V.G. NACHEV, C.I. DAMYANOV 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 A plot the general scheme illustrating the formation of the applied methodology 

 

Probabilistic neural networks can be used for classification problems. Probabilistic 

neural classifiers (PNC) are a kind of radial basis network suitable for classification. 

These classifiers are characterized by their relatedness to Bayes strategy known from the 

probabilistic and statistical theory and aimed at reducing the expected risk involved in 

decision making and minimizing classification errors. The architecture for this system is 

shown below (Figure 3). A PNC is an implementation of a statistical algorithm in kernel 

discriminate analysis in which the operations are organized into a multilayered 

feedforward network with four layers: Input layer, Probabilistic layer, Summation layer 

and Output layer [4, 6]. 

In the first two layers, distances are computed from the input vector to the training 

input vectors and a vector is produced whose elements are converted by radial basis 

functions in the probability density. 

According to the Bayes decision rule, if the probability density function (pdf) of each 

of the populations is known, then an unknown sample U, belongs to class i, if: 

 

  1. Objects   of   study   
(citrus   juices)   
  

10. Classification          
(Diagnosis)   

2. Sample  preparation   

3.  Measurement and  raw sensor data   8.   Feature extraction       

(PCA, Wavets, etc.)   data   

4 .  D ata aquisition and pre - processing   7.   Define data groupings     
( Classes   of   recognition)   

5. Visualization   6.  Normalizing and  digitizing   

9.  Discriminant analysis    
(Neural classifiers)   

  

VIS spectrum   
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 ( ) ( )i jf U f U ,all ij  ,( kf is the pdf  for class k ).         (1) 

 
 

Fig. 3 Probabilistic neural network 

 

The calculation of the pdf  by using samples of populations (the training set - Figure 4). 

In accordance with Figure 3, the input vector 1 2( , ,..., )T n

nU u u u R   is applied to all 

n-neurons of input layer. Neurons of the PL-layer are divided into K  groups, one for each 

class. The output of i-th neuron of k-th class is calculated by using a kernel function (in 

the case of Gaussian) having the form: 

    
2

2 2 2

1ˆ( ) ( ) exp
(2 ) 2

ki

ki n

ki

U U
P i k F U

 

 
   
 
 

,             (2) 

where: Uki  R
n
 is the "center" of the kernel, and ki  spread parameter. Usually it is 

accepted ki =  and this eliminates common factors and absorbs the "2" in  in the 

denominators of (1): 

 

2

2

1
( ) exp

ip ki

ki i
i

U U
F U

p 

 
  
 
 

 ,                                 (3) 

where pi  are samples in the i-th population. 
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Fig. 4 Two-dimensional density probability distribution 

SL-layer the network is used to approximate the conditional probabilities, by combining the 

thus calculated densities: 

 
1

( ) ( )
kM

k ki ki

i

G U w F U


 , ( 1,2,..., )k n ,             (4) 

where: Mk  number of objects (neurons), wki  positive coefficients (weights). In accordance 

with the rule (1), the input vector is classified into the class, which is connected to SL-

neuron with a maximum output: 

      
1

( ) ( ).argmax k

k K

C k G
 

                                        (5) 

The output vector has k components. One of these components is 1 and the rest are 0. 

Thus, each input vector is associated with one of k classes. 

Improving the accuracy of the classification in the PNC is associated with the search 

for the optimal value of σ and the formation of a suitable reducing training set [6]. The 

latter determines the number of neurons in the RBF-Probabilistic layer. PNC are realized 

by 144 neurons in PL-layers (n=5, k=3 and k=2). 

The PNC is not related to some assumption about normal distribution. The features for 

color characteristics (L
*
, a

*
, b

*
, Cab

*
, hab) can be used without transformation, i.e. 

directly, as is done in exhaustive feature selection.  

When comparing the spectrophotometric data derived from a complex mixture as 

juices, statistical data handling methods are thus an invaluable tool. Data compression 

methods such as principal component analysis (PCA) provide a useful way of reducing 

the data size without considerably reducing the amount of information that can be derived 

from it. In order to reduce the feature space for spectral reflectance characteristics, we 

used Principal component analysis (PCA) [9].   

The training set must be thoroughly representative of the actual population for effective 

classification. The composition of the testing sample and that of the training sample were 

selected at random, 60% of the sample as proportional to each class is used for classifier 

training and 40% - for testing. Table 2 presents test set errors.  
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Table 2 Test set errors 

Qualification test errors Total error 

Class1/ Class2 Class1:0.124 Class2:0.094 0.117 

Class2/ Class3 Class2:0.057 Class3:0.083 0.072 

Class1/ Class3 Class1:0.036 Class3:0.058 0.043 

5. RESULT AND DISCUSSION 

For the training process of a PNC, determination the value of the smoothing parameter 

  is essential, that is to determine the parameter sigma using heuristic techniques. Best 

results were obtained by classification into two classes, and optimizing the value of 

parameter sigma of the Gaussian function. 

Research is conducted in the MATLAB programming environment. In the individual 

program modules the corresponding layers of the PNC used functions toolbox Neural 

Networks: newpnn, dist, radbas, netprod, compet netsum, etc [8]. 

PNC structures applicable to the quality evaluation of natural citrus juices and orange 

juice in particular, were investigated. A comparison was made from the viewpoint of 

accuracy, speed and computer implementation. 

Important advantage of probabilistic neural networks is that training is easy and that 

they can be used in real-time. Well-trained network can be generalized and for new 

samples outside the training sample. 

The paper discussed the possibilities of data fusion from different sensory tools to 

obtain a more complete and accurate assessment of the quality of food products. The 

present proposal is to combine spectral and color characteristics to separate the three 

groups of natural citrus juice. The results show the advantages of the unite of information, 

which could serve as an initial step in future research on more complex assessments of 

performance quality and the creation of expert systems. 
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