
FACTA UNIVERSITATIS 
Series:Automatic Control and Robotics Vol. 14, No 2, 2015, pp. 77- 86 

 

COMPUTATION OF THE SHORTEST DISTANCE BETWEEN 

TWO PARAMETRIC DEFINED OBJECTS BY PARTICLE 

SWARM OPTIMIZATION

 

UDC (681.58:004.89):681.513.3 

Predrag M. Rajković, Emina P. Petrović, Vlastimir D. Nikolić
 

University of Niš, Faculty of Mechanical Engineering, Niš, Republic of Serbia 

Abstract. The distance computation between objects is an essential component of robot 

motion planning and controlling the robot to avoid its surrounding obstacles. Distance 

is used as a measure of how far a robot is from colliding with an obstacle. In this paper 

a Particle Swarm Optimization algorithm (PSO) for solving the problem of the distance 

computation between convex objects is presented. Convergence analysis of the suggested 

method was done via difference equation. 
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1.  INTRODUCTION 

One of the fundamental problems in robotics represents the distance computation 

between objects. It presents a necessary component of robot motion planning and controlling 

the robot to avoid its surrounding obstacles. The obstacles can be polyhedral objects or 

quadratic surfaces that include spherical and cylindrical surfaces or more general, surfaces 

such as splines [1]. For all developed research for path planning it is necessary to possesses at 

least the lowest ability to detect if collision has occurred [2]. Collision detection technique is 

related to the distance computation between objects: two objects are in collision if and only if 

the distance between the objects is zero [3]. One of these objects, for which we examine 

whether or not is in collision, is the robot. The set of all the obstacles which surround the 

robot in its environment represents the other object  Representing these two objects by 

mathematical models we can find a point on each object and compute the distance between 

the points so that the distance between the points is minimized [3]. 

A lot of research work on the minimum distance computation on the convex objects 

has been done in recent years. 
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Chen et al. [4] in their work used an analytical technique to determine the minimum 

distance between two algebraic surfaces. An efficient algorithm for the minimum distance 

computation between non-convex objects using the sphere bounding volume hierarchy 

representation is described by Quinlan [3]. In his work, Lumelsky [5] calculated the minimum 

distance between three-dimensional segments. The algorithms for finding the distance 

between two convex polyhedral objects are described by Bobrow [6], Gilbert et al. [7], 

Cameron [8], and Lin [9]. In these algorithms the distance monotonically converges to a 

minimum. Iteratively found pair of points, one on each object, represents the required 

distance. However, the mechanism of these algorithms completely depends on the properties 

of the convex objects, and it appears difficult to extend them directly to the non-convex 

objects. 

The computational efficiency of two-dimensional algorithms for polygons was given 

in [10]. Rabl et al. [11] used the class of surfaces with quadratic polynomial support 

functions in order to define bounding geometric primitives for the shortest distance 

computation. The common normals of two such surfaces have been computed by solving a 

single polynomial equation of degree six. Based on this observation, they formulate an 

algorithm for computing the shortest distance between enclosures of two moving or static 

objects by surfaces of this type. 

In this research for solving the problem of computation of the shortest distance 

between convex objects is done by a Particle Swarm Optimization algorithm (PSO). In 

this paper, we only consider the case where the two surfaces do not intersect. The method 

is simple, easy to implement and there are fewer parameters that need to be adapted. 

Also, in this research, we will expose a few trials of the convergence criteria researching 

for particle swarm algorithm and will compare them with experiments. 

2. PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization is a population based stochastic search algorithm that is 

the most recent development in the of category combinatorial meta-heuristic optimization. It 

was first introduced by Kennedy and Eberhart in 1995 [12], as a new heuristic method 

inspired by the social behavior exhibited by flocks of birds flying across an area looking for 

food. 

In the basic particle swarm optimization, particle swarm consists of n particles, and 

the coordinates of each particle represent a possible solution called particles associated 

with position and velocity vector in D-dimensional space [13].  

At each iteration, particle moves towards the optimum solution, through its present 

velocity, personal best solution obtained by themselves so far and global best solution 

obtained by all particles. 

We represent the position of ith particle of the swarm by a D-dimensional vector xi =  

(x1, x2,…,xD).The velocity (position change per generation) of the particle xi can be represented 

by another D-dimensional vector  vi = (v1, v2,…,vD). The best position previously visited by 

the ith particle is denoted as  bi = (b1, b2,…,bD). If the topology is defined so that all particles 

are assumed to be neighbors and g as the index of the particle visited the best position in the 

swarm, then  pg  becomes the best solution found so far, and the velocity of the particle and its 

new position will be determined according to the following two equations: 
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r1 and r2 are random variables in the range [0,1]; c1 and c2 are acceleration coefficients 

regulating the relative velocity toward global and local best [14-16]. 

Some authors use notation: 

21 ccc  ,       )2,1(  krc kkk ,      21   . 

The PSO flowchart can be described as follows: 

1. Generate the initial particles by randomly generating the position and velocity for 

each particle. 

2. Evaluate each particle’s fitness. 

3. For each particle, if its fitness is smaller than its previous best (bi ), update bi . 

4. For each particle, if its fitness is smaller than the best one (pg) of all particles, 

update pg. 

5. For each particle generate a new particle t according to the formula (1) and (2). 

6. If the stop criterion is satisfied, then stop, else go to Step 3. 

 

Fig. 1 Velocity and position update for a particle in a two-dimensional search space. 

3. CONVERGENCE ANALYSIS OF PSO ALGORITHM 

Here, we will expose a few trials in researching the convergence criteria for particle 

swarm algorithm and compare them with experiments.Van den Bergh [17] proved that 

the  PSO is not a global search algorithm, even not a local one. 

The analysis of the particle swarm optimization done by Clerc and Kennedy [18] lead 

to a generalized model of the algorithm, containing a set of coefficients to control the 

system’s convergence tendencies. Simplification of the system was done by stripping the 

algorithm down to almost a simple form.  

The initial investigation was simplified by looking at the behavior of a particle whose 

velocity is adjusted by only one term: 
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The formula can be shortened by being redefined as follows: 
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We can write: 
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The system can be simplified even further by considering a one-dimensional problem 

space and again further by reducing the population to one particle. 

When the particle swarm operates on an optimization problem, the value of 
)(m

iP and 

φ  are constantly updated, as the system evolves towards the optimum. In order to further 

simplify the system and make it understandable, Clerc sets them to two constant values in 

the following analysis: 

PP )(m

i  ( , )i m ,    .),,,,( 2211 constrcrc   

Since φ is defined as a random number between zero and a constant upper limit, it 

removed the stochastic component. 
F. van der Bergh [17] noticed that there is no interaction between the different dimensions; 

they are independent of each other. So the problem can be simplified from multi-dimensional 

space into one dimension space and dimensional indices can be dropped. 
S. Gao and J.Y. Yang [19] in their research,  supposed  that particles are independent 

of each other and  the swarm’s global best position and the best position attained by 

particle self are unchanged, i.e. that there exists some positive integer number m0, so that: 

bb )(m , gp )(m

g ,  ,...)2,1( 00  mmm . 

Then, the swarm method can be written in the form of a difference equation: 
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Hence, the convergence zone was established: 

-1<ω<1, c<2(ω+1). 

Example 1.We have considered the Rosenbrock function: 
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which has minimum  fmin =0   in  x
*
=(1,1,…,1).  
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The initial values were random numbers from the interval [-2, 2].We accepted that the 

method is converging to the optimal point if , after m=100 iterations, it is fulfilled: 

1.0| || |  gx  ^ 01.0|)(*)f(|  xx f . 

In Fig. 2, we showed convergence for different values of parameters 
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Fig. 2 The convergence for different values of parameters w and c. 

In Fig. 3, we see convergence for fixed ω=0.8 and different values of ]5,1[, 21 cc . 
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Fig. 3 The convergence for fixed value of parameter ω=0.8 and different values 

of parameters ]5,1[, 21 cc . 
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4. THE SHORTEST DISTANCE BETWEEN TWO OBJECTS BY PSO 

In this research we use an algorithm based on Particle swarm optimization for the 

shortest distance computation between two of convex objects presented by parametric 

surface [19]. Also, the performance of this algorithm will be demonstrated by several 

examples. Let us consider two objects in the 3D space 3RA and 3RB  . The Euclidean 

distance between the object A and B is defined by their closest points, i.e.: 

 ( , ) min{ : , }d A B P Q P A Q B    . (10) 

If A and B intersect, dmin is equal to zero. In this paper, we assume that A and B do not 

intersect. 

Since in this paper we use parametric representation of objects, they are given by 
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where BBAA vuvu ,,,  are parameters,  then we have the equation system: 
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The main idea of the algorithm presented in this paper is that when two convex objects are 

placed in a 3D space, the algorithm needs to find a pair of points, one on each object, so that 

the distance between the points is less than or equal to the distance between any other pair. 

Example 2. 

To demonstrate the performance of the purposed algorithm we considered two spheres: 

 
1 1 1

2 2 2

( (0,0,0), 1)

( (4,4,4), 1).

S C r

S C r

 


 
 (14) 

It is exactly known that the nearest points between those spheres are  
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For which we know their exact minimum distance  
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We tested our algorithm and compared the obtained results. In the implemented algorithm 

after 100 iterations the obtained results are: 
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1. dmin=4.93061. 

2. Coordinate of point on first sphere are: 

)618624.0,580306.0,529669.0(),,( AAA zyx . 

3. Coordinate of point on second sphere are: 

)42051.3,42806.3,41942.3(),,( BBB zyx  

The error between the calculated distance and the distance obtained by PSO is -

0.00241, which is quite acceptable for practical uses in robotics. 

In the picture below (Fig. 4), it is showed how PSO positioned particles on the surface 

of both spheres in order to find a pair of particle, one on each object which has the 

smallest distance. 

                 
 a)  b) 

Fig. 4 a) The PSO positioned particles on the surface of two spheres,  

b) the minimum distance between two spheres obtained by PSO. 

5. RESULTS 

In order to verify the results in the picture below are presented some examples where 

PSO found the minimum distance for different objects and compared them with the 

results provided by Newton method.  The obtained results are presented in Table 1. 

From pictures and data from Table 1, it can be seen that the distances calculated by both 

methods are similar in some cases, especially when the objects are not too complex (e.g. 

Fig. 5). But in cases when we have complex objects, the PSO gives better results than Newton 

method. 

Table 1 The distance obtained by Newton method and PSO 

Fig. No Newton method PSO 

6 2.41642 2.145369 

7a 3.52632 3.52634 

7b 2.053835 2.05979 

8a 1.382541 1.392541 

8b 2.42259 2.42865 
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 a)  b) 

Fig. 5 The minimum distance between two complex objects obtained:  

a) by Newton method, b) by PSO. 

  
 a)  b) 

Fig. 6 The minimum distance obtained by PSO between: a) two cones, b) two ellipsoids. 

    
 a)  b) 

Fig. 7 The minimum distance obtained by PSO between:  

a) two parallel cones, b) two normal positioned cones. 
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6. CONCLUSION 

The minimum distance computation problem usually involves non-linear equation 

systems. It is possible, but to complicated and difficult, to compute all the roots for the 

corresponding general non-linear equation systems, but it is not necessary to do so.  

In this paper, the utilization of the Particle swarm optimization method for the minimum 

distance computation between two objects which are represented by parametric surfaces, is 

presented Using this algorithm is simple, easy to implement and there are fewer parameters 

needed to be adapted 

Because of the nature of the algorithm it is difficult to make general statements about 

its performance, as it relies on many factors that depend on the application for which the 

distance algorithm is used. 

This algorithm maybe not always give exact results as a specialized algorithm, e.g. 

Newton and gradient method in application where it is possible to use it, but the obtained 

results are quite acceptable. 

Another big advantage of Particle Swarm optimization algorithm is its possibility to 

be used in a wide range of applications. 

The methodology described here can be used in distance calculation problems, real-

time path planning and other robotics problem. This application is to plan to use in real-

time path planning in order to avoid obstacles during human tracking. In addition we are 

working to improve the efficiency of Particle Swarm optimization method in order to 

improve the convergence and reducing errors. 
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