LINEAR RECURRENCE RELATONS AND ORDINARY GENERATING FUNCTIONS APPLIED ON MODELING PROCESSES IN CONTROL THEORY
Abstract
Keywords
Full Text:
PDFReferences
R. Askey, Mourad Ismail, Recurrence Relations, Continued Fractions and Orthogonal Polynomials, AMS, 1984.
S. Barnett, Introduction to Mathematical Control Theory, 1975.
J. Zabczyk, Mathematical Control Theory, BirkHauser, 2010.
J. Matousek, J. Nesetril, Invitation to Discrete Mathematics, Oxford University Press, Oxford, UK, 2008
T. Koshy, Discrete Mathematics with Applications, Elseive Academic Press, Barlington USA, 2004.
I.Z. Milovanović, et. al., Diskretna matematika, Univerzitet Niš, Pelikan Niš, 2000.
W. Gautschi, Computational Aspects of Three-Term Recurrence Relations, SIAM Rev., vol. 9(1), pp. 24–82.
A.J. Durán, W.Van Assche, Orthogonal matrix polynomials and higher-order recurrence relations, Linear Algebra and Its Applications, vol. 219, no. 1, pp. 261-280, 1995.
G. Levitin, The Universal Generating Function in Reliability Analysis and Optimization, Springer-Verlag London Limited, 2005.
B.M. Randjelovic, I.D. Ilic, S.S .Nikolic, V.V. Mitic, Application od Homogenous Linear Recurrence Relations and Ordinary Generating Functions for Modeling Precesses in Control Theory, Proceedings of the XV International Conference on Systems, Automatic Control and Measurements, SAUM 2021, Niš, Serbia, September 09.-10., 2021., pp. 62–65.
P. Catarino and P. Vasco, Modified k-Pell Sequence: Some Identities and Ordinary Generating Function, Appl.Math.Sci., vol.7, pp. 6031–6037, 2013.
S.K. Lando, Lectures on Generating Functions, AMS, 2002.
D. Zeitlin, Generating Functions for Products of Recursive Sequences, Transactions of the American Math.Society vol. 116, pp. 300-315, 1965.
S. Nikolic, B. Dankovic, D. Antic, Z. Jovanovic, M. Milojkovic, Identifikacija procesa, Elektronski fakultet, Nis, 2020.
DOI: https://doi.org/10.22190/FUACR211223002R
Refbacks
- There are currently no refbacks.
Print ISSN: 1820-6417
Online ISSN: 1820-6425