APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS FOR ROAD TYPE CLASSIFICATION

Staniša Perić, Nina Vukić, Dragan Antić, Marko Milojković, Anđela Đorđević

DOI Number
https://doi.org/10.22190/FUACR230123001P
First page
001
Last page
013

Abstract


This paper presents an application of convolutional neural networks (CNN) in autonomous driving system, which represents the capacity of a vehicle to operate mostly or entirely autonomously, with or without human assistance. After basic introduction of CNN, we design and apply CNN-based algorithm in road type classification problem. The performed simulations show that satisfactory results can be achieved even with little data available.

Keywords

Convolutional neural network, autonomous vehicles, road surface

Full Text:

PDF

References


V. Tumen, O. Yildirim and B. Ergen, “Recognition of Road Type and Quality for Advanced Driver Assistance Systems with Deep Learning”, Elektronika Ir Elektrotechnika, vol. 24, no. 6, pp. 67-74, December 2018, doi: 10.5755/j01.eie.24.6.22293.

R. Valiente, M. Zaman, S. Ozer and Y. P. Fallah, “Controlling steering angle for cooperative self-driving vehicles utilizing CNN and LSTM-based deep networks”, IEEE Intelligent Vehicles Symposium (IV), IEEE, pp. 2423-2428, June 2019.

M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao and K. Zieba, “End to End Learning for Self-Driving Cars”, April 2016, [Online]. Available: https://arxiv.org/pdf/1604.07316v1.pdf

Y. Satılmış, F. Tufan, M. Şara, M. Karslı, S. Eken and A. Sayar, “CNN based traffic sign recognition for mini autonomous vehicles”, Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology – ISAT 2018, Advances in Intelligent Systems and Computing, vol. 853, pp. 85-94, August 2018, doi: 10.1007/978-3-319-99996-8_8.

G. Rjoub, O. A. Wahab, J. Bentahar and A. S. Bataineh, “Improving autonomous vehicles safety in snow weather using federated YOLO CNN learning”, Mobile Web and Intelligent Information Systems – MobiWIS 2021, Lecture Notes in Computer Science, vol. 12814, pp. 121-134, August 2021, doi: 10.1007/978-3-030-83164-6_10.

F. Pizzati, M. Allodi, A. Barrera and F. García, “Lane detection and classification using cascaded CNNs”, Computer Aided Systems Theory – EUROCAST 2019, Lecture Notes in Computer Science, vol. 12014, pp. 95-103, April 2020, doi: 10.1007/978-3-030-45096-0_12.

J. Yoo, C. H. Lee, H. M. Jea, S. K. Lee, Y. Yoon, J. Lee, K. Yum and S. U. Hwang, “Classification of Road Surfaces Based on CNN Architecture and Tire Acoustical Signals”, Applied Science, vol. 12, no. 19, 9521, September 2022, doi: 10.3390/app12199521.

M. Nolte, N. Kister and M. Maurer, “Assessment of deep convolutional neural networks for road surface classification”, 21st International Conference on Intelligent Transportation Systems (ITSC), IEEE, pp. 381-386, November 2018.

C. Seeger, A. Müller, L, Schwarz and Michael Manz, “Towards road type classification with occupancy grids”, IEEE Intelligent Vehicles Symposium 2016 Workshop: DeepDriving - Learning Representations for Intelligent Vehicles, June 2016, [Online]. Available: http://iv2016.berkeleyvision.org/papers/seeger.pdf

V. Zhou, “CNNs, Part 1: An Introduction to Convolutional Neural Networks”, November 2019, [Online]. Available: https://victorzhou.com/blog/intro-to-cnns-part-1/

K. Džomba, Konvolucijske neuronske mreže (diplomski rad). Zagreb: Prirodoslovno-matematički fakultet, 2018.

M. Arsenović, Detekcija bolesti biljaka tehnikama dubokog učenja (doktorska disertacija). Novi Sad: Fakultet Tehničkih nauka, 2020.

R. Yamashita, M. Nishio, R. Kinh Gian Do and K. Togashi, “Convolutional neural networks: An overview and application in radiology”, Insights Imaging, vol. 9, pp. 611-629, June 2018.

K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks”, December 2015, [Online]. Available: https://arxiv.org/pdf/1511.08458.pdf

M. Dabović and I. Tartalja, “Duboke konvolucijske neuronske mreže – koncepti i aktuelna istraživanja”, Zbornik 61. Konferencije za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku - ETRAN 2017, June 2017

J. Wu, “Introduction to Convolutional Neural Networks”, May 2017, [Online]. Available: https://cs.nju.edu.cn/wujx/paper/CNN.pdf

J. Brownlee, “How do Convolutional Layers Work in Deep Learning Neural Networks?”, April 2019, [Online]. Available: https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-networks/

L. Mehinović, Konvolucijske neuronske mreže za klasifikaciju objekata (diplomski rad). Pula: Sveučilište Jurja Dobrile u Puli, Fakultet informatike u Puli, 2020.

M. Minđek, Kvantizacija konvolucijskih modela za raspoznavanje slika (završni rad). Zagreb: Sveucilište u Zagrebu, Fakultet elektrotehnike i računarstva, 2021.

U. Karn, “An Intuitive Explanation of Convolutional Neural Networks”, August 2016, [Online]. Available: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

S. Saha, “A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way”, December 2018, [Online]. Available: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

S. Grigorescu, B. Trasnea, T. Cocias and G. Macesanu, “A Survey of Deep Learning Techniques for Autonomous Driving”, Journal of Field Robotics, vol. 37, no. 3, pp. 362-386, March 2020.

J. Brownlee, “Crash Course in Convolutional Neural Networks for Machine Learning”, June 2016, [Online]. Available: https://machinelearningmastery.com/crash-course-convolutional-neural-networks/

B. Paden, M. Čáp, S. Z. Yong, D. Yershov and E. Frazzoli, “A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles”, IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33-55, April 2016.

E. Yurtsever, J. Lambert, A. Carballo and K. Takeda, “A Survey of Autonomous Driving: Common Practices and Emerging Technologies”, IEEE Access, vol. 8, April 2020.

M. Bertozzi, A. Broggi and A. Fascioli, “Vision-Based Intelligent Vehicles: State of the Art and Perspectives”, Robotics and Autonomous Systems, vol. 32, no. 1, pp. 1-16, July 2000.

B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani and P. Pérez, “Deep Reinforcement Learning for Autonomous Driving: A Survey”, IEEE Transactions on Intelligent Transportation Systems, January 2021, [Online]. Available: https://arxiv.org/abs/2002.00444

H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama and H. Omata, “Road Damage Detection Using Deep Neural Networks with Images Captured Through a Smartphone”, February 2018, [Online]. Available: https://arxiv.org/pdf/1801.09454.pdf

E. Šabanovič, V. Žuraulis, O. Prentkovskis and V. Skrickij, “Identification of Road-Surface Type Using Deep Neural Networks for Friction Coefficient Estimation”, Sensors, vol. 20, no. 3, January 2020.

I. Tang and T. P. Breckon, “Automatic Road Environment Classification”, IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 2, pp. 476 – 484, June 2011.

T. Zhao and Y. Wei, “Road Surface Image Dataset with Detailed Annotations”, Mendeley Data, V2, July 2022, doi: 10.17632/w86hvkrzc5.2.




DOI: https://doi.org/10.22190/FUACR230123001P

Refbacks

  • There are currently no refbacks.


Print ISSN: 1820-6417
Online ISSN: 1820-6425