A REVIEW OF DRILL STRING DYNAMICS AND MODELING TECHNIQUES

Nora Benmir

DOI Number
https://doi.org/10.22190/FUACR241112012B
First page
157
Last page
177

Abstract


The complex dynamics of drill strings under various vibration modes during drilling operations present significant challenges to the oil and gas industry due to the high costs associated with oil well drilling. This analytical study aims to provide a comprehensive overview of the most important and widely used mathematical modeling tools and techniques for describing the behaviors of drill strings under various conditions. The study highlights significant scientific contributions and research papers that have utilized or addressed these methods, including finite element, lumped mass, partial differential, wave equation, and Cosserat theory. This emphasis is meant to be partial but reflects the frequent use of these methods in drill string modeling. It also sheds light on the evolution and classification of different mathematical models used, divided into two main categories: static models and dynamics models, and how they have been involved with advancements in drilling technologies. Finally, this review underscores the potential for significant cost savings in the oil and gas industry by incorporating artificial intelligence and modern technologies into well drilling and drilling operations control, which is closely tied to improving the productivity and efficiency of oil and gas fields.

Keywords

Drilling operation, vibration mode, finite element, mathematical models, modern technologies, static models

Full Text:

PDF

References


I. Boussaada, H. Mounier, S.-I. Niculescu, and A. Cela, “Analysis of drilling vibrations: A time-delay system approach,” in 2012 20th Mediterranean Conference on Control & Automation (MED), Barcelona, Spain: IEEE, Jul. 2012, pp. 610–614. doi: 10.1109/MED.2012.6265705.

A. Ghasemloonia, D. Geoff Rideout, and S. D. Butt, “A review of drillstring vibration modeling and suppression methods,” J. Pet. Sci. Eng., vol. 131, pp. 150–164, Jul. 2015, doi: 10.1016/j.petrol.2015.04.030.

W. R. Tucker and C. Wang, “An Integrated Model for Drill-String Dynamics,” J. Sound Vib., vol. 224, no. 1, pp. 123–165, Jul. 1999, doi: 10.1006/jsvi.1999.2169.

“The Genesis of Torsional Drillstring Vibrations | SPE Drilling & Completion | OnePetro.” Accessed: May 29, 2024. [Online]. Available: https://onepetro.org/DC/article-abstract/7/03/168/70661/The-Genesis-of-Torsional-Drillstring-Vibrations?redirectedFrom=fulltext

D. Ezzeddine, “Modélisation du comportement dynamique d’un train de tiges de forage pétrolier : application aux vibrations latérales,” phdthesis, Ecole Nationale Supérieure des Mines de Paris, 2013. Accessed: Jun. 02, 2024. [Online]. Available: https://pastel.hal.science/tel-01511423

E. Perrotet, “Bathe, K. J. Finite Element Procedures 1996 Prentice Hall”, Accessed: Jun. 07, 2024. [Online]. Available: https://www.academia.edu/41727530/Bathe_K_J_Finite_Element_Procedures_1996_Prentice_Hall

M. A. Trindade and R. Sampaio, “ACTIVE CONTROL OF COUPLED AXIAL AND TORSIONAL DRILL-STRING VIBRATIONS,” 2005.

Y. A. Khulief and H. Al-Naser, “Finite element dynamic analysis of drillstrings,” Finite Elem. Anal. Des., vol. 41, no. 13, pp. 1270–1288, Jul. 2005, doi: 10.1016/j.finel.2005.02.003.

M. Compton, F. Verano, G. Nelson, S. X. Wu, and S. Bits, “Managing Downhole Vibrations for Hole-Enlargement-While-Drilling in Deepwater Environment: A Proven Approach Utilizing Drillstring Dynamics Model,” in All Days, Lima, Peru: SPE, Dec. 2010, p. SPE-139234-MS. doi: 10.2118/139234-MS.

M. Kapitaniak, V. Vaziri Hamaneh, J. Páez Chávez, K. Nandakumar, and M. Wiercigroch, “Unveiling complexity of drill–string vibrations: Experiments and modelling,” Int. J. Mech. Sci., vol. 101–102, pp. 324–337, Oct. 2015, doi: 10.1016/j.ijmecsci.2015.07.008.

T. Vromen et al., “Mitigation of Torsional Vibrations in Drilling Systems: A Robust Control Approach,” IEEE Trans. Control Syst. Technol., vol. PP, pp. 1–17, Nov. 2017, doi: 10.1109/TCST.2017.2762645.

J. Priest, H. Ghadbeigi, S. Avar-Soberanis, and S. Gerardis, “3D finite element modelling of drilling: The effect of modelling method,” CIRP J. Manuf. Sci. Technol., vol. 35, pp. 158–168, Nov. 2021, doi: 10.1016/j.cirpj.2021.06.001.

M. Cai, L. Mao, X. Xing, H. Zhang, and J. Li, “Analysis on the nonlinear lateral vibration of drillstring in curved wells with beam finite element,” Commun. Nonlinear Sci. Numer. Simul., vol. 104, p. 106065, Jan. 2022, doi: 10.1016/j.cnsns.2021.106065.

K. Yue, F. Liu, J. Liao, Y. Wang, J. Wu, and Y. Zhang, “Vibration Analysis and Optimization of Rock Drilling Arm,” SAE Int. J. Adv. Curr. Pract. Mobil., vol. 5, no. 1, Art. no. 2022-01–0290, Mar. 2022, doi: 10.4271/2022-01-0290.

A. L. Muthuveerappan and S. Sivarajan, “Finite element analysis of process parameters influences on deformation and von mises stress in drilling,” Mater. Today Proc., May 2023, doi: 10.1016/j.matpr.2023.05.113.

C. Neto and H. J. Da, “Active control of stick-slip oscillations in oil-well drilling systems,” text, Universidade de São Paulo, 2023. doi: 10.11606/T.18.2023.tde-17042023-160638.

W. Liu, H. Ni, Y. Wang, Y. Guo, Y. Gao, and P. He, “Dynamic modeling and load transfer prediction of drill-string axial vibration in horizontal well drilling,” Tribol. Int., vol. 177, p. 107986, Jan. 2023, doi: 10.1016/j.triboint.2022.107986.

I. Kokalari, T. Karaja, and M. Guerrisi, “Review on lumped parameter method for modeling the blood flow in systemic arteries,” vol. 2013, Jan. 2013, doi: 10.4236/jbise.2013.61012.

B. Besselink, N. Van De Wouw, and H. Nijmeijer, “A Semi-Analytical Study of Stick-Slip Oscillations in Drilling Systems,” J. Comput. Nonlinear Dyn., vol. 6, no. 2, p. 021006, Apr. 2011, doi: 10.1115/1.4002386.

J. M. Kamel and A. S. Yigit, “Modeling and analysis of stick-slip and bit bounce in oil well drillstrings equipped with drag bits,” J. Sound Vib., vol. 333, no. 25, pp. 6885–6899, Dec. 2014, doi: 10.1016/j.jsv.2014.08.001.

P. Athanasiou and Y. Hadi, “Simulation of Oil Well Drilling System Using Distributed–Lumped Modelling Technique,” Modelling, vol. 1, no. 2, Art. no. 2, Dec. 2020, doi: 10.3390/modelling1020011.

D. Xie, Z. Huang, Y. Ma, V. Vaziri, M. Kapitaniak, and M. Wiercigroch, “Nonlinear dynamics of lump mass model of drill-string in horizontal well,” Int. J. Mech. Sci., vol. 174, p. 105450, May 2020, doi: 10.1016/j.ijmecsci.2020.105450.

I. Kessai, S. Benammar, M. Z. Doghmane, and K. F. Tee, “Drill Bit Deformations in Rotary Drilling Systems under Large-Amplitude Stick-Slip Vibrations,” Appl. Sci., vol. 10, no. 18, Art. no. 18, Jan. 2020, doi: 10.3390/app10186523.

N. K. Tengesdal, “Modelling and Simulation of Offshore Drilling Systems,” Doctoral thesis, NTNU, 2021. Accessed: Aug. 06, 2024. [Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2788638

L. A. Khajiyeva, I. V. Andrianov, Y. F. Sabirova, and A. K. Kudaibergenov, “Analysis of Drill-String Nonlinear Dynamics Using the Lumped-Parameter Method,” Symmetry, vol. 14, no. 7, Art. no. 7, Jul. 2022, doi: 10.3390/sym14071495.

“(PDF) Hybrid Interval Type-2 Fuzzy PID+I Controller for a Multi-DOF Oilwell Drill-String System.” Accessed: Oct. 25, 2024. [Online]. Available: https://www.researchgate.net/publication/361460627_Hybrid_Interval_Type-2_Fuzzy_PIDI_Controller_for_a_Multi-DOF_Oilwell_Drill-String_System

R. Riane, M. Z. Doghmane, M. Kidouche, K. F. Tee, and S. Djezzar, “Stick-Slip Vibration Suppression in Drill String Using Observer-Based LQG Controller,” Sensors, vol. 22, no. 16, Aug. 2022, doi: 10.3390/s22165979.

Y. Zhang, P. Ashok, D. Chen, and E. van Oort, “A Control-Oriented Lumped Parameter Drillstring Dynamic Model for Real-Time Vibration Mitigation and Drilling Optimization,” Accessed: Aug. 06, 2024. [Online]. Available: https://dx.doi.org/10.2118/212453-MS

“Experimental and numerical study of lateral vibration of a rotor–stator rubbing system | International Journal of Dynamics and Control.” Accessed: Oct. 25, 2024. [Online]. Available: https://link.springer.com/article/10.1007/s40435-024-01425-4

M. D. Collins and W. L. Siegmann, Parabolic Wave Equations with Applications. Springer Nature, 2019.

J. M. Carcione and F. Poletto, “Simulation of stress waves in attenuating drill strings, including piezoelectric sources and sensors,” J. Acoust. Soc. Am., vol. 108, no. 1, pp. 53–64, Jul. 2000, doi: 10.1121/1.429443.

M. Krstic, “Adaptive Control of Anti-stable Wave PDE Systems: Theory and Applications in Oil Drilling,” IFAC Proc. Vol., vol. 46, no. 11, pp. 432–439, Jan. 2013, doi: 10.3182/20130703-3-FR-4038.00154.

I. Boussaada, A. Cela, H. Mounier, and S.-I. Niculescu, “Control of Drilling Vibrations: A Time-Delay System-Based Approach,” IFAC Proc. Vol., vol. 46, no. 3, pp. 226–231, 2013, doi: 10.3182/20130204-3-FR-4031.00162.

B. Saldivar, S. Mondié, and J. C. Ávila Vilchis, “The control of drilling vibrations: A coupled PDE-ODE modeling approach,” Int. J. Appl. Math. Comput. Sci., vol. 26, no. 2, pp. 335–349, Jun. 2016, doi: 10.1515/amcs-2016-0024.

H. Ibrahim Basturk, “Observer-Based Boundary Control Design for the Suppression of Stick–Slip Oscillations in Drilling Systems With Only Surface Measurements,” J. Dyn. Syst. Meas. Control, vol. 139, no. 10, p. 104501, Oct. 2017, doi: 10.1115/1.4036549.

H. Zhang and E. Detournay, “A high-dimensional model to study the self-excited oscillations of rotary drilling systems,” Commun. Nonlinear Sci. Numer. Simul., vol. 112, p. 106549, Sep. 2022, doi: 10.1016/j.cnsns.2022.106549.

H. E. Goicoechea, R. Lima, F. S. Buezas, and R. Sampaio, “Drill-string with cutting dynamics: A mathematical assessment of two models,” J. Sound Vib., vol. 544, p. 117364, Feb. 2023, doi: 10.1016/j.jsv.2022.117364.

J. Auriol, N. Kazemi, and S.-I. Niculescu, “Sensing and computational frameworks for improving drill-string dynamics estimation,” Mech. Syst. Signal Process., vol. 160, p. 107836, Nov. 2021, doi: 10.1016/j.ymssp.2021.107836.

J. Redaud, F. Bribiesca-Argomedo, and J. Auriol, “Output regulation and tracking for linear ODE-hyperbolic PDE–ODE systems,” Automatica, vol. 162, p. 111503, Apr. 2024, doi: 10.1016/j.automatica.2023.111503.

S. Toumi and R. Mlayeh, “Control strategies for mitigating torsional and axial vibrations in rotary oilwell drilling systems,” IMA J. Appl. Math., p. hxae030, Oct. 2024, doi: 10.1093/imamat/hxae030.

M. Silveira, C. Wang, and M. Wiercigroch, “Analysis of Stick-Slip Oscillations of Drill-String via Cosserat Rod Model,” in IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design, M. Wiercigroch and G. Rega, Eds., Dordrecht: Springer Netherlands, 2013, pp. 337–345. doi: 10.1007/978-94-007-5742-4_26.

H. E. Goicoechea, R. Lima, R. Sampaio, M. B. Rosales, and F. S. Buezas, “A Stochastic Approach for a Cosserat Rod Drill-String Model with Stick-Slip Motion,” in Proceedings of the 5th International Symposium on Uncertainty Quantification and Stochastic Modelling, J. E. S. De Cursi, Ed., Cham: Springer International Publishing, 2021, pp. 103–110. doi: 10.1007/978-3-030-53669-5_8.

R. W. Tucker and C. Wang, “A SIMPLE COSSERAT MODEL FOR THE DYNAMICS OF DRILL-STRINGS,” Conference: The Seventh International Congress on Sound and Vibration, ICSV. International Institute of Acoustics and Vibration, Garmisch-Partenkirchen.

F. Yu, N. Hongjian, H. Genlu, H. Bin, L. Wei, and L. Jing, “Lateral Vibration Simulation and Laboratory Experiment of Bottom Hole Assembly Based on Cosserat Theory,” Sep. 11, 2022, Rochester, NY: 4215764. doi: 10.2139/ssrn.4215764.

H. Eduardo Goicoechea Manuel, “COSSERAT RODS AND THEIR APPLICATION TO DRILL-STRING DYNAMICS,” DOUTOR EM ENGENHARIA MECÂNICA, PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, Rio de Janeiro, Brazil, 2023. doi: 10.17771/PUCRio.acad.62826.

R. Zambetti, “Modelling of a drill string in an oil well under dynamic and static conditions,” Feb. 2024, Accessed: Aug. 06, 2024. [Online]. Available: https://www.politesi.polimi.it/handle/10589/216614

H. E. Goicoechea, R. Lima, F. S. Buezas, and R. Sampaio, “A comprehensive Cosserat rod drill-string model for arbitrary well geometry that includes the dynamics of the cutting and lateral contact,” J. Sound Vib., vol. 571, p. 118035, Feb. 2024, doi: 10.1016/j.jsv.2023.118035.

J. C. Roukema, “Mechanics and dynamics of drilling,” University of British Columbia, 2006. doi: 10.14288/1.0080772.

“A Robust Torque and Drag Analysis Approach for Well Planning and Drillstring Design | SPE/IADC Drilling Conference and Exhibition | OnePetro.” Accessed: Aug. 08, 2024. [Online]. Available: https://onepetro.org/SPEDC/proceedings-abstract/98DC/All-98DC/190320

C. A. Johancsik, D. B. Friesen, and R. Dawson, “Torque and Drag in Directional Wells-Prediction and Measurement,” J. Pet. Technol., vol. 36, no. 06, pp. 987–992, Jun. 1984, doi: 10.2118/11380-PA.

M. S. Aston, P. J. Hearn, and G. McGhee, “Techniques for Solving Torque and Drag Problems in Today’s Drilling Environment,” in All Days, New Orleans, Louisiana: SPE, Sep. 1998, p. SPE-48939-MS. doi: 10.2118/48939-MS.

D. Stuart, C. D. Hamer, C. Henderson, T. Gaynor, and D. C.-K. Chen, “New Drilling Technology Reduces Torque and Drag by Drilling a Smooth and Straight Wellbore”.

A. Wu, G. Hareland, and M. Fazaelizadeh, “Torque & Drag Analysis Using Finite Element Method,” Mod. Appl. Sci., vol. 5, no. 6, p. p13, Nov. 2011, doi: 10.5539/mas.v5n6p13.

K. Tveitan, “Torque and drag analyses of North Sea wells using new 3D model,” Master thesis, University of Stavanger, Norway, 2011. Accessed: Aug. 06, 2024. [Online]. Available: https://uis.brage.unit.no/uis-xmlui/handle/11250/183305

M. Fazaelizadeh, “Real Time Torque and Drag Analysis during Directional Drilling,” 2013, Graduate Studies. doi: 10.11575/PRISM/27551.

M. O. Oyedere, “Improved torque and drag modeling using traditional and machine learning methods,” Aug. 2020, Accessed: Aug. 06, 2024. [Online]. Available: https://hdl.handle.net/2152/115839

F. Rodrigues G. da Silva et al., “Application of Torque and Drag Models to Prevent Real-Time Operational Problems,” Accessed: Oct. 20, 2024. [Online]. Available: https://dx.doi.org/10.2118/198952-MS

J. Zou, P. Chen, T. Ma, Y. Liu, and X. Wang, “Drag-Reduction Performance Evaluation of Controllable Hybrid Steering Drilling System,” Shock Vib., vol. 2021, no. 1, p. 6688656, 2021, doi: 10.1155/2021/6688656.

M. C. Jensen, “The Modern Industrial Revolution, Exit, and the Failure of Internal Control Systems,” J. Finance, vol. 48, no. 3, pp. 831–880, 1993, doi: 10.1111/j.1540-6261.1993.tb04022.x.

D. Pogorelov, G. Mikheev, N. Lysikov, L. Ring, R. Gandikota, and N. Abedrabbo, “A Multibody System Approach to Drill String Dynamics Modeling,” in Volume 4: Advanced Manufacturing Processes; Biomedical Engineering; Multiscale Mechanics of Biological Tissues; Sciences, Engineering and Education; Multiphysics; Emerging Technologies for Inspection and Reverse Engineering; Advanced Materials and Tribology, Nantes, France: American Society of Mechanical Engineers, Jul. 2012, pp. 53–62. doi: 10.1115/ESDA2012-82316.

Y. Liu and D. Gao, “A nonlinear dynamic model for characterizing downhole motions of drill-string in a deviated well,” J. Nat. Gas Sci. Eng., vol. 38, pp. 466–474, Feb. 2017, doi: 10.1016/j.jngse.2017.01.006.

“Modeling Friction Performance of Drill String Torsional Oscillation Using Dynamic Friction Model - Wang - 2017 - Shock and Vibration - Wiley Online Library.” Accessed: Aug. 06, 2024. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1155/2017/4051541

X.-Q. Liu et al., “Mechanical analysis of deepwater drilling riser system based on multibody system dynamics,” Pet. Sci., vol. 18, no. 2, pp. 603–617, Apr. 2021, doi: 10.1007/s12182-020-00506-1.

R. Wang, X. Liu, G. Song, and S. Zhou, “Non-Linear Dynamic Analysis of Drill String System with Fluid-Structure Interaction,” Appl. Sci., vol. 11, no. 19, Art. no. 19, Jan. 2021, doi: 10.3390/app11199047.

G. C. Downton, “Challenges of Modeling Drilling Systems For the Purposes of Automation and Control,” IFAC Proc. Vol., vol. 45, no. 8, pp. 201–210, 2012, doi: 10.3182/20120531-2-NO-4020.00054.

C. Gan, W.-H. Cao, K.-Z. Liu, and M. Wu, “A novel dynamic model for the online prediction of rate of penetration and its industrial application to a drilling process,” J. Process Control, vol. 109, pp. 83–92, Jan. 2022, doi: 10.1016/j.jprocont.2021.12.002.

C. Gan et al., “Multi-source information fusion-based dynamic model for online prediction of rate of penetration (ROP) in drilling process,” Geoenergy Sci. Eng., vol. 230, p. 212187, Nov. 2023, doi: 10.1016/j.geoen.2023.212187.

B. Huang, H. Ni, Y. Jin, and Y. Lu, “The integrated drill string dynamic model based on the lumped mass method and discrete element method,” Mech. Syst. Signal Process., vol. 221, p. 111723, Dec. 2024, doi: 10.1016/j.ymssp.2024.111723.

O. Bello, J. Holzmann, T. Yaqoob, and C. Teodoriu, “Application Of Artificial Intelligence Methods In Drilling System Design And Operations: A Review Of The State Of The Art,” J. Artif. Intell. Soft Comput. Res., vol. 5, no. 2, pp. 121–139, Apr. 2015, doi: 10.1515/jaiscr-2015-0024.

E. Kasiralvalad, “The great potential of nanomaterials in drilling & drilling fluid applications,” 2014.

R. Çakıroğlu, S. Yağmur, A. Acır, and U. Şeker, “Modelling of Drill Bit Temperature and Cutting Force in Drilling Process Using Artificial Neural Networks,” vol. 20, pp. 333–340, Jan. 2017.

A. Bani Mustafa, A. K. Abbas, M. Alsaba, and M. Alameen, “Improving drilling performance through optimizing controllable drilling parameters,” J. Pet. Explor. Prod. Technol., vol. 11, no. 3, pp. 1223–1232, Mar. 2021, doi: 10.1007/s13202-021-01116-2.

S. A. Ezz, M. S. Farahat, S. Kamel, and A. Z. Nouh, “Drilling Vibration Modes and Penetration Rate Modeling using Artificial Neural Network and Multiple Linear Regression Analysis in Khoman Formation at the Egyptian Western Desert,” Apr. 21, 2021. doi: 10.21203/rs.3.rs-337955/v1.

“Intelligent Model for Predicting Downhole Vibrations Using Surface Drilling Data During Horizontal Drilling | J. Energy Resour. Technol. | ASME Digital Collection.” Accessed: Oct. 25, 2024. [Online]. Available: https://asmedigitalcollection.asme.org/energyresources/article-abstract/144/8/083002/1122632/Intelligent-Model-for-Predicting-Downhole?redirectedFrom=fulltext

“Well Control Space Out: A Deep-Learning Approach for the Optimization of Drilling Safety Operations | IEEE Journals & Magazine | IEEE Xplore.” Accessed: Aug. 08, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9438629

A. Rouzgard and K. Heidari Shirazi, “Automatic Path tracking control in directional drilling equipped with MWD systems,” Nov. 2023.

“World first: Profiling Equinor’s fully automated oil and gas platform.” Accessed: Jul. 23, 2023. [Online]. Available: https://www.nsenergybusiness.com/features/first-automated-oil-gas-platform/

M. N. Al-Mudhaf et al., “Revolutionizing Drilling Efficiency With Neuro Autonomous Solutions: DrillOps Automate, DD Advisor, And Auto Curve Coupled With SLB Well Construction Rig & Blue BHA,” Accessed: Oct. 18, 2024. [Online]. Available: https://dx.doi.org/10.2118/216690-MS




DOI: https://doi.org/10.22190/FUACR241112012B

Refbacks

  • There are currently no refbacks.


Print ISSN: 1820-6417
Online ISSN: 1820-6425