SOFT ROBOT POSITIONING USING ARTIFICIAL NEURAL NETWORK

Marko Kovandžić, Vlastimir Nikolić, Miloš Simonović, Ivan Ćirić, Abdulathim Al-Noori

DOI Number
https://doi.org/10.22190/FUACR1901019K
First page
019
Last page
030

Abstract


The experiment investigated the performance of an artificial neural network in solving the inverse kinematic problem of a soft robot. For this purpose, a simple soft robot was designed of building blocks, stringed on three rubber hoses, and an actuating system, to provide the hydraulic pressure. An axial extending of a hose, while the others are in the relaxed state, results in bending of the robot. The network was employed, as a black box, to approximate the behavior of the system. In accordance with the purpose, the input consisted of the desired spatial coordinates and the output of the step motor angular displacements. The network was trained and tested using records collected at 200 randomly chosen robot positions. The relative testing error of positioning, about 5%, confirmed a predictable robot behavior. The solution proposed is competitive in terms of simplicity, safety and price of realization. The experiment provided basics for the future research of the design of modular soft robots.

Keywords

Robotics, Soft Robot, Automatic control, Neural networks, Artificial intelligence, Spatial positioning

Full Text:

PDF

References


D. Rus, M. T. Tolley, "Design, fabrication and control of soft robots", Nature, vol. 521, pp. 467-475, 2015. [Online]. Available: http://dx.doi.org/10.1038/nature14543

Stanford researchers develop a new type of soft, growing robot, 2017. [Online]. Available: https://news.stanford.edu/2017/07/19/stanford-researchers-develop-new-type-soft-growing-robot/ [Accessed on July 2018].

Soft robot powered by vacuum can climb walls, grab objects, 2017. [Online]. Available: http://www.dnaindia.com/technology/report-soft-robot-powered-by-vacuum-can-climb-walls-grab-objects-2542831[Accessed on July 2018].

Soft Robots Disrupting Robotics, 2017. [Online]. Available: https://disruptionhub.com/5-soft-bots-disrupting-robotics/[Accessed on July 2018].

R. L. Truby, M. Wehner, A. K. Grosskopf, D. M. Vogt, S. G. M. Uzel, R. J. Wood, J. A. Lewis, "Soft Somatosensitive Actuators via Embedded 3D Printing", Advanced Materials, vol. 30, 2018. [Online]. Available: https://doi.org/10.1002/adma.201706383

F. Renda, F. Boyer, J. Dias, L. Seneviratne,"Discrete Cosserat Approach for Multi-Section Soft Robots Dynamics”, Transaction on Robotics, [Online]. Available: http://arxiv.org/abs/1702.03660 [Accessed on July 2018]

S. Cubero, Industrial Robotics: Theory, Modeling and Control. plV pro literatur Verlag Robert Mayer-Scholz, 2007.[Online]. Available: http://zums.ac.ir/files/research/site/ebooks/Robotics/Industrial%20Robotics%20Theory%20Modelling%20and%20Control.pdf

A. D.Marchese, D. Rus, "Design, kinematics, and control of a soft spatial fluidic elastomer manipulator" . International Journal Of Robotics Research, vol. 35(7), pp. 840-869, 2016. [Online]. Available: http://dx.doi.org/10.1177/0278364915587925

A. D.Marchese, R.Tedrake, D. Rus, "Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator", The International Journal Of Robotics Research, no. 8, p. 1000, 2016.[Online]. Available:http://groups.csail.mit.edu/robotics-center/public_papers/Marchese15a.pdf

S. Wolf, "Soft Robotics with Variable Stiffness Actuators: Tough Robots for Soft Human Robot Interaction",Soft Robotics. Springer, 2015. [Online]. Available : https://doi.org/10.1007/978-3-662-44506-8_20

L. Ming, A. Mahdi, O. D. Cagdas, "Theoretical Modeling and Experimental Analysis of a Pressure-Operated Soft Robotic Snake", Soft Robotics, vol. 1(2), 2014. [Online]. Available: https://doi.org/10.1089/soro.2013.0011

R. J. Webster, B. A. Jones. "Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review", International Journal Of Robotics Research, vol. 29(13), pp. 1661-1683, 2010. [Online]. Available: http://dx.doi.org/10.1177/0278364910368147

E.Coevoet, T. Morales-Bieze, F. Largilliere, Z. Zhang, M. Thieffry, M. Sanz-Lopez, C. Duriez, "Software toolkit for modeling, simulation, and control of soft robots", Advanced Robotics, vol. 31(22), pp. 1208-1224, 2017. [Online]. Available: http://dx.doi.org/10.1080/01691864.2017.1395362

E. G Kaigom, J. Roßmann, "Physics-based simulation for manual robot guidance", An eRobotics approach. Robotics And Computer Integrated Manufacturing,vol. 43 (Special Issue:Extended Papers Selected from FAIM 2014), pp. 155-163. [Online]. Available: http://dx.doi.org/10.1016/j.rcim.2015.09.015

M. Thieffry, A. Kruszewski, O. Goury, T. M. Guerra, C. Duriez.

"Dynamic Control of Soft Robots", IFAC World Congress, 2017. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01558844/file/DynamicControlSoftRobots.pdf

C. Duriez,"Control of elastic soft robots based on real-time finite element method". 2013 IEEE International Conference On Robotics & Automation, 3982, 2013.[Online]. Available:http://dx.doi.org/10.1109/ICRA.2013.6631138

F.Largilliere, V. Verona, E. Coevoet, M. Sanz-Lopez, J.Dequidt, "Real-time control of soft-robots using asynchronous finite element modeling", ICRA, IEEE International Conference on Robotics andAutomation, pp. 6, 2015. [Online]. Available:https://hal.inria.fr/hal-01163760/document

Z.Zhang, J. Dequidt, A. Kruszewski, F. Largilliere, C. Duriez,"Kinematic modeling and observer based control of soft robot using real-time Finite Element Method", 2016 IEEE/RSJ International Conference On Intelligent Robots & Systems (IROS), 5509, 2016.[Online]. Available:http://dx.doi.org/10.1109/IROS.2016.7759810

Ç.Nihat, B. Veli, "Artificial Neural Networks Based Inverse Kinematics Solution and Simulation of a Six Degree of Freedom Lighting Manipulator", Gazi Üniversitesi Fen Bilimleri Dergisi, Vol 6(1), pp 117-125, 2018. [Online]. Available:http://dx.doi.org/10.29109/http-gujsc-gazi-edu-tr.328422

L.Aggarwal, K.Aggarwal, R. J. Urbanic. "Use of Artificial Neural Networks for the Development of an Inverse Kinematic Solution and Visual Identification of Singularity Zone(s)", Procedia CIRP, vol. 17(Variety Management in Manufacturing), pp. 812-817, 2014. http://dx.doi.org/10.1016/j.procir.2014.01.107

M. Asadi-Eydivand, M.Ebadzadeh, M. Solati-Hashjin, C.Darlot, N. A. Abu Osman,"Cerebellum-inspired neural network solution of the inverse kinematics problem", Biological Cybernetics, vol. 109(6), pp. 561-574, 2015. http://dx.doi.org/10.1007/s00422-015-0661-7

M.Soylak, T. Oktay, İ. Turkmen, "A simulation-based method using artificial neural networks for solving the inverse kinematic problem of articulated robots", Proceedings Of The Institution Of Mechanical Engineers -- Part E -- Journal Of Process Mechanical Engineering (Sage Publications, Ltd.), vol. 231(3), p. 470, 2017. http://dx.doi.org/10.1177/054408915608755

M. Kovandžić, V.Nikolić, A. Al-Noori, I. Ćirić, M. Simonović, "Near field acoustic localization under unfavorable conditions using feedforward neural network for processing time difference of arrival", Expert Systems With Applications, 71138-146, 2017.[Online]. Available:http://dx.doi.org/10.1016/j.eswa.2016.11.030

R. Rojas R, Neural Networks. Springer-Verlag, 1996.[Online]. Available:http://dx.doi.org/10.1016/j.eswa.2016.11.030

V. Nikolić, Ž. Čojbašić, D. Pajović, Automatsko upravljanje: Analiza sistema, Nova Jugoslavija, 1996.




DOI: https://doi.org/10.22190/FUACR1901019K

Refbacks

  • There are currently no refbacks.


Print ISSN: 1820-6417
Online ISSN: 1820-6425