REALIZATION OF DISTRIBUTED MEDICAL DATA REPOSITORY IN AN ENVIRONMENT WITH HETEROGENOUS MIS

Aleksandar Milenković, Dragan Janković, Anđelija Đorđević, Aleksandar Spasić, Petar Rajković

DOI Number
https://doi.org/10.22190/FUACR210930011M
First page
135
Last page
154

Abstract


The introduction of centralized registers of medical data after a long time from the implementation of medical information systems and their long-term daily operation is a very challenging and demanding process. In this paper, three ways for the realization of centralized repositories of medical data are considered, and on that occasion, the advantages and limitations of these solutions are emphasized. Due to the heterogeneity of medical information systems in terms of technologies used and implementation, the construction of a distributed centralized national register of medical data emerges as a good solution. A proposal of architecture for the realization of the distributed central republic register of medical data is given. As an example of the proposed solution, the realized collaboration of the central republic radiological information system and its implementation with the medical information system MEDIS.NET is presented.

Keywords

Distributed medical data repository, radiology information system, medical information system, COVID-19, central radiological information systems

Full Text:

PDF

References


World Health Organization, Global strategy on digital health 2020-2025. Geneva: World Health Organization, 2021. [Online]. Available: https://apps.who.int/iris/handle/10665/344249 [Accessed: Sep. 21, 2021].

A. Salleh, "Information Systems in Health Care", HEALTHCARE SERVICE DELIVERY, Sep. 06, 2021. [Online]. Available: https://drdollah.com/hospital-information-system-his/ [Accessed: Jul. 29, 2021].

S. N. Murphy, H. C. Chueh, C. D. Herrick, "Information Technology", in Clinical and Translational Science, Elsevier, 2017, pp. 227–242. [Online]. Available: http://dx.doi.org/10.1016/B978-0-12-802101-9.00013-2.

T. D. Wade, "Traits and types of health data repositories", Health Inf. Sci. Syst., vol. 2, p. 4, Jun. 2014, doi: 10.1186/2047-2501-2-4.

A. Milenkovic, D. Jankovic, P. Rajkovic, "Extensions and adaptations of existing medical information system in order to reduce social contacts during COVID-19 pandemic", Int. J. Med. Inf., vol. 141, Sep. 2020, [Online]. Available: http://dx.doi.org/10.1016/j.ijmedinf.2020.104224.

D. Janković et al., "Medicinski informacioni sistem MEDIS.NET", Elektronski fakultet Niš - Laboratorija za medicinsku informatiku, 2010. [Online]. Available: http://www.elfak.ni.ac.rs/phptest/new/html/nauka/tehnicka_resenja/resenja/0259.html

D. M. Morens, P. Daszak, J. K. Taubenberger, "Escaping Pandora’s Box — Another Novel Coronavirus", N. Engl. J. Med., vol. 382, no. 14, pp. 1293–1295, Apr. 2020, [Online]. Available: http://dx.doi.org/10.1056/NEJMp2002106.

S. Markus, "How to fight COVID-19 with machine learning", Jul. 04, 2020. [Online]. Available: https://towardsdatascience.com/fight-covid-19-with-machine-learning-1d1106192d84 [Accessed: Aug. 12, 2021].

X. Xu et al., "Deep Learning System to Screen Coronavirus Disease 2019 Pneumonia", Engineering, vol. 6, no. 10, pp. 1122–1129, Oct. 2020, [Online]. Available: http://dx.doi.org/10.1016/j.eng.2020.04.010.

A. Narin, C. Kaya, Z. Pamuk, "Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks", Pattern Anal. Appl., vol. 24, no. 3, pp. 1207–1220, Aug. 2021, [Online]. Available: http://dx.doi.org/10.1007/s10044-021-00984-y.

RFZO, "Pregled liste čekanja". [Online]. Available: https://rfzo.rs/index.php/osiguranalica/listecekanja/pregled-lista-cekanja [Accessed: Sep. 21, 2021].

P. Rajkovic, D. Jankovic, A. Milenkovic, "Developing and deploying medical information systems for Serbian public healthcare: Challenges, lessons learned and guidelines", Comput. Sci. Inf. Syst., vol. 10, no. 3, pp. 1429–1454, 2013, [Online]. Available: http://dx.doi.org/10.2298/CSIS120523056R.

RFOHI, "Republic Fund Of Health Insurance". [Online]. Available: http://www.eng.rfzo.rs/ [Accessed: Sep. 21, 2021].

E. Waltz, "Testing the Tests: Which COVID-19 Tests Are Most Accurate?", IEEE Spectrum, Apr. 15, 2020. [Online]. Available: https://spectrum.ieee.org/testing-tests-which-covid19-tests-are-most-accurate [Accessed: Aug. 12, 2021].

Z. Zhang et al., "Insight into the practical performance of RT-PCR testing for SARS-CoV-2 using serological data: a cohort study", Lancet Microbe, vol. 2, no. 2, pp. e79–e87, Feb. 2021, [Online]. Available: http://dx.doi.org/10.1016/S2666-5247(20)30200-7.

H. E. Davies, C. G. Wathen, F. V. Gleeson, "The risks of radiation exposure related to diagnostic imaging and how to minimise them", BMJ, vol. 342, no. feb25 1, pp. 947–947, Feb. 2011, [Online]. Available: http://dx.doi.org/10.1136/bmj.d947.

World Health Organization, "Classification of Diseases (ICD)". [Online]. Available: https://www.who.int/standards/classifications/classification-of-diseases [Accessed: Sep. 21, 2021].

"eMedit.Webhooks.Utils 1.0.5". [Online]. Available: https://www.nuget.org/packages/eMedit.Webhooks.Utils/ [Accessed: Sep. 21, 2021].




DOI: https://doi.org/10.22190/FUACR210930011M

Refbacks

  • There are currently no refbacks.


Print ISSN: 1820-6417
Online ISSN: 1820-6425