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Abstract. In this paper a new method for design of the first order differentiator is 

presented. The proposed differentiator consists of two parallel branches, i.e. direct path 

and IIR all-pass filter. The described design method allows one to obtain solution with 

minimum mean relative error at the desired region by controlling the ratio of phase 

response extremes. A small relative magnitude error, as well as a low phase error, at 

low frequencies is condition for good time domain behaviour. The obtained differentiator 

can be realized by means of only two multipliers, hence being a good choice for real time 

applications. The proposed solution provides a lower magnitude error than several 

known differentiators with similar phase error. 
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1. INTRODUCTION 

Digital differentiators are an important class of digital filters which can be used in 
almost all engineering disciplines including control systems, communications, radar and 
signal processing applications. Also, digital differentiators are widely applied in the field 
of biomedical signal processing, speech and image processing and seismic systems. With 
this broad range of applications, the design of digital differentiators is extensively researched 
over a few decades. Therefore, the design of differentiators is of significant interest. 
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The frequency response of an ideal digital differentiator is equal to jω, where 1j = −  and 
ω is the angular frequency in radians. In general, a differentiator should have a linear phase 
response over the whole [0, π] frequency band to avoid the phase distortion. Differentiators 
having a perfectly linear phase response can be easily designed using FIR filters. Although 
causal and stable IIR differentiators do not have exact linear phase responses, they usually have 
lower filter orders and lower group delays compared to FIR counterpart differentiators. In 
applications where a linear phase is not required, IIR differentiators are more attractive than FIR 
differentiators for two main reasons. Firstly, they can satisfy given filter specifications with a 
much lower filter order, thereby reducing the computational requirement or the hardware 
complexity if hardware implementation is considered and, secondly, they usually have a much 
lower group delay thereby resulting in a lower system delay. 

Different approaches to design a digital differentiator have been proposed in the literature. 
The conventional approach to the IIR differentiator design is obtained by inverting the transfer 
function of the IIR integrator. The other design algorithms are based on approximation, 
optimization and interpolation techniques. Paper [1] has reported on the design where the 
passband phase response linearity error is minimized. Results of that research showed that the 
maximum passband amplitude response relative error and phase response error, for the same 
passband amplitude response error constraints, is lower compared to the differentiators designed 
using the state-of-the-art competing methods. In 2019, Goswami et. all. proposed a method 
which interpolates the bilinear transform and rectangular transform fractionally [2]. The genetic 
algorithm is used for optimization of unknown variables. This approach also has a better 
magnitude response than all state-of-the-art designs. Recursive digital differentiators have been 
designed by Al-Alaoui [3, 4], who proposed a novel approach to design a first-order digital 
differentiator by interpolating standard trapezoidal rule and rectangular rule linearly. Results 
showed linearity up to 0.7 of the full normalized Nyquist frequency range. Furthermore, 
fractional bilinear transformation, proposed by Pei and Hsu, is another method for designing a 
first-order digital differentiator [5]. 

An important aspect of the paper [6] is that the exploration is focused on the design of first-
order differentiators and integrators wider operating frequency bandwidth and linearity using 
bilinear transformations. Milić et. all. developed the structure of the overall differentiator 
composed of an approximately linear-phase all-pass filter, FIR poly-phase sub-filters, and a 
pure delay element [7]. Novelty of the proposed method in [8] lies in the fact that the wideband 
differentiator designed using lattice wave digital filter (LWDF) system incorporates all of the 
advantageous properties of LWDF with utilization of minimum hardware and also competent 
results are obtained using optimization techniques. Recently, Upadhyay introduced the designs 
which have similar magnitude responses with different phase characteristics. The lower 
percentage relative error for magnitude response over wideband, only with second-order 
systems makes these designs suitable for real-time applications [9, 10]. In [11], Ngo has also 
proposed a wideband digital integrator of order three which is based on the Newton-Cotes 
integration rule. It is noticed that these digital differentiators have nearly 7% or more relative 
error over the whole Nyquist band. Therefore, the design of wideband digital differentiators is 
the main issue in the current research environment. A new approach to the design of the nearly-
linear phase infinite impulse response low-pass differentiators using a parallel all-pass structure 
is discussed in [12]. Comparison with the existing nearly-linear phase infinite impulse response 
low-pass differentiators shows that the low-pass differentiators designed using the proposed 
method usually require less multiplications. Also using the parallel all-pass structure, full-band 
differentiator whose magnitude response approximates the ideal one in the weighted Chebyshev 
sense and the phase response is a nearly-linear function of frequency at low frequencies, as 
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given in paper [13]. A comprehensive analysis of the hardware complexity of different 
configurations for the realization of approximately linear phase filters is presented in [14]. 
The hardware complexity for the realization of the parallel all-pass structure is compared to 
the standard elliptic filters with the adequate group delay corrector in cascade. Both considered 
filters are designed to have the same cut-off frequency and magnitude approximation error, as 
well as the same maximum group delay error in all pass-bands. Conventional digital 
differentiators work efficiently up to low the frequency region only. The main purpose of the 
papers [15, 18] is to design and implement the first order Al-Alaoui differentiator at microwave 
frequencies. 

This paper presents a method for designing an infinite impulse response digital 
differentiator with a nearly linear phase and magnitude responses. The proposed 
configuration outperforms existing differentiators of the same order in terms of the 
magnitude response. The novelty of the presented design is the introduction of the 
parallel all-pass structure resulting in the first order full-band differentiator transfer 
function requiring only two multiplications. The amplitude characteristic of proposed 
differentiators directly depends on all-pass network phase response and it is clear that 
the design can be achieved just through the all-pass filter phase approximation.  

The approach for the design of recursive full-band digital differentiators using parallel 
all-pass structure is discussed in this paper. The design is realized using the parallel 
connection of direct path (zero order delay line) and the first order IIR all-pass filter. The 
magnitude response of a designed full-band differentiator approximates the ideal one in the 
weighted Chebyshev sense. The opposite of that, phase response linearity of the proposed IIR 
full-band differentiator cannot be controlled, while it is a nearly-linear function of frequency at 
low frequencies. The proposed design procedure is very efficient and the solution is 
obtained after only a few iterations. 

2. REALIZATION STRUCTURE 

The frequency response of an ideal digital differentiator is described with: 

 ( )( ) Idealjj j

IdealH e j e j e   −= = , (1) 

where τ represents the average group delay. It is obvious that magnitude characteristic is 

the linear function with zero value for 0 =  and reaching π at  = . It holds: 

 (0) , ( ) ( 0.5)
2

Ideal Ideal


    = = − − , (2) 

taking into account that the phase is linear with a slope -τ. 

The proposed first order digital IIR differentiator could be realized as the parallel 

connection of direct path and the first order all-pass filter as shown on Fig. 1.  

 

Fig. 1 Differentiator configuration realized applying first order all-pass filter. Input and 

output signals are represented with their 𝑧 transforms 
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At the output of the composite filter, two branches feed the subtractor, as shown in Fig. 

1. to provide the magnitude characteristic given with:  

 1 2 1( ) ( ) ( )( )
( ) , ( ) sin sin

( ) 2 2

j

d d

Y z
H z H e

X z

      
 

−
= = = , (3) 

where 
2
() is the phase of the second branch (with zero value in our case) and 

1
()is the 

first order all-pass filter phase. The multiplier π/2 is required to obtain gain of π at  = π 

hence magnitude response of the proposed differentiator matches that of an ideal one at 

DC and Nyquist frequencies. The phase of the proposed filter is:  

 1 2 1( ) ( ) ( )
( )

2 2
d

       
 

+ + +
= = . (4) 

The phase of the first order IIR all-pass filter fulfils:  

 
1 1(0) 0, ( )   = = − . (5) 

So, the phase of the differentiator would satisfy:  

 (0) , ( ) 0
2

d d


  = = , (6) 

and the average group delay would be: 

 
(0) ( )

0.5d d  




−
= = , (7) 

given in samples. All previous information points to:  

 (0) (0), ( ) ( )d Ideal d Ideal     = = , (8) 

i.e. zero approximation error at DC and the Nyquist frequency. Due to the straightforward 

dependence of the magnitude of the parallel all-pass structure and phases of filters from 

two branches, given with Eq. (3), to reach zero magnitude error, the stable all-pass filter 

needs to have the phase of shape 

 ( ) 2arcsinIdeal


 


= − , (9) 

which is not a linear function of frequency. We can conclude at this point that a compromise 

between magnitude and phase error will be basic for the approximation problem definition. 

The transfer function of the all-pass filter is: 
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satisfying: 
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hence, the transfer function of the proposed differentiator is:  
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The magnitude characteristic of the differentiator is given with: 
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 (13) 

since the stable all-pass filter has all poles inside the unit circle (|a1|1). Starting from the 

ideal all-pass filter’s phase given with Eq. (9) and allowing the maximum phase deviation 

Deg given in degrees, it is easy to predict the region where characteristics of a real filter 

could be located: 
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−
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 (14) 

Results are depicted in Fig. 2, choosing the allowed error Deg=7 degrees. Yellow regions 

correspond to the differentiator and the green one shows the all-pass filter’s phase. The 

dashed black lines indicate ideal differentiator characteristics. 

 

Fig. 2 (a) Possible areas for magnitude and (c) phase of first order differentiator with 

(b) corresponding relative magnitude error and (d) phase error for maximum all-

pass filter phase error of 7 degrees 

The same maximum all-pass filter phase error at all frequencies provides slightly higher 

magnitude error at low frequencies but induces a significant relative error in this area. It 

leads to the conclusion that a design needs to provide as low as possible phase error at low 

frequencies to ensure a permissible relative error at frequencies where input signal 
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spectrum components are significant. As expected, the existence of non-linear term in the 

ideal phase will contribute to an enlarged differentiator phase error at higher frequencies 

according to the nature of  arcsin () function. In the ideal case (to remind, the term ideal 

corresponds to the case where an ideal magnitude is achieved) maximum phase error 

reaches 18.9 degrees. The designed filter could lower this value letting decreased all-pass 

phase error at the cost of the magnitude error increase. 

3. INITIAL SOLUTION AND ITERATIVE APPROACH IN FILTER DESIGN 

The phase of thN  order IIR all-pass filter is: 
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which for N=1 reduces to: 
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and the phase of differentiator becomes: 
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while the magnitude has the value: 
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In all published papers authors examine the relative magnitude error: 
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rather than the absolute magnitude error. The differentiator design comes down to adequate 

determination of a coefficient a1 solving the all-pass filter’s phase approximation problem. 

In the nonlinear phase approximation, the all-pass phase error curve has one more extremum 

(two in our case) compared to the filter’s order. Hence, one could form a system of equations 

to, except filter coefficient, one more parameter be optimized. Between two extrema, there 

exist one frequency, denoted as  z, where the relative magnitude error has zero value ( z) = 0: 
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Let it be / 2z = , then Eq. (20) becomes: 
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to give a*
1
 = 0.268 as the initial solution which provide a good starting point for the iterative 

procedure for the filter design. The relative magnitude error and the all-pass filter’s phase 

error are displayed in Fig. 3. 

 

Fig. 3 (a) Relative magnitude error of differentiator and (b) phase error of all-pass filter for 

initial solution 

Note that the obtained initial solution has an almost equiripple relative error. There are 

one maximum and one minimum at phase error curve with unequal values. As will be seen 

later, the successful design can be achieved by controlling the ratio of this two phase error 

extremes.  

The equiripple magnitude error could be reached by solving the system of two equations:  
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where  r is the maximum relative error and  i are frequencies of relative error extrema. After 

substituting the differentiator’s magnitude function with the truncated Taylor series, system 

of Eq. (22) becomes: 
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with values of the differentiator magnitude and corresponding derivatives obtained using the 

starting value a*
1
. 
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The solution of system (23) is the column vector of increments and it allows one to 

iteratively obtain new values: 

 
* *

1 1 1, r r ra a a   = +  = +  , (25) 

which are initial solution[s] for the next iterative step. The procedure continues until the 

maximal absolute value of increments is larger than the predefined small number (in given 

examples value 10-10 has been chosen).  

4. EVALUATION OF DIFFERENTIATOR PERFORMANCE 

To estimate the overall differentiator performance several parameters are calculated, 

namely the magnitude mean relative error (MREL, MRE1000=MRE): 
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( )1
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H e
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

=

= − , (26) 

and the corresponding maximum relative error 
r , phase mean error: 

 ( ) ( )
1

1 L

L d i Ideal i

i

MPE
L
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=

= − , (27) 

with the adherent maximum phase error  p. MRE and MPE in all examples have been 

calculated on a discrete set of equidistant frequency points  i =  i / 1000, i = 1,2,...,1000. 

The equiripple relative magnitude error solution is presented in Fig. 4 with a1 = 0.2665, 


 r = 0.0903. The maximum phase error has value of 15.4569 degrees and the maximum all-

pass phase deviation is 21.5626 degrees as given in Table 1. The other extremum of the all-

pass phase error has the value 2.0368, located at low frequencies. As expected, a higher all-

pass phase error contribute to the differentiator phase error lower than “ideal” 18.9 degrees.  

This phase improvement is paid with an increased relative error near the Nyquist 

frequency where the all-pass phase extremum is located. The relative error near zero 

frequency demands a very small all-pass phase fluctuation as shown in Fig. 4(b). 

Table 1 Parameters of differentiator designed by equiripple relative error 

r  MRE MRE500  p deg  MPE MPE500 a1 

0.0903 0.0581 0.0589 15.4569 9.7902 8.5018 0.266513 

Instead of a design based on the relative error control, the solution is achievable through 

the all-pass phase error adjustment. The system described by Eq. (23) becomes: 
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where the parameter  > 1 gives information how many times second extremum of the all-pass 

phase error is greater than the first one (). Such approach is intuitive, the second extremum at 

high frequency increases if 𝛼 is increased, but the first extremum at low frequency decreases 

and guarantees a better magnitude of the differentiator exactly at frequencies where spectral 

components of the input signal are significant. Obtained results are given in Figs. 5-8.  

 

Fig. 4 (a) Magnitude, (b) relative error, (c) phase and (d) phase error of first order differentiator 

with equiripple relative error 

 

Fig. 5 Phase error of all-pass filter and differentiator for different values of parameter α 
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The higher ratio of two all-pass error extrema provides a lower differentiator phase error. It 

is evident that even for large α, this error is still higher than 14 degrees as shown in Fig. 5. 

Increasing of parameter 𝛼 lower relative error but this trend stops about α=11 as given in 

Fig. 6. 

In Fig. 5, peak values of phase are given while Fig. 7 corresponds to average ones. No 

matter the second phase error extremum increase, its influence exists only at a narrow band 

at high frequencies, the mean phase error decrease. By comparing MRE1000 and MRE500 it 

can be concluded that all solutions exhibit a lower phase deviation at low frequencies. 

From Fig. 8, one can conclude that MRE could be improved to some extent by 

increasing the second phase error extremum until saturation occurs. At low frequencies the 

mean relative error steadily improves by the increased α (see Table 2). 

Table 2 Parameters of differentiator designed by minimization of MRE500, α =34.9 

r  MRE MRE500  p deg  MPE MPE500 a1 

0.104117 0.05052 0.02539 14.0178 8.88524 7.82163 0.24222 

 

Fig. 6 Magnitude error of differentiator for different values of parameter 𝛼 

 
Fig. 7 Mean phase error for different values of parameter α for L=500 and L=1000 
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Fig. 8 Dependence of mean magnitude error on parameter α for L=500 and L=1000 

5. TIME DOMAIN BEHAVIOUR 

To check the influence of the decreased error at low frequencies, the equiripple relative 

error design needs to be compared with the optimized MREL. For L=500 differentiator’s 

features are given in Fig. 9. 

Compared to results from Fig. 4 one could notice a lower relative error and phase error 

of the differentiator at low frequencies, in particular for 0.3  . To check the time 

domain behaviour, both differentiators will get a triangle input signal with the unity slope. 

Average deviations in the time domain: 

 
1

0

1
( ) [ ] [ ]

M

T d Id

n

E M y n y n
M


−

=

= − − , (29) 

from the ideal output yId are calculated. The parameter τ is introduced to take into consideration 

the delay of the output signal compared to an ideal case. The input signal and corresponding 

output signals for M = 40 are given in Fig. 10. The differentiator with the equiripple relative 

error has ET(40) = 0.1033 but minimized MRE500 leads to ET(40) = 0.0584. 

The short period signal has high frequency components. Both designed filters have a 

significant distortion of a magnitude characteristic at high frequencies. It is the reason for 

similar ET values for M=2. The longer period shift spectrum components toward low 

frequencies where the differentiator designed by the MRE500 optimization has advantages 

(the approximation error is lower in that range). The longer the period M the richer the 

spectrum at low frequencies. 

In order to highlight the performances of the proposed solution, experiments are carried 

out with other known methods [2-6]. The results are shown in the Figs. 11-13, and Tables 

3-9. 
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Fig. 9 (a) Magnitude, (b) relative error, (c) phase and (d) phase error of first order differentiator 

with minimized MRE500 

 

Fig. 10 Output of the differentiator for  = 34.9 (optimized MRE500) and  = 10.58 (equiripple 

relative error) 
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Fig. 11 Average deviation of differentiator’s output from ideal output in time domain  

 

Fig. 12 Influence of parameter α on relative magnitude error and phase error of differentiator 

The restricted number of bits for coefficient representations reduces the number of 

possible locations of filter poles. All analysed filters are robust and remain stable with only 

two bits dedicated for fractional parts. The given Tables show that the proposed filter has 

the minimum maximal relative magnitude error compared to other analysed filters if fractional 

parts of coefficients are represented with 2 to 8 bits. Al Aloui differentiator [3, 4] has the output 

signal closer to an ideal one thanks to a similar magnitude error but twice smaller phase error. 

A similar conclusion can be made with Goswami et. all. differentiator [2]. Tsai and Chu 

[6], and Sankranti et. all., differentiators [18] have an almost double magnitude error with 

somewhat better phase response but increased time domain error. All given examples point 

to the fact that the good time domain behaviour demands not only the minimum magnitude 

error but also the restricted phase error. 
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Table 3 Parameters of differentiator designed by minimization of MRE500, α=34.9, and 

ET = 0.0584 after quantization 

bit  r E Tq(40)  p [deg]  a1 

8 0.1041 0.0583 14.0157 0.2422 

7 0.1041 0.0583 14.0157 0.2422 

6 0.0994 0.0730 14.4775 0.2500 

5 0.0994 0.0730 14.4775 0.2500 

4 0.0994 0.0730 14.4775 0.2500 

3 0.0994 0.0730 14.4775 0.2500 

2 0.0994 0.0730 14.4775 0.2500 

Table 4 Parameters of Goswami et. all. [2] differentiator after quantization 

bit  r E Tq(40)  p [deg]  pole 

8 0.1261 0.0433 9.9583 0.1729 

7 0.1261 0.0433 9.9583 0.1729 

6 0.1360 0.0368 9.4495 0.1642 

5 0.1040 0.0384 10.4757 0.1818 

4 0.1360 0.0595 10.1642 0.1765 

3 0.1815 0.0107 7.1808 -0.1250 

2 0.1665 0.0250 14.4775 -0.2500 

Table 5 Parameters of Al Aloui differentiator [3, 4] after quantization 

bit  r E Tq(40)  p [deg]  pole 

8 0.1512 0.0125 8.2132 0.1429 

7 0.1512 0.0125 8.2132 0.1429 

6 0.1512 0.0125 8.2132 0.1429 

5 0.1512 0.0125 8.2132 0.1429 

4 0.1512 0.0125 8.2132 0.1429 

3 0.1512 0.0125 8.2132 -0.1429 

2 0.2000 0.1980 14.4775 -0.2500 

Table 6 Parameters of Tsai and Chu [6] differentiator after quantization 

bit  r E Tq(40)   p [deg]  pole 

8 0.1676 0.1360 9.4428 0.1641 

7 0.1711 0.1394 9.4428 0.1641 

6 0.1730 0.1323 9.8969 0.1719 

5 0.1699 0.1466 8.9893 0.1563 

4 0.1790 0.1184 10.8069 0.1875 

3 0.1186 0.1204 7.1808 -0.1250 

2 0.1665 0.0250 14.4775 -0.2500 
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Table 7 Parameters of Sankranti et. all. [18] differentiator after quantization 

bit  r E Tq(40)  p [deg]  pole 

8 0.2005 0.1899 8.1855 -0.1424 

7 0.1983 0.1865 8.2685 -0.1438 

6 0.2027 0.1933 8.1022 -0.1409 

5 0.2001 0.1857 8.4338 -0.1467 

4 0.2058 0.2011 7.7664 -0.1351 

3 0.1730 0.1480 9.0847 -0.1579 

2 0.3017 0.3097 6.3794 -0.1111 

 

Fig. 13 Comparison of proposed with existing first order differentiators. (a) Magnitude and 

(b) relative magnitude error, (c) phase and (d) phase error. 

Table 8 Parameters of obtained results 

Diff  r MRE MRE500  p [deg]  MPE MPE500 pole 

Prop 34.9 0.1041 0.05052 0.02539 14.0178 8.88524 7.82163 -0.24222 

Prop 500 0.1152 0.0550 0.0221 13.0299 8.2628 7.3418 -0.2255 

Al Aloui [3, 4] 0.1503 0.0242 0.0082 8.2132 5.3126 5.0253 -0.1429 

Goswami et. all. [2] 0.1265 0.0238 0.0183 9.9164 6.3924 5.9354 -0.1722 

Tsai and Chu [6] 0.1693 0.1342 0.1390 9.5553 6.1636 5.7452 -0.166 

Sankranti et. all.  [18] 0.2001 0.1661 0.1877 8.2132 5.3126 5.0253 -0.1428 

Table 9 Parameters of differentiators 

Differentiator Numerator Denominator 

Al Aloui [3, 4] [1  -1] [7/8  1/8] 

Goswami et. all. [2] [1.18  -1.18] [1.04  0.1791] 

Tsai and Chu [6] [1.31  -1.31] [1  0.166] 

Sankranti et. all. [18] [π  -π] [7/3  1/3] 
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In general, the transfer function of the first order IIR filter requires three multipliers. 

However, it is well known that all-pass filters, being a special case of IIR filters since numerator 

and denominator polynomials are mirror image polynomials, can be realized with a reduced 

number of multiplications which is equal to the filter order. Hence, proposed first order 

differentiators require only two multipliers  

6. CONCLUSIONS 

The design of the first order differentiator obtained by the parallel connection of direct 

path and IIR all-pass filter is proposed in this paper. First order differentiator could be 

realized with a minimum number of multiplications thanks to the applied IIR all-pass sub-

filter which demands only one multiplier. The average group delay of the proposed filters 

equals 0.5. To provide an ideal magnitude, the all-pass phase response should deviate from 

the ideal one for nonlinear term of value 2 arcsin ( /). This phase constraint causes the 

differentiators’ maximum phase error to be above 13 degrees but this maximum occurs at 

high frequencies where in a real situation scenario the input signal spectral components are 

not significant. This feature could provide a good time domain behaviour. The proposed 

approach could provide the equiripple magnitude and phase error but this is not the optimal 

solution if the time domain behaviour is of primary importance. To minimize the deviation 

of the output signal it is important to provide as minimum as possible both phase and magnitude 

errors at low frequencies. It is achieved by introducing the parameter defining the ratio of the 

second and first all-pass filter’s phase error considering that a straightforward dependence 

between all-pass filter phase and differentiator magnitude exists. Minimum number of 

multiplications required for filter realization makes them ideal candidates for VLSI and real-

time applications. The finite word-length analysis shows that the proposed differentiator 

remains stable even when the coefficient’s fractional part is represented by only two bits. 

Acknowledgement: This work has been supported by the Ministry of Education, Science and 

Technological Development of the Republic of Serbia. 

REFERENCES 

[1] R. C. Nongpiur, D. J. Shpak, and A. Antoniou, “Design of IIR digital differentiators using constrained 

optimization”, IEEE Transactions on Signal Processing, vol. 62, no. 7, pp. 1729-1739, 2014. doi: 

10.1109/TSP.2014.2302733 

[2] O. P. Goswami, T. K. Rawat, and D. K. Upadhyay, “A novel approach for the design of optimum IIR 

differentiators using fractional interpolation”, Circuits, Systems, and Signal Processing, vol. 39, pp. 1688-
1698, 2020. doi: 10.1007/s00034-019-01211-0 

[3] M. A Al-Alaoui, “Novel approach to designing digital differentiators”, Electronics Letters, vol. 28, no. 15, 

pp. 1376-1378, 1992. doi: 10.1049/el:19920875 
[4] M. A Al-Alaoui, “Novel digital integrator and differentiator”, Electronics Letters, vol. 29, no. 4, pp. 376-

378, 1993. doi: 10.1049/el:19930253 

[5] S.-C. Pei and H. Hsu, “Fractional bilinear transform for analog-to-digital conversion”, IEEE Transaction 
on Signal Processing, vol. 56, no. 5, pp. 2122-2127, 2008. doi: 10.1109/TSP.2007.912250 

[6] L.-C. Tsai and K.-C. Chu, “Design of first-order differentiator and integrator using bilinear transformations”, 

IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E92-
A, no. 3, pp. 928-931, 2009. doi: 10.1587/transfun.E92.A.928 



 Design of First Order Differentiator with Parallel All-pass Structure 55 

 

[7] L. D. Milić, M. D. Lutovac, and J. D. Ćertić, “Design of first-order differentiator utilising FIR and  IIR 
sub-filters”, International Journal of Reasoning-based Intelligent Systems vol. 5, no. .1, pp. 3-11, 2013. 

doi: 10.1504/IJRIS.2013.055122 

[8] R. Barsainya and T. K. Rawat, “Novel design of recursive differentiator based on lattice wave digital filter”, 
Radioengineering, vol. 26, no. 1, pp. 387-395, 2017. doi: 10.13164/re.2017.0387 

[9] D. K. Upadhyay, “Class of recursive wideband digital differentiators and integrators”, Radioengineering, 

vol. 21, no. 3, pp. 904-910, 2012. 
[10] D. K. Upadhyay, “Recursive wideband digital differentiators”, Electronics Letters, vol. 46, no. 25, pp. 1-

2, 2010. 

[11] N. Q. Ngo, “A new approach for the design of wideband digital integrator and differentiator”, IEEE 

Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 9, pp. 936-940, 2006. doi: 

10.1109/TCSII.2006.881806 

[12] G. Stančić, I. Krstić, and S. Cvetković, “All-pass-based design of nearly-linear phase IIR low-pass 
differentiators”, International Journal of Electronics, vol. 107, no. 9, pp. 1451-1470, 2020. doi: 10.1080/ 

00207217.2020.1726498 

[13] G. Stančić, I. Krstić, and M. Živković, “Design of IIR fullband differentiators using parallel all-pass 
structure”, Digital Signal Processing, vol. 87, pp. 132-144, 2019. doi: 10.1016/j.dsp.2019.01.026 

[14] G. Stančić, M. Đurić, B. Jovanović, and S. Cvetković, “A complexity analysis of IIR filters with an approximately 

linear phase”, Radioengineering, vol. 28, no. 2, pp. 430-438, 2019. doi: 10.13164/re.2019.0430 
[15] S. R. Sankranti, T.K. Battula, and M.R. Veera, “Design and implementation of first order digital 

differentiators at microwave frequencies”, American Journal of Signal Processing, vol. 5, no.3, pp. 56-58, 

2015. doi: 10.5923/j.ajsp.20150503.02 
[16] S. Nikolić, G. Stančić, and S. Cvetković, “Realization of digital filters with complex coefficients”, FACTA 

UNIVERSITATIS: Series Automatic Control and Robotics, vol. 17, no. 1, pp. 25-38, 2018. doi: 10.22190/ 

FUACR1801025N 
[17] M. Đurić, G. Stančić, and M. Živković, “A new method for design of selective digital IIR filters with 

arbitrary phase”, FACTA UNIVERSITATIS: Series Automatic Control and Robotics, vol. 17, no. 3, pp. 191-

204, 2018. doi: 10.22190/FUACR1803191D  
[18] S. R. Sankranti, T. K. Battula, and M. R. Veera, “Design and implementation of first order digital differentiators 

at microwave frequencies”, American Journal of Signal Processing, vol. 5, no. 3, pp. 56-58, 2015. doi: 

10.5923/j.ajsp.20150503.02 
[19] B. T. Krisha and S. S. Rao, “On design and applications of digital differentiators”, Proceedings of the On 

design and applications of digital differentiators, Anna University, Chennai, India, December 13.-15., 

2012, pp. 1-7. doi: 10.1109/ICoAC.2012.6416802 
 


