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Abstract. This paper deals with the problem of maximizing the sales of a particular product 

when the revenue function is nonlinear in dependence of the demand for that product. This 

type of problem is usually solved by the nonlinear programming method which has been 

sufficiently described in mathematical theory; however, its use is not that simple. Solving 

functions of more than two variables is rather complicated and requires an appropriate 

mathematical model as well as suitable software for computer solving of the given problem, 

which sometimes involves team work.  
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INTRODUCTION 

Problems in nonlinear programming appear when the objective function, that is, a 

corresponding system of constraints, is defined by nonlinear dependencies. Unfortunately, 

there is no universal solution to these problems, as there is for linear models, the majority of 

which are solved, for example, by the Simplex method.  Moreover, the LP model is a special 

case of the general NLP model and a number of different methods and procedures have been 

developed for its solving. In most cases, all of them depend on the type of nonlinearity that 

exists in the specific NLP problem, which means that a large number of these problems have 

not been solved yet. This is exactly the reason why we have chosen to describe the most 

important terms, mathematical models and procedures for solving these types of problems in 

this paper. 

a. Formulating NLP problems  

The general task of nonlinear programming on which we will focus our attention here 

is the following:  

Minimize the function f(x), ie .find min f(x) with constrains –inequalities: 
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( ) 0ig x         1,... ,i m  

Whereby f, g1,...gm  functions are defined in R
n
, and x  R

n
. 

As with the LP problem, the task is to find the vector 

x =
1( ,..., )T n

nx x R  

which satisfies the given constraints and is, at the same time, consistent with the 

minimum value of function f(x). This function is called the objective function, and every 

condition gi (x)  0 i = 1,...,m,  refers to its constraints. Vector x  R
n
 which satisfies all 

constraints is called feasible solution or feasible point. A set of all feasible solutions 

makes a feasible region or a feasible set S  R
n
. 

So, the problem in nonlinear programming is finding the feasible solution x
*
, whereby 

f(x
*
)  f(x) for each feasible solution x.  A vector x

* 
is called optimal or a solution of the 

NLP problem. 

The NLP problem, of course, may be defined as function maximizing f(x) or defining 

max f(x) with constrains – inequalities in the following form: 

( ) 0,ig x        1,..., .i m  

In special cases when the objective function is linear and all the constraints are in the 

form of linear equations, inequations or their combination, the problem discussed above 

will become a linear programming problem, i.e. the standard maximum and minimum 

problems or some combination of the two.  

b. Kuhn-Tucker optimization condition 

As already mentioned the results of Nonlinear Programming Theory in mathematics 

are well-known and described. They are of course used in this paper on the example we 

had studied and which is related to an increase in the demand of a company. Therefore, it 

may be useful to give a brief description of these results so that we can understand all the 

procedures applied in the problem solving process. 

The analysis of the functions that are a result of the direct and Lagrangian dual 

problem (well-known in the NLP theory) leads to a set of facts which primarily offer the 

needed and sufficient optimization conditions for the solution of both problems. The 

application of Lagrangian principle is based on the famous Kuhn-Tucker Theorems 

which occupy an important place in the convex programming theory and as such will be 

in the center of our attention. Assume that X is a nonempty open set from R
n
, and that f, 

g1, ..., gm are formerly defined real n-dimensional functions. Now let us consider again 

the problem of function minimization f(x) under the following conditions x  X and 

gi(x)  0, i = 1,...m. To accomplish this, let us fix an arbitrary permissible point x0 X, 

and present it as follows 

0{ ( ) 0}.iI i g x   

   Assume now that functions f and gi are differentiable at xo, and vectors gi(xo). for 

i  I linearly independent.  
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Function f(x) which is differentiable at xo, can have only one vector – gradient 

1 2

( ) ( ) ( )
( ) , ,...

T

o o o
o

n

f x f x f x
f x

x x x

   
   

   
, whereby 

( )
,o

i

f x

x




 i = 1,...,n  are partial derivatives 

of f(x) at xo. At this point we introduce 

Theorem 1.1. (Kuhn-Tucker Theorems - Necessary Conditions). Suppose that x0 X 

is the local optimum of the given optimization problem, then there are numbers u1, u2,... 

um that lead to the following 

  0 0

1

( ) ( ) 0
m

i i

i

f x u g x


     (1)  

Whereby 0( ) 0i iu g x  and 0iu   for each i=1,……,m.  

 

Fig. 1 Geometric interpretation of Kuhn-Tucker optimization conditions 

 

The geometric interpretation of Kuhn-Tucker optimization conditions are shown in 

Figure 1. The arbitrary vector as a linear combination is as follows: 

0( ),i i

i I

u g x


      0,iu   

and must lie in the cone defined by the gradient vectors gi(x)  which define the constraints 

at x0. So, equation (1) leads to the following: 

 0 0( ) ( ),i i

i I

f x u g x


   , (2) 
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So vector f (x0) belongs to the cone defined by the gradient vectors of active 

constraints gi(x) at x0 if it meets Kuhn-Tucker optimization conditions. Here, as 

elsewhere, the numbers u1,...um  0... are called Lagrangian parameters or multipliers, 

while the following equations  

 0( ) 0i iu g x  ,         1,...i m , (3)   

are called complementary elasticity conditions. Kuhn-Tucker conditions may be expressed 

by forming a vector: 

0 0( ) ( ) 0Tf x u g x        0( ) 0Tu g x      0u   

whereby g (x0) is the n x m  matrix in which i-column equals the gradient gi (x0), and 

u = (u1,...,um)
T
 is m-dimensional vector of the Lagrangian multipliers. However, in 

practice the vector coefficient is usually calculated as follows: 

0,

,
i

i

i I
u

i I


 


 

whereby i > 0, are solutions for a system of linear equations (2). Obviously, this linear 

system is equivalent to the system (1); therefore, on the basis of the linear independence 

of vectors gi (x0), i  I, we can conclude that its solution i, i  I is unique.  

Theorem 1.2. (Sufficiency of Kuhn-Tucker Conditions) 

Suppose that f and gi, i  I are convex and differentiable at x0  R
n
. If Kuhn-Tucker 

conditions are satisfied at the same point, ie. there are ui, i  I such that (1) is true, then 

x0 is a solution to the global minimization NLP problem. 

Theorem 1.3. (Arrow - Ethoven) 

Suppose that the given nonlinear program is as follows: 

max ( )f x   

Under the condition ( )i ig x r         ( 1,2,... )i m  

0x   

and the following conditions are satisfied: 

(a) the objective function f(x) is differentiable and quasi-concave in the non-negative orthant. 

(b) all constraint functions gi (x) are differentiable and quasi-convex in the non-negative 

orthant. 

(c) The point x satisfies Kuhn-Tucker maximization conditions. 

(d) One of the following conditions is satisfied: 

d1. ( )jf x  at least for one variable xj. 

d2. ( ) 0jf x   for a variable xj that takes on positive value without any loss in constraints. 

d3. Not all n derivatives of function ( )jf x  are equal to zero, while function f(x) is twice more 

differentiable in the neighborhood of x , i.e. all second order partial derivatives are at x . 

d4. f(x) is a concave function  

then x  has maximum of  = f(x).  
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c. Sales maximization   

The objective of a typical micro-analysis of businesses primarily means profit 

maximization. However, the management may consider maximizing sales revenue a more 

important business objective than maximizing profit (this also depends on different 

organizational structures the management deals with). Total revenue Pu is one of the most 

important parameters that describe company’s competitiveness in an industry. One of the 

criteria of the company’s success and good management is whether the company increases 

its sales revenue or not. In that way and due to business results, profit as a parameter 

directly affects the system of rewards, i.e. the salaries of all employees including the 

salaries of the management. 

In other words, sales maximization is certainly an alternative goal of any organization, 

given that the company’s management, in order to avoid shareholders’ dissatisfaction, 

continually takes care that the total income level does not go below the defined minimum, i.e., 

 
0min ( )uD x    (4) 

In that case the problem that the company’s management has to deal with is 

maximizing the total revenue function Pu = Pu(x) considering the following constrains 

condition 

 0( ) ( )u u uD P x T x     (5) 

Whereby Du(x) is total income, Pu(x) is total revenue; Tu(x) refers to total expenses 

and x to production volume or demand. This condition can also be shown as follows: 

max ( )u uP P x  

                  under the condition  0( ) ( ) ,u uT x P x      0( 0)   

0x  

The question of whether Kuhn-Tucker conditions can be applied to this model or not 

primarily depends on the following two things: whether function Pu(x) is differentiable 

and concave, and whether function Tu(x)  is differentiable and convex. If this is so, the 

constraints function Du = Tu(x)  Pu(x) is also differentiable and convex, which means 

that Kuhn-Tucker necessary conditions can be applied. 

Of course, it is unlikely that we could draw more general conclusions based on 

assumptions about concavity, that is, convexity of quasiconcave function Pu(x) and  

quasiconvex function Tu(x). If we do consider such assumptions, then constraints function 

Du = Tu(x)  Pu(x) is the sum of two quasiconvex functions, while, at the same time, we 

cannot claim that the function itself is quasiconvex. If this be the case, then constraints 

function Du(x) can be transformed into quasiconvex, which further allows the application 

of sufficient conditions for extreme values. 

Under these conditions we use   to denote the Lagrangian: 

0( ) ( ( ) ( ))u u uP x y T x P x       

 Kuhn-Tucker conditions are composed of boundary conditions: 

 
' ' '
( ) ( ) ( ) 0u u uP x yT x yP x

x


   


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 0 ( ) ( ) 0u uT x P x
y





    


  (6) 

0x  

 

In the case of Pu(0) = 0
 
and Tu(0) > 0, i.e. that production is equal to zero, x = 0, then 

the following will be the case: 

0 (0) 0uT
y





   


 

which shows that the second boundary condition is not fulfilled.  Instead, we have to assume 

that x > 0, the condition which is absolutely in accordance with the fact that the production 

level that is equal to zero cannot be an element of the optimal solution set [x1, x2]. 

Due to the non-negativity condition x > 0, we can say that  / x = 0, which means 

that the first weak inequation (6) has to be fulfilled as an equation. The solution of that 

equation refers to the rule according to which we can define production as the one which 

maximizes sales with the following constraints: 

 
' '
( ) ( )

1
u u

y
P x T x

y
 


 (7)  

Where y can be equal to or greater than zero, i.e. y  0, if y = 0, this rule boils down to 

Pu' (x) = 0 while the company will tend to achieve production whose marginal revenue is 

as a follows: 
'

( ) ( ) 0g uP x P x   

Since the company would make maximum profit possible under these circumstances this 

would be output under ideal conditions. However, bearing in mind our assumptions, such an 

extreme situation is not possible because demand, xi 
which makes possible the afore-

mentioned conditions is outside the set of possible solutions, i.e., xi  [x1, x2]. In that case we 

have to assume that y > 0; however, this further means that  / y = 0

 

on the basis of which 

we can conclude that profit constraints hold with equality while the company tries to make at 

least minimum income 0. Assume that y > 0, this is the case when the output level maximizes 

sales, or in other words when marginal revenue is less than marginal cost, i.e. 

  
' '
( ) ( )u uP x T x         because          1

1

y

y



  (8) 

which would generally lead to higher output levels than the profit maximization rule, i.e., 

Pu'(x) = Tu'(x), the case when marginal revenue is equal to marginal cost. 

The particular problem we are dealing with here is the possibility of increasing sales 

of, i.e., demand for Ariel, the washing powder, sold at Maxi supermarket in Zajecar, 

(Belgian international food retailer Delhaize Group). The gained discrete data set shows 

nonlinear dependence among the parameters we were interested in. Therefore, we opted 

for nonlinear programming in order to solve the optimization problem – in this particular 

case, maximum sales. 

The paper further lists research methodology including the problem solution. Since 

revenue function Pu(x) is unknown as well as total expenses Tu(x) and total income Du(x)  

functions, the first step is to compute these functions on the basis of statistical discrete 

data set, i.e. the empirical data we gained after having conducted a survey in the above 
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mentioned company. The approximation method was used to compute functions as 

shown in Table 1. 

Table 1 Discrete Data Set 

 

Table 1 shows the survey results carried out at Maxi supermarket in Zajecar, 

(Delhaize Group). What we did was to monitor the sales of the washing powder Ariel in 

the period of 30 days. In the very table, x stands for demand and refers to kg 10
2
 and 

functions Pu(x) and Tu(x) stands for RSD 10
2
. 

 

Fig. 2 Graph of approximate functions of total revenue, expenses and income 
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On the basis of the empirical data we gathered during the research, and which are 

shown in Table 1 where the approximation method is used
1
, see [6], we can now 

compute the necessary functions; i.e. total revenue 

                                       2( ) 1,0005 89,988uP x x x                                        (9) 

total expenses 

                                            2( ) 3 10 150uT x x x                                            (10) 

and total income  Du(x) = Pu(x)  Tu(x) all shown in Figure 2. 

Now, we can apply the described Kuhn-Tucker optimization conditions to sales 

maximization, which as a consequence has an increase in the total revenue. 

The optimization problem that arises here is how to maximize the following: 

max ( )u uP P x  

under the condition  0( ) ( )u uT x P x    ,   0  

0x  

Also, total income Du(x) cannot be less than  5010
2
 i.e., one of the constraints 

conditions is the following: 

0 50   

If we apply Kuhn-Tucker conditions, our starting point is the following: 

  ' '( ) '( ) 0u u uP yT x yP x
x


   


 (11) 

 0 ( ) ( ) 0u uT x P x
y





    


 (12) 

Then, after the application of function differentiation rules in (9) and (10), and 

appropriate replacing in (11) and (12), we can arrange the inequations and finally get the 

following: 

  2,001 89,988 8,001 79,988 0x y x
x


     


  (13) 

 24,005 79,988 200 0x x
y


    


  (14) 

Now, if we assume that x = 0 in (14), we have that 200  0 which is contradictory. 

Therefore, condition 0x generates the following relation: 

                                              0 0x
x


  


                                                     (15) 

which further leads to the following:    

 2,001 89,988 (8,001 79,988) 0x y x      (16) 

                                                           
1 The approximation method is discussed in (6), Operational research, with original software solutions, Methods, 
which enable the computer application of this method. 
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Furthermore, condition y = 0 generates the following: 

 2,001 89,988 0x    (17) 

from which we calculate x, i.e. 

44,9715x   

If value x is now used in (14), we will have the following: 

4693,57 0
y


  


 

which is contradictory to condition   / y  0 . Therefore, if we assume that y > 0 we 

will have the following equation: 

  20 4,005 79,988 200 0x x
y


     


 (18) 

The following roots are calculated by solving the quadratic equation (18): 

 
1 2,9296x       

2 17,0649x   (19) 

Let us now check whether the solutions we arrived at, the roots x1 and x2 satisfy the 

Kuhn-Tucker conditions. If we replace root x1 in equation (15), i.e. in (16), we will have 

that y = 1,488, i.e. y < 0, which is contradictory to the previously given condition y > 0. 

Thus, we can conclude that root x1 in equation (18) does not satisfy the Kuhn-Tucker 

conditions. If we apply the same procedure with the other root x2 in equation (18), we get 

that y > 0, which satisfies the Kuhn-Tucker conditions, in this case in relation to the 

demand. 

On the other hand, the total income function Du is as follows 

 2( ) 4,0005 79,988 150uD x x x     (20) 

If this function’s differentiation gives a derivative equal to zero, we have the following: 

 
'

8,0001 79,988 0uD x     (21) 

By solving this equation (21), we get the following values for x: 

 9,9984x   22) 

The solution given at (22) stands for the demand or output volume whereby the total 
income Du is maximized in relation to the product (washing powder). Furthermore, if we 
compare the root x2 of the equation (18) with x, i.e. x2 > x, we can conclude that 
x2 = 17,0649 and that is the value that maximizes the total revenue function under the 
condition that the minimum value of the total income is as follows: 

2

0min 50 10uD    . 

CONCLUSION 

Thus, the problem is solved and we also confirm our hypothesis on the possibility of sales 
increase, i.e., that there are certain situations, depending on the market conditions, when it is 
possible to increase sales of a product at the expense of decreasing the total income. 
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The case we illustrated also shows that the major idea in NLP numerical solving when 

there are two variables is this: zero is to be taken as the value of each variable, which 

significantly simplifies boundary conditions since a number of members vanish in the 

process and therefore the mathematical model is rather simplified. If it is possible in this 

way to find appropriate non-negative values of the Lagrangian multipliers that satisfy all 

the boundary conditions in inequations, the solution which equals zero is the optimal one. 

However, if some of the inequations are disturbed, that will indicate that one variable or 

more are positive. For each positive value of the variable it is possible to loosen the 

conditions by changing the inequation into the equation. Solving that equation will lead 

either to a solution or to a contradiction. If we end up with a contradiction, we will have 

to search for new ideas and repeat the process all over again.  
It is also worth mentioning that if there are functions of more than two variables in 

nonlinear models, the very process of optimization problem solving becomes more 
complicated; therefore, it is necessary in such cases to write a suitable software since it 
will be more appropriate to use a computer for solving problems of this type. This, in 
most cases, especially when we deal with complex problems, requires teamwork. 
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MAKSIMIZIRANJE PRODAJE U USLOVIMA NELINEARNOSTI 

U ovom radu razmatramo problem maksimiziranja prodaje određenog artikla u slučaju kada je 

funkcija prihoda nelinearna u zavisnosti od tražnje određenog proizvoda. Ovakav zadatak se u principu 

rešava metodom nelinearnog programiranja, koja je u matematičkoj teoriji dovoljno opisana, ali njena 

primena nije tako jednostavna. U slučaju funkcija sa više od dve promenljive rešavanje ovakvih zadataka 

je veoma komplikovano i zahteva konstrukciju odgovarajućeg matematičkog modela, kao i pisanje 

softvera, kojim bi se postavljeni zadatak rešio na računaru, što ponekad zahteva timski rad. 

Ključne reči: Nelinearno programiranje, Kuhn-Tucker-ovi uslovi, funkcija prihoda, tražnja. 


