ARTIFICIAL INTELLIGENCE, BIG DATA AND IoT IN CIRCULAR ECONOMY: RESEARCH TRENDS AND PERSPECTIVES

Ivana Marković, Mirjana Jemović

DOI Number
https://doi.org/10.22190/FUEO241104019M
First page
285
Last page
293

Abstract


The transition to a sustainable and regenerative model of the economy the circular economy advocates relies on digitization and innovation that should help and support long-term sustainability. AI is a key technology that can support a smooth transition to a circular economy. At the same time, the Internet of Things is the main driver of process integration with other technologies, while Big Data plays an important role in the process of effective decision-making. Therefore, it is not surprising that research on the contemporary technologies in the circular economy attracts enormous attention of both the academic and professional community and that the number of publications in this field is increasing rapidly. In this paper, VOSviewer is used to discover research trends and provide a comprehensive and integrated approach to research on the role of artificial intelligence, big data and IoT as drivers of the circular economy.


Keywords

Circular economy, Artificial intelligence, Big data, Internet of things, IoT, AI.

Full Text:

PDF

References


Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Cagno, E., Neri, A., Negri, M., Bassani, C. A., & Lampertico, T. (2021). The role of digital technologies in operationalizing the circular economy transition: A systematic literature review. Applied Sciences, 11(8), 3328. https://doi.org/10.3390/app11083328

Chauhan, C., Parida, V., & Dhir, A. (2022). Linking circular economy and digitalisation technologies: A systematic literature review of past achievements and future promises. Technological Forecasting and Social Change, 177, 121508. https://doi.org/10.1016/j.techfore.2022.121508

Chen, C., & Song, M. (2019). Visualizing a field of research: A methodology of systematic scientometric reviews. PloS one, 14(10), e0223994. https://doi.org/10.1371/journal.pone.0223994

Haghani, M. (2023). What makes an informative and publication-worthy scientometric analysis of literature: a guide for authors, reviewers and editors. Transportation Research Interdisciplinary Perspectives, 22, 100956. https://doi.org/10.1016/j.trip.2023.100956

Kokol, P., Kokol, M., & Zagoranski, S. (2022). Machine learning on small size samples: A synthetic knowledge synthesis. Science Progress, 105(1), 00368504211029777. https://doi.org/10.1177/00368504211029

Kokol, P., Završnik, J., & Vošner, H. B. (2018). Artificial intelligence and pediatrics: A synthetic mini review. arXiv preprint arXiv:1802.06068. https://doi.org/10.48550/arXiv.1802.06068

Leydesdorff, L., & Milojević, S. (2012). Scientometrics. arXiv preprint arXiv:1208.4566. https://doi.org/10.48550/arXiv.1208.4566

McAllister, J. T., Lennertz, L., & Atencio Mojica, Z. (2022). Mapping a discipline: a guide to using VOSviewer for bibliometric and visual analysis. Science & Technology Libraries, 41(3), 319-348. https://doi.org/10.1080/0194262X.2021.1991547

Nobre, G. C., & Tavares, E. (2017). Scientific literature analysis on big data and internet of things applications on circular economy: a bibliometric study. Scientometrics, 111, 463-492. https://doi.org/10.1007/s11192-017-2281-6

Noman, A. A., Akter, U. H., Pranto, T. H., & Haque, A. K. M. (2022). Machine learning and artificial intelligence in circular economy: a bibliometric analysis and systematic literature review. Annals of Emerging Technologies in Computing (AETiC), 6(2), 13-40. https://doi.org/10.33166/AETiC.2022.02.002

Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3

Završnik, J., Kokol, P., Žlahtič, B., & Blažun Vošner, H. (2024). Artificial intelligence and pediatrics: synthetic knowledge synthesis. Electronics, 13(3), 512. https://doi.org/10.3390/electronics13030512

Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational research methods, 18(3), 429-472. https://doi.org/10.1177/1094428114562629




DOI: https://doi.org/10.22190/FUEO241104019M

Refbacks

  • There are currently no refbacks.


© University of Niš, Serbia
Creative Commons License CC BY-NC-ND
ISSN 0354-4699 (Print)
ISSN 2406-050X (Online)