DEVELOPING A MODEL TO PREDICT CORPORATE BANKRUPTCY USING DECISION TREE IN THE REPUBLIC OF SERBIA
Abstract
Keywords
Full Text:
PDFReferences
Agencija za licenciranje stečajnih upravnika (2018). Statistika stečajnih postupaka [Bankruptcy statistics]. Retrieved from: http://alsu.gov.rs/statistika-stecajnih-postupaka/ Accessed on 01.05.2018.
Agencija za privredne registre (2018). Objedinjena pretraga [Unified Search]. Retrieved from: http://pretraga2.apr.gov.rs/unifiedentitysearch Accessed on 10.05.2018.
Banasik, J., Crook, J., & Thomas, L. (2003). Sample selection bias in credit scoring models. Journal of the Operational Research Society, 54(8), 822–832.
Bastos, J. (2008). Credit Scoring With Boosted Decision Trees. Retrieved from: http://mpra.ub.unimuenchen.de/8156/, Accessed on 12.08.2019.
Bellovary, J. L., Giacomino, D. E., & Akers, M. D. (2007). A review of bankruptcy prediction studies: 1930 to present. Journal of Financial education, 33(Winter 2007) 1-42.
Berent, T., Bławat, B., Dietl, M., Krzyk, P., & Rejman, R. (2017). Firm’s default — new methodological approach and preliminary evidence from Poland. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(4), 753-773.
Breiman, L., Friedman, J. H., Olshen, R., and Stone, C. J. (1984). Classification and Regression Trees. Wadsworth & Brooks
Cha, S. H., & Tappert, C. C. (2009). A genetic algorithm for constructing compact binary decision trees. Journal of pattern recognition research, 4(1), 1-13.
Frydman, H., Altman, E. I., & Kao, D. L. (1985). Introducing recursive partitioning for financial classification: the case of financial distress. The Journal of Finance, 40(1), 269-291.
Gepp, A., Kumar, K., & Bhattacharya, S. (2010). Business failure prediction using decision trees. Journal of forecasting, 29(6), 536-555.
Gepp, A., & Kumar, K. (2015). Predicting financial distress: a comparison of survival analysis and decision tree techniques. Procedia Computer Science, 54, 396-404.
Härdle, W., & Simar, L. (2007). Applied multivariate statistical analysis. Berlin: Springer.
Huarng, K., Yu, H. K., & Chen, C. J. (2005). The application of decision trees to forecast financial distressed companies. In 2005 International Conference on Intelligent Technologies and Applied Statistics, Taipei, Taiwan.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. New York: Springer.
Kim, S. Y., & Upneja, A. (2014). Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models. Economic Modelling, 36, 354-362.
Kliestik, T., Misankova, M., Valaskova, K., & Svabova, L. (2018). Bankruptcy prevention: new effort to reflect on legal and social changes. Science and Engineering Ethics, 24(2), 791-803.
Kovacova, M., Kliestik, T., Valaskova, K., Durana, P., & Juhaszova, Z. (2019). Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oeconomia Copernicana, 10(4), 743-772.
Li, H., Sun, J., & Wu, J. (2010). Predicting business failure using classification and regression tree: An empirical comparison with popular classical statistical methods and top classification mining methods. Expert Systems with Applications, 37(8), 5895-5904.
McKee, T. E. (1995а). Predicting bankruptcy via induction. Journal of Information Technology, 10(1), 26-36.
McKee, T. E. (1995b). Predicting bankruptcy via an inductive inference algorithm: an extension. Artificial Intelligence in Accounting, Finance and Tax, Huelva, 87-98.
McKee, T. E., & Greenstein, M. (2000). Predicting bankruptcy using recursive partitioning and a realistically proportioned data set. Journal of forecasting, 19(3), 219-230.
Nayab, N. (n.d.). Review of Decision Tree Analysis Advantages. Retrieved from: https://www.brighthubpm.com/project-planning/106000-advantages-of-decision-tree-analysis/, Accessed on 11.08.2019.
Najab, N. (n.d.). Review of Decision Tree Disadvantages. Retrieved form: https://www.brighthubpm.com/project-planning/106005-disadvantages-to-using-decision-trees/, Accessed on 11.08.2019.
Nikolić, N., Zarkic-Joksimović, N., Stojanovski, D., & Joksimović, I. (2013). The application of brute force logistic regression to corporate credit scoring models: Evidence from Serbian financial statements. Expert Systems with Applications, 40(15), 5932-5944.
Olson, D. L., Delen, D., & Meng, Y. (2012). Comparative analysis of data mining methods for bankruptcy prediction. Decision Support Systems, 52(2), 464-473.
Quinlan, R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
Quinlan, R. (1987). Simplifying decision trees. International journal of man-machine studies, 27(3), 221-234.
Quinlan, R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo.
Shirata, C. (1998). Financial ratios as predictors of bankruptcy in Japan: an empirical research (pp. 437–445). Proceedings of the Second Asian Pacific Interdisciplinary Research in Accounting Conference, Osaka, Japan.
Sikavica, P., Hunjak, T., Begičević Ređep, N., & Hernaus, T. (2014) Poslovno odlučivanje [Business decision making]. Zagreb: Školska knjiga.
Stanišić, N., Mizdraković, V., & Knežević, G. (2013). Corporate Bankruptcy Prediction in the Republic of Serbia. Industrija. 41(4), 145-159.
Stanojević, S., Đorđević, N., & Volf, D. (2017). Primena kvantitativnih metoda u predviđanju poslovanja privrednih društava [Applying the Machine Learning Method in Predicting Business Winners vs. Losers through Financial Reports]. Oditor-časopis za Menadžment, finansije i pravo, 3(1), 92-101.
Weissova, I., Siekelova, A., & Kramarova, K. (2016). Modeling of company´s default probability in relation to its credit risk. Global Journal of Business, Economics and Management: Current Issues, 6(2), 130-137.
DOI: https://doi.org/10.22190/FUEO191118010V
Refbacks
- There are currently no refbacks.
© University of Niš, Serbia
Creative Commons License CC BY-NC-ND
ISSN 0354-4699 (Print)
ISSN 2406-050X (Online)