DEVELOPING A MODEL TO PREDICT CORPORATE BANKRUPTCY USING DECISION TREE IN THE REPUBLIC OF SERBIA

Sanja Vlaović Begović, Ljiljana Bonić

DOI Number
https://doi.org/10.22190/FUEO191118010V
First page
127
Last page
139

Abstract


Decision trees made by visualizing the decision-making process solve a problem that requires more successive decisions to be made. They are also used for classification and to solve problems usually addressed by regression analysis. One of the problems of classification that arises is the proper classification of bankrupt companies and non-bankruptcy companies, which  is then used to predict the likelihood of bankruptcy. The paper uses a random forests decision tree to predict bankruptcy of companies in the Republic of Serbia. The research results show the high predictive power of the model with as much as 98% average prediction accuracy, and it is recommended for auditors, investors, financial institutions and other stakeholders to predict bankruptcy of companies in Republic of Serbia.

Keywords

decision trees, bankruptcy, prediction, model

Full Text:

PDF

References


Agencija za licenciranje stečajnih upravnika (2018). Statistika stečajnih postupaka [Bankruptcy statistics]. Retrieved from: http://alsu.gov.rs/statistika-stecajnih-postupaka/ Accessed on 01.05.2018.

Agencija za privredne registre (2018). Objedinjena pretraga [Unified Search]. Retrieved from: http://pretraga2.apr.gov.rs/unifiedentitysearch Accessed on 10.05.2018.

Banasik, J., Crook, J., & Thomas, L. (2003). Sample selection bias in credit scoring models. Journal of the Operational Research Society, 54(8), 822–832.

Bastos, J. (2008). Credit Scoring With Boosted Decision Trees. Retrieved from: http://mpra.ub.unimuenchen.de/8156/, Accessed on 12.08.2019.

Bellovary, J. L., Giacomino, D. E., & Akers, M. D. (2007). A review of bankruptcy prediction studies: 1930 to present. Journal of Financial education, 33(Winter 2007) 1-42.

Berent, T., Bławat, B., Dietl, M., Krzyk, P., & Rejman, R. (2017). Firm’s default — new methodological approach and preliminary evidence from Poland. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(4), 753-773.

Breiman, L., Friedman, J. H., Olshen, R., and Stone, C. J. (1984). Classification and Regression Trees. Wadsworth & Brooks

Cha, S. H., & Tappert, C. C. (2009). A genetic algorithm for constructing compact binary decision trees. Journal of pattern recognition research, 4(1), 1-13.

Frydman, H., Altman, E. I., & Kao, D. L. (1985). Introducing recursive partitioning for financial classification: the case of financial distress. The Journal of Finance, 40(1), 269-291.

Gepp, A., Kumar, K., & Bhattacharya, S. (2010). Business failure prediction using decision trees. Journal of forecasting, 29(6), 536-555.

Gepp, A., & Kumar, K. (2015). Predicting financial distress: a comparison of survival analysis and decision tree techniques. Procedia Computer Science, 54, 396-404.

Härdle, W., & Simar, L. (2007). Applied multivariate statistical analysis. Berlin: Springer.

Huarng, K., Yu, H. K., & Chen, C. J. (2005). The application of decision trees to forecast financial distressed companies. In 2005 International Conference on Intelligent Technologies and Applied Statistics, Taipei, Taiwan.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. New York: Springer.

Kim, S. Y., & Upneja, A. (2014). Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models. Economic Modelling, 36, 354-362.

Kliestik, T., Misankova, M., Valaskova, K., & Svabova, L. (2018). Bankruptcy prevention: new effort to reflect on legal and social changes. Science and Engineering Ethics, 24(2), 791-803.

Kovacova, M., Kliestik, T., Valaskova, K., Durana, P., & Juhaszova, Z. (2019). Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oeconomia Copernicana, 10(4), 743-772.

Li, H., Sun, J., & Wu, J. (2010). Predicting business failure using classification and regression tree: An empirical comparison with popular classical statistical methods and top classification mining methods. Expert Systems with Applications, 37(8), 5895-5904.

McKee, T. E. (1995а). Predicting bankruptcy via induction. Journal of Information Technology, 10(1), 26-36.

McKee, T. E. (1995b). Predicting bankruptcy via an inductive inference algorithm: an extension. Artificial Intelligence in Accounting, Finance and Tax, Huelva, 87-98.

McKee, T. E., & Greenstein, M. (2000). Predicting bankruptcy using recursive partitioning and a realistically proportioned data set. Journal of forecasting, 19(3), 219-230.

Nayab, N. (n.d.). Review of Decision Tree Analysis Advantages. Retrieved from: https://www.brighthubpm.com/project-planning/106000-advantages-of-decision-tree-analysis/, Accessed on 11.08.2019.

Najab, N. (n.d.). Review of Decision Tree Disadvantages. Retrieved form: https://www.brighthubpm.com/project-planning/106005-disadvantages-to-using-decision-trees/, Accessed on 11.08.2019.

Nikolić, N., Zarkic-Joksimović, N., Stojanovski, D., & Joksimović, I. (2013). The application of brute force logistic regression to corporate credit scoring models: Evidence from Serbian financial statements. Expert Systems with Applications, 40(15), 5932-5944.

Olson, D. L., Delen, D., & Meng, Y. (2012). Comparative analysis of data mining methods for bankruptcy prediction. Decision Support Systems, 52(2), 464-473.

Quinlan, R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.

Quinlan, R. (1987). Simplifying decision trees. International journal of man-machine studies, 27(3), 221-234.

Quinlan, R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo.

Shirata, C. (1998). Financial ratios as predictors of bankruptcy in Japan: an empirical research (pp. 437–445). Proceedings of the Second Asian Pacific Interdisciplinary Research in Accounting Conference, Osaka, Japan.

Sikavica, P., Hunjak, T., Begičević Ređep, N., & Hernaus, T. (2014) Poslovno odlučivanje [Business decision making]. Zagreb: Školska knjiga.

Stanišić, N., Mizdraković, V., & Knežević, G. (2013). Corporate Bankruptcy Prediction in the Republic of Serbia. Industrija. 41(4), 145-159.

Stanojević, S., Đorđević, N., & Volf, D. (2017). Primena kvantitativnih metoda u predviđanju poslovanja privrednih društava [Applying the Machine Learning Method in Predicting Business Winners vs. Losers through Financial Reports]. Oditor-časopis za Menadžment, finansije i pravo, 3(1), 92-101.

Weissova, I., Siekelova, A., & Kramarova, K. (2016). Modeling of company´s default probability in relation to its credit risk. Global Journal of Business, Economics and Management: Current Issues, 6(2), 130-137.




DOI: https://doi.org/10.22190/FUEO191118010V

Refbacks

  • There are currently no refbacks.


© University of Niš, Serbia
Creative Commons License CC BY-NC-ND
ISSN 0354-4699 (Print)
ISSN 2406-050X (Online)