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Abstract. Since ancient times, people have tried to predict earthquakes using simple 

perceptions such as animal behavior. The prediction of the time and strength of an earthquake 

is of primary concern. In this study chaotic signal modeling is used based on noise and 

detecting anomalies before an earthquake using artificial neural networks (ANNs). Artificial 

neural networks are efficient tools for solving complex problems such as prediction and 

identification. In this study, the effective features of chaotic signal model is obtained 

considering noise and detection of anomalies five minutes before an earthquake occurrence. 

Neuro-fuzzy classifier and MLP neural network approaches showed acceptable accuracy of 

84.6491% and 82.8947%, respectively. Results demonstrate that the proposed method is an 

effective seismic signal model based on noise and anomaly detection before an earthquake. 

Key words: Artificial neural networks, chaos, earthquake, entropy, prediction, seismic 

signal processing, wavelet transforms 

1. INTRODUCTION 

Earthquake prediction is a branch of seismology and should be distinguished from 
earthquake warning systems which provide a real-time warning to regions that might be 
affected. The purpose of a chaotic signal model considering noise and detection of 
anomalies before an earthquake is to warn of an impending major earthquake to reduce 
death and destruction. In the 1970s, scientists were optimistic that a practical method for 
predicting earthquakes would soon be found [1]. However, further devastating earthquakes 
occurred that caused destruction and loss of life exceeding 6,300 persons in the M7.2 
1995 Kobe earthquake in Japan, 15,000 in the M7.4 1999 Izmit earthquake in Turkey, 
and over 30,000 in the M6.7 2003 Bam earthquake in Iran [2].  

There are many common methods of detecting anomalies before an earthquake which use 
artificial neural networks (ANNs), genetic programming (GP), and radial basis function 
networks. Artificial neural networks have applications in areas such as identification, 
prediction, and image processing. In Ref. [3], the back propagation neural network and new 
mark displacement analysis examined the earthquake risk in the Manjil-rudbar damaged area 
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in 1990. In order to evaluate earthquake signals, it is better to use factual information than the 
null hypothesis. Ref. [4] considered a model for noisy signal and detecting anomalies before 
an earthquake using ANNs and got acceptable results on Ghir station in Iran. 

Researchers have developed software for short-term earthquake prediction using pressure 
reduction and temperature rise, which has resulted in 70.5% accurate forecasting in Japan. The 
accuracy of this network is not optimal for predicting [5]. In Ref. [6] used location related 
parameters in the neural network to predict earthquakes in Iran. The researchers in Ref. [7] 
used the deep learning model of DLEP for earthquake prediction, which used explicit and 
implicit features. There is no suitable time frame for earthquake prediction. In Ref. [8] the 
neural network is discussed to predict the arrival time of P-wave earthquake occurrence 
in Taiwan.The time frame for earthquake prediction is concise. In Ref. [9] has used a 
GRNN neural network to predict earthquakes on the Iranian plateau. In Ref. [22] examines the 
possibility of using the DLIS algorithm to identify and reconstruct the location, size, and 
thickness distribution of several complex defects. In Ref. [23], it has used 8 mini-stations of 
the new region located in North Sumatra which it uses the SVM model (one of the machine 
learning tools in digital signal processing) to distinguish seismic activities. However, the 
proposed model has acceptable accuracy but the amount of data to be tested can be 
increased and the used more data is necessary for test network performance. 

Ref. [24] used the Deep Learning to predict earthquakes and P-wave has been 
investigated, but the time frame for earthquake prediction is concise. 

Ref. [25] also used the Deep Learning and Neural Network to predict earthquakes. 
The period of 3 seconds before the earthquake is intended to predict the earthquake that is 
a concise time to forecast. 

Ref. [26] suggested the augmented linear mixing model (ALMM) method. The most of 
the focus of this article is on image processing,  object recognition, and classification. In this 
purpose, a dictionary is defined to model spectral variables.   This paper focuses more on 
image processing, not signal processing. The dictionary has little similarity with the training 
data in neural network. But, the application of methods used for image processing needs more 
investigation in signal processing. 

Ref. [27] proposed a model called Fourier-based rotation-invariant feature boosting 
(FRIFB) to increase the speed of calculations and reduce complexity. In this way, the 
Fourier is calculated in polar coordinates and then the subsequent analyses are performed. 
In this article, we have defined several extracted frequency features, which are used almost 
the same way but with some differences as in the above article. For example, to extract 
newer and different features, we applied signal divider features to FFT and PSD, and then 
extracted statistical features for each part. It is explained in more detail in sections 2-3. 

In Ref. [10], two feature groups were compared to detect anomalies before an 
earthquake. Those consisted of 54 and 87 features. The accuracy values for data classifier 
and MLP neural network are equal to 60.6383% and 55.8511% for the feature matrix 
with dimensions of 54 and 87, with a total of 626 records. This method employed much 
more data than previous methods. It does not have the desired accuracy, but there is a 
time frame before the earthquake to predict it. 

Most previous articles use concise time frame to predict earthquakes, and the number 
of features is minimal and related to geological features. For this reason, it is impossible 
to make an accurate decision about the types of effective features in the occurrence of an 
earthquake. 

This study aims to determine the most desirable characteristic matrix for detecting 
anomalies within 5 minutes before an earthquake and chaotic signal modeling.  
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In this study, a new class of effective features is developed for chaotic signal modeling 

before an earthquake using intelligent networks with a more extensive database for 

generalization than previous methods. Then a model is evaluated for noisy signal and detection 

of anomalies before an earthquake using neuro-fuzzy and MLP classifiers. The innovation of 

this article is the use of more data for training and testing the classifiers, considering 5 minutes 

before an earthquake to predict it, using different features than previous articles and 

comparing the performance of two neuro-fuzzy networks and MLP classifiers. Most papers 

use only geological or frequency-related features. In this article, we tried to examine the 

different types of features and determine the effectiveness or ineffectiveness of each. 

The rest of the paper is organized as follows:  Section 2 discusses the basic concepts 

of the features and ANN structure. Section 3 proposes the design method and discusses 

the simulation results. Section 4 concludes with the obtained result. 

2. DATA AND METHODOLOGY 

Chaotic signal modeling based on noise was employed with neuro-fuzzy and MLP 

classifiers and using a large amount of data and some new features. The seismic waves 

are processed to detect anomalies before an earthquake onset. The method is divided into 

six main stages (in Fig. 1): (1) Considering the earthquake onset to select an observation 

window and detect anomalies; (2) Slice the rest of the signal into two sections; (3) High 

pass filtering of the signals to reject baseline drift; (4) Feature extraction from the filtered 

signal; (5) Feed the feature vector to the intelligent networks; (6) After training and 

testing the classifiers, select the effective features using UTA algorithm [11,12]. 

The selected signals were processed using a high pass Butterworth filter to remove 

baseline drift in the signals and the cut-off frequency (FC) was set at 0.04 Hz [4]. There 

was not enough evidence showing how an earthquake related to a known feature, so a 

mixture of time, time-scale, and chaos features were extracted, and the effective features 

were selected after achieving acceptable accuracy [4, 10]. The whole process of the 

algorithm is shows in Fig. 1. 

2.1. Features 

2.1.1. Statistical Features 

The ten statistical features evaluated are mode, mean, variance, covariance , maximum 

data, minimum data, signal standard deviation , median, deviation of string factor from 

symmetry (SK) and stretch factor. The ‘SK’ and ‘k’ features represented as follow. Where xi 

and denote the signal and the mean of signal, respectively, and N is the number of data [13]. 

 ( )
3

3 2( ( ) ) ( ( ) )i isk      = −  − 
    
   (1) 

 ( )
4

4 2( ( ) ) ( ( ) ) 3i ik E      = = −  −  −
    
   (2) 



606 L. DEHBOZORGI, R. AKBARI-HASANJANI, R. SABBAGHI-NADOOSHAN 

 

Separating the earthquake signal from the main 
signal

Entering 
signal

Remove 5 minutes before the 
earthquake

Dividing the rest of the signal into 
two equal parts

Filtering both signal sections to remove low frequencies

Extracting the features for each section

Neural- Network
(out put =1?)

Chaotic modeling based on noise and detecting anomalies 
before the earthquake accure

No  anomalies detect 

Yes

No

UTA algorithm

Effective features 
selection

Finish 

 
Fig. 1 Flowchart of  chaotic modeling based on noise and detecting anomalies before the 

earthquake  

2.1.2. Chaos Features 

Chaotic systems are highly dependent on initial conditions. In other words, if two 

trajectories start very close to each other, they diverge from each other rapidly and 

exponentially if and only if their processes have chaotic behavior. The difference between 

the two trajectories after the time period of T is measured as the Lyapunov exponent ( ). 

Where that X0 is a point on a trajectory at time t and X0 + ∆x0 is the point near to X0 on a 

different trajectory where ∆x0 approaches zero and presents the initial amount of 

separation between the two points. 

 
0 0(1 ) ( ( , ) )im n  →=      (3)     

There are three states for the Lyapunov exponent (λ): 

(1) λ>0: the system is chaotic. 

(2) λ<0: the system is not chaotic.  

(3)  λ =0: the system reaches steady state condition [13]. 
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2.1.3. Signal Divider  

A signal divider applied to classify of data between the maximum and minimum 

signal values. The signal divided into 16 equal classes and the amount of available data in 

each class is extracted as the feature. 

2.1.4. Entropy   

Entropy is a measure of the system disorder. Entropy H(X) of discrete random variable X 

is evaluated as following [14], so that P(x) is the probability of X occurrence. 

 
2( ) ( ) ( ( ))

x
og  = −        (4)  

2.1.5. Discrete Wavelet Transform (DWT)  

Wavelet transform can be seen as the projection of a signal into a set of basic functions 

named wavelets. A wavelet transform includes a function based on the mother wavelet 

function and has an excellent localization characteristic in the time-scale domain [15]. Most of 

the energy in a wavelet function is concentrated in a short interval and is damped quickly. Of 

the various types of wavelet functions, the Daubechies wavelet transform is one of the most 

common. In wavelet transforms, the signal passes through an internal filter and is divided into 

a low-frequency (CA) and a high-frequency (CD) component. The DWT of signal x[n] is 

defined based on approximation coefficient wφ [j0,k] and detail coefficient wψ [j,k], as it is 

shown as follows. Where n=0,1,2,…, M-1, k=0,2,…,2j-1 and j=0,1,2,…,J-1, and M is the 

number of samples to be transformed using wavelet function.  

 
00 ,[ , ] (1/ ) [ ] j k

n

W j k M x n =    (5) 

 
0 , 0,      for      [ , ] (1/ ) [ ] j k

n

W jj k M x n j =    (6)     

The basic functions φj,k [n], and  ψi,k [n] are defined as follow. where φ[n] is the 

scaling function and ψ[n] is the wavelet function [4,16].  

 
2

, [ ] 2 [2 ]j j
j k n n k =   −   (7) 

 
2

, [ ] 2 [2 ]j j
j k n n k =   −  (8) 

The Daubechies 2 wavelet transform is implemented in the next five steps. The output 

of each array is selected using half of the inputs selected at each step. The statistical 

values are used as features in each step. 

2.1.6. Fast Fourier Transform (FFT) 

Using the equation 9, Fast Fourier Transform (FFT) for an n×n matrix is calculated [17]. 

The statistical features and data classifier for the FFT of the signal evaluated as features. 

 
1

0

( ) ( ) (exp( 2 / ))
N

n

k n j k N
−

=

 =   −  k=0, 1, 2, …, N (9)                                                                                                       

2.1.7.  Power Spectral Density (PSD) 

The power spectral density (PSD) function shows the strength of variation (energy) as 

a function of frequency. It shows at which frequencies variations are strong and at which 
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frequencies variations are weak. The energy is obtained within a specific frequency range 

by integrating PSD in the frequency range. The computation of PSD is done directly by 

computing autocorrelation function R(τ) and then transforming it. The results are 

demonstrated in the following formulas for signal s(t). 

 2( ) ( )P t s t=  (10) 

 ( ) ( ) (exp( 2 )) ( ( ))S f R j d F R   
+

−

=  −  =  (11)      

The power of the signal in a frequency band can be calculated as: 

 
2 2

1 1

( ) ( )

f f

f f

P S f df S f df

−

−

=  +  
  (12) 

Afterward, statistical features of the signal’s PSD were derived as PSD features. 

2.1.8. Trajectory   

A trajectory is a path followed by an object moving through space as a function of 

time. In this present study, a signal with N pieces of data is presumed. Each part of the 

signal is depicted as {x(t1), x(t2), …, x(tN)} such that t1,t2, …,tN refers to the data stored in 

a time series [18]. First, the x(n+1) to x(n) graph is represented as a signal trajectory and 

then is divided into 16 houses. The number of pieces of data stored in each house in a 

matrix is a feature. 

2.2. Classification Networks 

2.2.1. Multilayer Perceptron (MLP) Network 

Multilayer Perceptron (MLP) is a well-known feed-forward neural network that is 

used for classification usually because of its good performance. Generally, an MLP 

contains input and output layers and one or more hidden layers. After forming the 

structure of a network, the neurons are connected by linking weights and they are trained 

using a training algorithm (Fig. 2) [19]. 
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Fig. 2 The structure of multi-layer perceptron network 
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2.2.2. Neuro-Fuzzy Classification Networks 

Fuzzy systems use two significant paradigms: fuzzy logic and neural networks [20]. Fuzzy 

logic programming in MATLAB software includes conditional statements. The neural 

network consists of several nodes which are connected to each other by weights (Fig. 3).  
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Fig. 3  Network representation of the fuzzy system [10] 
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Here, three parameters i
l
,  y

−1
and xi

−1
 define in the phase of learning and must be 

determined to design a neuro-fuzzy system, and M is the number of rules considered. 

Input x passes through a product Gaussian operator to become zl, then result of this stage 

passes through summation operator b and weighted operator a. Finally, output f is 

calculated [20]. 
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2.3. Feature Selection 

In the UTA algorithm, the average of one feature in all instances is calculated.  Then 

the selected feature in all input vectors is replaced by the calculated mean value. Then 

trained network is tested with the new features and new matrix. If the system cognition is 
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decreased, that feature is effective, but if the result doesn’t change or improve, that 

feature is considered ineffective (noisy feature) and should be removed from the input 

vector [11].  

3. ANALYSIS OF RESULTS 

The database contains 760 records at 5 to 7 on the Richter scale from the International 

Institute of Earthquake Engineering and Seismology for 21 earthquake recording stations 

in Iran (between 2004 and 2010). The sampling frequency is 50 Hz (Fig. 4).  Table 1 

shows the date, time, geographical location, depth, and magnitude of each earthquake. 

Table 1 Characteristics of 5 to 7 Richter Earthquakes Recorded Between 2004 and 2009  

Date of occurrence Time of occurrence Magnitude and geographical characteristics 

Year Month Day Hour Minute Second Latitude Longitude Depth Magnitude 

2004 10 6 11 14 26.1 28.8 57.9 14.1 5.2 

2004 10 7 12 54 56.1 28.4 57.2 15.9 5 

2004 10 7 21 46 15.2 37.3 54.5 16.8 6.2 

2004 10 16 10 4 33.9 33.5 45.7 18 5 

2005 3 13 3 31 27.3 27.3 61.5 54.8 6.1 

2005 5 1 18 58 38.8 30.8 56.9 14.2 5.1 

2005 5 14 18 4 57.1 30.7 56.6 14.1 5.2 

2005 6 19 4 46 4.5 33.1 58.2 15 5.2 

2005 8 9 5 9 19.7 28.8 52.6 18 5 

2005 11 27 16 30 39.1 27.0 55.7 14.1 5.2 

2005 11 29 5 57 3 37.5 54.6 15 5 

2005 12 26 23 15 51.1 32.1 49.1 32.9 5.2 

2005 12 27 21 53 15 28.1 56.1 15 5.1 

2006 2 18 11 3 31.5 30.7 55.8 14.1 5 

2006 2 28 7 31 3.4 28.1 56.7 18 5.8 

2006 3 25 7 28 57.3 27.5 55.8 15.8 5.5 

2006 3 25 9 55 16 27.6 56.0 15.9 5.1 

2006 3 25 10 0 37 27.4 55.7 15 5 

2006 3 30 19 36 18 33.6 48.9 15 5.1 

2006 3 31 1 17 2.3 33.6 48.9 14.1 6.1 

2006 3 31 11 54 2.6 33.8 48.7 17.5 5.2 

2006 6 28 21 2 9.2 26.8 55.9 10 5.6 

2006 7 18 23 27 5.5 26.2 61.1 46 5 

2006 11 5 20 6 40.2 37.4 48.8 14.1 5 

2007 3 26 6 36 50 29.1 58.4 14.1 5 

2007 6 18 14 29 49.4 34.5 50.8 17.3 5.6 

2008 3 9 3 51 6.4 33.3 59.1 17.9 5 

2008 8 27 21 52 39.9 32.3 47.3 32.5 5.6 

2008 9 10 11 0 35.1 26.9 55.7 6.7 5.8 

2008 10 25 20 17 16.9 26.6 54.8 14.2 5.1 

2008 12 7 13 36 20.8 26.9 55.7 11 5.2 

2008 12 9 15 9 27.4 27.0 55.8 15 5 

2009 7 22 3 53 2.6 26.7 55.8 14.2 5.2 

2009 10 4 21 50 49.6 31.8 49.4 15 5.1 
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Fig. 4 Distribution of stations in the IRAN Broadband National Center Seismology [21] 

For training, 70% of the data were randomly selected and the remaining 30% of the 

data was used for testing in MATLAB R2017a software. Initially, for anomaly detection, 

380 records that have 20 minutes of the signal and have the property that an earthquake 

has happened after were selected as the sig1 group and 380 records equal in length by the 

sig1 group were selected which no earthquake has occurred in the next following five 

minutes after them and five minutes before the earthquake in each record deleted (Fig. 5). 

The first five minutes of sig2 and last five minutes of sig1 separated to extract features 

for the feature vector. A fourth-order high pass Butterworth filter was applied to remove 

the low frequency (FC = 0.04) and then the signals normalized (Fig. 6).  
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Fig. 5 Classification of seismic signals before the earthquake, the earthquake does not happen 

after Sig2 and happen 5 minutes after Sig1 

 

Fig. 6 a) The original signal, b) the filtered signal 
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After filtering the 15000 samples, the statistical features are derived for each record 

using the CHAOSTEST.m in MATLAB [4]. CHAOSTEST.m tests the positive existence 

of the dominant Lyapunov exponent λ and local Lyapunov exponents. The second output 

parameter is H, which is the result comparing λ and α. The value of p is the observing 

probability. Another output is Orders, which gives the triplet (L, m, q), minimizes the 

Schwarz information criterion to obtain the best coefficients and calculates λ. The 

confidence interval (CI) for λ is determined at level α (α is a fixed number with a default 

value of 0.05 ).  

The DWT is implemented for five steps and eight statistical features (mode, mean, 

variance, covariance, maximum, minimum, median, and signal standard deviation) is 

saved for each step. The signal divider is evaluated for FFT and eight statistical features 

are calculated for FFT and PSD, respectively. Moreover, the x(n+1) to x(n) graph is 

provided as a signal trajectory and then divided into 16 houses. The amount of data stored 

in each place is saved as a feature. 

Input feature vector has 260 values per instance. The neuro-fuzzy classifier has 260 inputs, 

14 neurons (rules), and one output. The threshold of the classification in neuro-fuzzy classifier 

is 0.49. Furthermore, the MLP neural network has 260 neurons in the input layer, two hidden 

layers, and an output layer consisting of two neurons. Neuro-fuzzy classifier and MLP neural 

network were successfully trained in MATLAB and the testing results are presented for both 

networks. The networks have one output; each output value uniquely represents one category 

(0: no earthquake; 1: earthquake). After training, both classifiers were tested and then 3503 

iterations of training, the results indicated that the neuro-fuzzy classifier was better than the 

MLP network and could detect anomalies five minutes before an earthquake with an 

acceptable accuracy of 84.6491% (Fig. 7; Table 2). 

 

Fig. 7 Difference between the output of Neuro-Fuzzy classifier and real output after 3503epoch 
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Table 2 Neuro-fuzzy classifier’s performance compare with MLP before feature selection 

Classifier Neuro-Fuzzy Classifier Multilayer Perceptron (MLP) network 

Accuracy 84.6491% 81.1404% 

Sensitivity 71.93% 80.70% 

Specificity 97.37% 81.58% 

Average Error 0.1237 0.1691    0.1663 

 

Fig. 8 compares the neuro-fuzzy classifier and MLP performance before feature selection. 

This figure shows that the neuro-fuzzy classifier is produced better results for accuracy. 
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Fig. 8 Neuro-fuzzy classifier’s performance compared to MLP before feature selection 

After training and testing, the UTA algorithm implemented for feature selection and 

ineffective features were deleted. This algorithm decreased the input vector dimensions to 150 

for the MLP network and 29 for the neuro-fuzzy classifier. Both classifiers were trained and 

tested again (Table 3). Table 4 shows some of the more effective features of both classifiers. 

Results show that frequency characteristics are priorities for both classifiers and the neuro-

fuzzy classifier produced better results for accuracy and sensitivity.  

Table 3 Neuro-fuzzy classifier’s performance compare with MLP after feature selection 

Classifier Neuro-Fuzzy Classifier Multilayer Perceptron (MLP) network 

Accuracy 84.6491% 82.8947% 

Sensitivity 74.56% 71.05% 

Specificity 94.74% 94.74% 

Average Error 0.1512 0.1782    0.1580 

Table 4 Some of more effective features after implementation of UTA algorithm for 

neuro-fuzzy classifier and mlp neural network 

MLP Neural Network Neuro-Fuzzy Classifier 

Mean of angle (FFT) Mean of angle (FFT) 

Mean of angle of normalize (FFT) Median of Entropy 

Max of data Covariance of CA (DWT) 

Mean of abs (FFT) Signal standard deviation of (PSD) 

Max of CA (DWT) Mean of CA (DWT) 

Mean of CD (DWT) Trajectory 
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Fig. 9 shows the results of the accuracy of this study compared with other studies. 

Amount of accuracy optimization compared to previous articles is obtained using the 

following formula: 

  
present implementation result

Improvement (%) 1 100
previousimplementationresult

 
= −  
 

   (18) 

Accuracy: 

Improvement (%) (this study, [4])   = (1−(84.6491/60.8491))100 = 39.079% 

Improvement (%) (this study, [10]) = (1−(84.6491/60.6383)100 = 39.59% 

Improvement (%) (this study, [7])   = (1−(84.6491/50)100 = 69.2982% 

Improvement (%) (this study, [8])   = (1−(84.6491/75)100 = 12.8654% 

It can be seen that the accuracy in the proposed design is more optimal than the 

previous articles. The amount of improvement is even close to 70% (Fig. 10). 

Fig. 11 shows the results of the present study improved for the neuro-fuzzy classifier 

after the implementation of the new features in this study. It shows that the neuro-fuzzy 

classifier has performs better than the MLP network. 
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Fig. 9 Neuro-fuzzy classifier’s performance for this study (TS) compared with the other studies  
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Fig. 10 Comparison of the accuracy improvement of the proposed design with previous articles 
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Fig. 11 Neuro-Fuzzy classifier’s performance compared with MLP after feature selection 

4. CONCLUSION 

In this article, the proposed method can detect anomalies  before an earthquake by 

using new features. One of the innovations of this article is extracting new features. Also, 

we considered a longer period of time than the rest of the articles to detect the anomaly 

before the earthquake then evaluated two types of classifiers. Finally, we chose the best 

network and the most optimal features. 

The proposed method provided a new matrix of features that was capable of chaotic 

signal modeling based on noise and detection of anomalies during the five minutes before the 

earthquake with an acceptable accuracy of 84.6491%. Moreover, the results indicate that the 

UTA algorithm decreased input feature dimensions without loss of accuracy. The selected 

features demonstrated that chaotic signal modeling based on noise and detecting anomalies 

before an earthquake is very dependent on frequency features, followed by entropy, trajectory, 

chaotic and statistical features. Future work would be to collect more earthquake data 

globally, add more frequency-dependent parameters to the feature vector, and use committee 

machines to increase the classification accuracy. It is also possible to extract a new feature 

from combination of two or three features for example, the combination of entropy and 

classification and frequency features or other possible combinations. 
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