
FACTA UNIVERSITATIS

Series: Electronics and Energetics Vol. 35, No 2, June 2022, pp. 155-186

https://doi.org/10.2298/FUEE2202155N

© 2022 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

Review paper

FIFTY YEARS OF MICROPROCESSOR EVOLUTION: FROM

SINGLE CPU TO MULTICORE AND MANYCORE SYSTEMS

Goran Nikolić, Bojan Dimitrijević, Tatjana Nikolić, Mile Stojčev

University of Niš, Faculty of Electronic Engineering, Niš, Serbia

Abstract. Nowadays microprocessors are among the most complex electronic systems that
man has ever designed. One small silicon chip can contain the complete processor, large
memory and logic needed to connect it to the input-output devices. The performance of
today's processors implemented on a single chip surpasses the performance of a room-sized
supercomputer from just 50 years ago, which cost over $ 10 million [1]. Even the embedded
processors found in everyday devices such as mobile phones are far more powerful than
computer developers once imagined. The main components of a modern microprocessor are
a number of general-purpose cores, a graphics processing unit, a shared cache, memory
and input-output interface and a network on a chip to interconnect all these components [2].
The speed of the microprocessor is determined by its clock frequency and cannot exceed a
certain limit. Namely, as the frequency increases, the power dissipation increases too, and
consequently the amount of heating becomes critical. So, silicon manufacturers decided to
design new processor architecture, called multicore processors [3]. With aim to increase
performance and efficiency these multiple cores execute multiple instructions
simultaneously. In this way, the amount of parallel computing or parallelism is increased
[4]. In spite of mentioned advantages, numerous challenges must be addressed carefully
when more cores and parallelism are used.
This paper presents a review of microprocessor microarchitectures, discussing their
generations over the past 50 years. Then, it describes the currently used implementations of
the microarchitecture of modern microprocessors, pointing out the specifics of parallel
computing in heterogeneous microprocessor systems. To use efficiently the possibility of
multi-core technology, software applications must be multithreaded. The program execution
must be distributed among the multi-core processors so they can operate simultaneously. To
use multi-threading, it is imperative for programmer to understand the basic principles of
parallel computing and parallel hardware. Finally, the paper provides details how to
implement hardware parallelism in multicore systems.

Key words: Microprocessor, Pipelining, Superscalar, Multicore, Multithreading

Received April 13, 2022

Corresponding author: Goran Nikolić
University of Niš, Faculty of Electronic Engineering, 18106 Niš, Aleksandra Medvedeva 14, Serbia

E-mail: goran.nikolic@elfak.ni.ac.rs

156 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

1. INTRODUCTION

A microprocessor (processor implemented in a single chip) is one of the most inventive

technological innovations in electronics since the discovery of the transistor in 1948. This

amazing device has involved many innovations in the field of digital electronics, and

became a part of everyday life of people. The microprocessor is the central processing unit

(CPU) and it is an essential component of the computer [5]. Nowadays, it is a silicon chip

that is composed from millions up to billions of transistors and other electronic components.

The CPU can execute several hundred millions/billions of instructions per second.

A microprocessor is preprogrammed to execute software in conjunction with memory and

special-purpose chips. It accepts digital data as input and processes it according to the

instructions stored in the memory [6]. The microprocessor performs numerous functions

including data storage, interaction with input-output devices, time-critical execution and other.

Applications of microprocessors range from very complex process controllers to simple

devices and even toys. Therefore, it is necessary for every electronics engineer to have a solid

knowledge of microprocessors.

This article discusses the types and 50 years’ evolution period of microprocessor. The

evolution of microprocessors throughout history has been turbulent. The first microprocessor

called Intel 4004 was designed by Intel in 1971. It was composed of about 2,300 transistors,

was clocked at 740 kHz and delivered 92,000 instructions per second while dissipating around

0.5 watts. After that, almost every year a new microprocessor, with significant performance

improvements in respect to previous ones, was launched. The growth in performance was

exponential, of the order of 50% per year, resulting in a cumulative growth of over three

orders of magnitude over a two-decade period [7]. These improvements have been driven by

advances in the semiconductor manufacturing process and innovations in processor

architecture [8]. Multicore processing has posed new challenges for both hardware designers

and application developers. Parallel applications place new demands on the processing

system. Although a multicore architecture designed for a specific target problem gives

excellent results, it should be borne in mind that the main goal in computer system design

should be to provide the ability to efficiently handle different types of problems. However, a

single architecture "one size fits all", which is able to effectively solve all challenges, has not

been found so far, and many are convinced that it will never be [9].

This article presents a review of the microarchitecture of contemporary microprocessors.

The discussion starts with 50 years of microprocessor history and its generations. Then, it

describes the currently used microarchitecture implementations of modern microprocessors.

At the end it points to specifics of parallel computing in heterogeneous microprocessor

systems. This article is intended for an advanced course on computer architecture, suitable for

graduate students or senior undergrads in computer and electrical engineering. It can be also

useful for practitioners in the industry in the area of microprocessor design.

2. DEFINITION OF MICROPROCESSOR

Central Processing Unit, also known as a processor or microprocessor, is a controlling

unit of a micro-computer inside a small chip. CPU is often referred to as the brain and

heart of all computer (digital) systems and is responsible for doing all the work. It

performs every single action a computer does and executes programs. In essence, the

CPU is capable to perform Arithmetic Logical Unit (ALU) operations and communicates

 Fifty Years of Microprocessor Evolution: from Single CPU to Multicore and Manycore Systems 157

with the other input/output devices and auxiliary storage units connected with it. In

modern computers, the CPU is contained on an integrated circuit chip in which several

functions are combined [10]. In general, all CPUs, single-chip microprocessors or multi-

chip implementations run programs by performing the following steps:

1. Read an instruction and decode it

2. Find any associated data that is needed to process the instruction

3. Process the instruction

4. Write the results out

The instruction cycle is repeated continuously until the power is turned off.

A microprocessor is built using the following three basic circuit blocks [11]:

1. Registers,

2. ALU, and

3. Control Unit (CU).

Registers can exist in two forms, either as an array of static memory elements such as flip-

flops, or as a portion of a Random Access Memory (RAM) which may be of the dynamic or

static type. ALU usually provides, at the minimum, facilities for addition, subtraction, OR,

AND, complementation, and shift operations. The CU of the CPU regulates and integrates

computer operations. It selects and retrieves instructions from main memory in the appropriate

order and interprets them to activate other functional building blocks of the system at the

appropriate time with aim to perform its proper operations.

3. GENERATION AND MICROPROCESSOR HISTORY

On December 23rd, 1947, the Transistor was invented in Bell Laboratory, whereas an

Integrated Circuit was invented in 1958 in Texas Instruments. In 1971 Intel or

INTegrated ELectronics has invented the first Microprocessor. The evolution of CPU can

be divided into five generations such as first, second, third, fourth, and fifth generation

[12], and the characteristics of these generations will be discussed in the sequel.

1st Generation: The first-generation microprocessors were introduced in the year

1971-1972 when INTEL launched the first microprocessor 4004 running at a clock speed

of 740 kHz. Other microprocessors that belong to this generation are Rockwell

International PPS-4, INTEL-8008, and National Semiconductors IMP-16. Instruction

processing of these CPUs was serial. Namely, instruction phases, fetch, decode and

execution, were performed sequentially. When the current instruction was finished, then

the CPU updates the instruction pointer and fetches the consecutive one in the program

sequence, and so on for each instruction in turn.

2nd Generation: This was the period from 1973 to 1978 in which very efficient 8-bit

microprocessors were implemented like Motorola 6800 and 6801, INTEL-8085, and Zilog’s-

Z80, which were among the most popular ones. The second-generation of the microprocessor

is characterized by overlapped fetch, decode, and execute phases. When the first instruction is

processed in the execution unit, then the second instruction is decoded and the third

instruction is fetched. Compared to the first-generation, the use of new semiconductor

technologies for chip manufacture was a novelty in the second generation. Gains in innovation

were a significant increase in instruction execution speed and chip densities.

3rd Generation: The third-generation microprocessors were introduced in the year 1978,

as denoted by Intel’s 8086 and the Zilog Z8000. From 1979 to 1980, Intel 8086/80186/80286

158 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

and Motorola 68000 and 68010 were developed. Processors of this generation were 16-bit,

four times faster than the previous generation, and with a performance like mini computers

[13], [14], [15]. The development of a proprietary microprocessor architecture based on own

Instruction Set Computer (ISC) was a novelty of this generation.

4th Generation: Development of 32-bit microprocessors, during the period from 1981

up to 1995, characterizes the fourth-generation. Typical products were Intel-80386 and

Motorola’s 68020/68030. Microprocessors of this generation are characterized by higher

chip density, even up to a million transistors. High-end microprocessors at the time, such

as Motorola's 88100 and Intel's 80960CA, could issue and retrieve more than one

instruction per clock cycle [16], [17].

5th Generation: From 1995 until now, this generation has been characterized by 64-

bit processors that have high performance and run at high speeds. Typical representatives

are Pentium, Celeron, Dual and Quad-core processors that use superscalar processing,

and their chip design exceeds 10 million transistors. The 64-bit processors became

mainstream in the 2000s. Microprocessor speeds were limited by power dissipation. In

order to avoid the implementation of expensive cooling systems, manufacturers were

forced to use parallel computing in the form of the multi-core and many-core processor.

Thus, the microprocessor has evolved through all these generations, and the fifth-

generation microprocessors represent an advancement in specifications. Some of the

processors from the fifth generation of processors with their specifications will be briefly

discussed in the text that follows.

4. CLASSIFICATION OF PROCESSOR

Processor can be classified along several orthogonal dimensions. Here we will point

briefly to some of the most commonly used. The first classification is based on

microarchitecture specifics, second one to the market segment, the third on type of

processing, e.tc. In this article, we will focus on the first classification scheme. For more

details about this problematic the readers can consult Reference [10].

4.1. Classification of microarchitecture specifics

In general, we distinguish the following classifications:

4.1.1. Pipelined vs Non-Pipelined Processors

A Non-Pipelined processor executes only a single instruction at a given time. The

start of the next instruction is delayed until the current ends, not based on hazards but

unconditionally. The CPU scheduler chooses the instruction from the pool of waiting

instructions, when it is free.

Pipelining is a technique where multiple instructions are overlapped during execution.

The Pipelined processor is divided into several processing stages (segments). The stages

are mutually connected in a form of a pipe structure. Constituents of each stage are an

input register and a combinational circuit. The role of the register is to hold data and of

combinational circuit to process it. The combinational circuit outputs processed data to

the input register of the next segment.

 Fifty Years of Microprocessor Evolution: from Single CPU to Multicore and Manycore Systems 159

The pipeline technique is divided into two categories:

a) Arithmetic Pipelines are mainly used for floating point operations, multiplication of

fixed-point numbers, etc.;

b) In Instruction Pipeline instructions are executed by overlapping fetch, decode and

execute phases. Pipeline technique increases Instruction Level Parallelism (ILP) and is

used by all processors nowadays [18].

Table 1 Difference between Pipelining and Non-Pipelining Systems

Pipelining System Non-Pipelining System

Multiple instructions are overlapped during

execution

Phases fetching, decoding, execution and writing

memory are merged into a single unit (step)

Several instructions are executed at the same time Only one instruction is executed at the same time

The CPU scheduler design determines efficiency The efficiency is not dependent on the CPU scheduler

Execution time is less (in a fewer cycle) Execution takes more time

(a greater number of cycles)

In addition to the fact that pipelining increases the overall system performance, there

are several factors that cause conflicts and degrade performance. Among the most

important factors are the following:

1. Timing Variations - The processing time of instructions is not the same, because different

instructions may require different operands (constants, registers, memory). Accordingly,

pipeline stages do not always consume the same amount of time.

2. Data Hazards - The problem arises when several instructions are partially executed in

the pipeline system and in doing so, two or more of them refer to the same data. In that

case, it must be ensured that the next instruction stall until the current instruction has

finished processing that data, because otherwise an incorrect result will occur.

3. Branching - The next instruction is fetched during the execution of the current one.

However, if the current instruction is conditional branching, then the next instruction will not

be known until this current one completes data processing and determines the branching

outcome.

4. Interrupts - Interrupts have an impact on the execution of instructions by inserting

unwanted instructions into the current instruction stream.

5. Data Dependency - This problem occurs when the result of the previous instruction is

not yet available, and it is already needed as data for the current instruction.

Main advantages of pipelining are higher clock frequency and increased the system

throughput. However, there are disadvantages of this technique, primarily the greater

complexity of the design and the increased latency of the instruction.

4.1.2. In-Order vs Out-of-Order Processors

A processor that executes instructions sequentially usually uses resources inefficiently,

resulting in poor performance. Two approaches can be used to improve processor

performance. The first one deals with simultaneous executing different sub-steps of

consecutive instructions or even executing instructions completely simultaneously. The

second one refers to out-of-order instruction execution which can be achieved by executing

the instruction in a different order from the original one [1], [19]. Instructions order is

determined by the compiler, but it is not necessary to execute them in that order. They may

160 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

be: a) issued in order and completed in order; b) issued in order, but completed out of order;

c) issued out of order, but completed in order; and d) issued out of order and completed out

of order [1].

First- and second-generation microprocessors process instructions in order. In-order

processor performs the following steps:

1. Retrieves instructions from the program memory.

2. If input operands are available in the register file, it sends command to the

execution unit in order to execute instruction.

3. If during the current clock cycle input operands are not available, the processor

will wait for them. This case occurs when the processor retrieves data from slow

memory. This implies that instructions are statically scheduled.

4. The instruction is then executed by the appropriate execution unit.

5. After that, the result is entered back into the destination register.

Out-of-order execution is an approach used in third-, fourth-, and fifth-generation

microprocessors. This approach significantly reduces latency when executing instructions.

The specificity is that the processor will execute instructions in the order of data or operand

availability, but not in the original order of instructions generated by the compiler. In this

way, the processor will avoid waiting states, because during the execution of the current

instruction, it will obtain operands for the next instruction. For example, I1 and I2 are two

instructions where I1 is the first and I2 is the second. In out-of-order execution, the

processor may execute an I2 instruction before the I1 instruction is completed. This feature

will improve CPU performance as it allows execution with less latency.

The steps required for out-of-order processor are as follows:

1. Retrieves instructions from the program memory.

2. Instructions are sent to an instruction queue (also called instruction buffer).

3. Until the input operand is available the instruction waits in the queue. The

instructions will leave the queue when the operand is available. This implies that

instructions are dynamically scheduled.

4. The instruction is sent to appropriate execution unit for execution.

5. Then the results are queued.

6. If all the previous instructions have their results written back to register file, then

the current result is entered back to the destination register.

The main goal of out-of-order instruction execution is to increase the amount of ILP.

But let note that the hardware complexity of out-of-order processors is significantly

higher compared to in-order ones.

5. SCALAR VS SUPERSCALAR PROCESSORS

A scalar processor is one where instructions are executed in a pipeline, as is presented

in Fig. 1a), but only a single instruction can be fetched or decoded in a single cycle. A

super scalar processor on the other hand can have multiple parallel instruction pipelines

[20], [21]. A 2-way super scalar processor (see Fig. 1b)) can fetch two instructions per

cycle and supports two parallel pipelines. The terms "scalar" or "superscalar" are not to

be confused with "single-core/multi-core". Scalars are single-core processors, while

superscalars may either be single- or multi-cores. The key point is that scalars cannot perform

more than one operation (i.e., carry out more than one instruction) per clock cycle, but

 Fifty Years of Microprocessor Evolution: from Single CPU to Multicore and Manycore Systems 161

superscalars can perform up to two instructions in some cases. This means that if you

have a CPU with three cores on it – one being an old scalar processor – and you run an

application that utilizes all three cores, the old third core will be no more than half as fast

as if it were completely superscalar. The main thing to remember is that certain

instruction sets are suited better to certain optimizations. Superscalars can execute basic

operations such as add and load on separate registers simultaneously, whereas a scalar

processor would have to complete one operation before moving on to the next. For

example, a scalar processor may be able to run multiple threads, but they will all share

the same core and therefore only run as fast as the slowest thread. Superscalars can

provide much higher performance because each thread gets its own core/execution unit.

a)

b)

Fig. 1 Scalar processor (a), superscalar processor (b)

The terms "scalar" or "superscalar" are not to be confused with "single-core/multi-core".

Scalars are single-core processors, while superscalars may either be single- or multi-cores

[22]. The key point is that scalars cannot perform more than one operation (i.e., carry out more

than one instruction) per clock cycle, but superscalars can perform up to two instructions in

some cases. This means that if you have a CPU with three cores on it – one being an old scalar

processor – and you run an application that utilizes all three cores, the old third core will be no

more than half as fast as if it were completely superscalar. The main thing to remember is that

certain instruction sets are suited better to certain optimizations. Superscalars can execute

basic operations such as add and load on separate registers simultaneously, whereas a scalar

processor would have to complete one operation before moving on to the next. For example, a

scalar processor may be able to run multiple threads, but they will all share the same core and

therefore only run as fast as the slowest thread. Superscalars can provide much higher

performance because each thread gets its own core/execution unit.

The main challenge in superscalar processing is how many instructions can be issued

per cycle. If a processor can issue k instructions per cycle, then it is called a k-degree

superscalar processor. In order for a superscalar processor to take full advantage of

parallelism, then k instructions must be executable in parallel. So, the key idea of a

superscalar processor is that there is more instruction level parallelism (ILP) [18].

162 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

The implementation of superscalar processing requires special hardware (see Fig. 2 for

more details). The data path is increased with the degree of superscalar processing. For

instance, if 2-degree superscalar processor is used and the instruction size is 32 bit, then 64-

bit data is fetched from the instruction memory and 2 instruction registers are required.

Fig. 2 Comparison between a Scalar and a Superscalar Processor.
Notice: The Superscalar Processor implements one pipeline dedicated

for Memory Access and one pipeline for Arithmetic operations.

The main feature of superscalar processors is to issue more than one instruction in

each cycle (usually up to 8 instructions). Let note that instructions can change the order to

make better use of the processor architecture.

In order to reduce data dependency in superscalar processing, more complex parallel

hardware is necessary. Hardware parallelism ensures the availability of more resources

and it is one of the ways to use parallelism. An alternative way is to use ILP which can be

achieved by transforming the source code using an optimization compiler.

Typical commercial superscalar processors are IBM RS/6000, DEC 21064, MIPS

R4000, Power PC, Pentium, etc.

Very-Long-Instruction-Word (VLIW) processors are a variant of superscalar processors

because they can process multiple instructions in all pipeline stages [23]. The VLIW

processor has the following features: (a) it is an in-order processor; (b) the binary code

defines which instructions will be executed in parallel. The size of the VLIW instruction

word can be in hundreds of bits. The compiler forms the layout of the VLIW instruction by

compacting the instruction words of the source program. The processor must have the

sufficient number of hardware resources to execute all the specified operations in VLIW

word simultaneously. For instance, as shown in Fig. 3, one VLIW instruction word is

compacted to have L/S operation, FP addition, FP multiply, branch, and integer ALU.

 Fifty Years of Microprocessor Evolution: from Single CPU to Multicore and Manycore Systems 163

Fig. 3 a) VLIW instruction word; b) VLIW processor

All functional units (shown in Figure 3 b)) are implemented according to the VLIW

instruction word (given in Figure 3 a). Large registry file is shared by all functional units in

the processor. The parallelism in instructions and data flow is specified at compile time. Trace

scheduling is used for handling branch instructions. It is based on the prediction of branch

decisions at compile time, while prediction is based on some heuristic methods.

In Table 2 a comparison between VLIW and Superscalar processors from aspect of

ILP implementation is given.

As conclusion, when we compare VLIW and Superscalar Processors, we can say that

VLIW differs from superscalar machine in the following: a) instruction decoding process

is simpler; b) ILP is higher but code density is lower; and c) object-code compatibility

with a larger family of nonparallel machines is lower.

Table 2 Instruction-Level Parallelism: VLIW vs Superscalar

Superscalar VLIW

Instruction scheduling mechanism is
implemented with complex hardware

More functional units are needed
Instruction code word is larger
Complex compiler is needed

Out-of-order execution
▪ There is a logic that checks the

dependencies between parallel instructions
and checks the hazards when working
functional units

If a compiler that performs efficient code
optimization is not implemented, then more effort
is needed to create executable code

Longer execution time and higher power
consumption are potential consequences

Hardware is simpler due to the use of predicted
execution to avoid branching

More efficiently execution of pipeline-
dependent code

164 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

Simple hardware structure and instruction set are the crucial advantages of VLIW

architecture. The VLIW processor is suitable for scientific applications where the program

behavior is more predictable.
Super-Pipelining is an alternative performance method to superscalar. In this

approach, pipeline stages can be segmented into n distinct non-overlapping parts each of
which can execute in 1/n of a clock cycle, i.e., Super-Pipelining is based on dividing the
stages of a pipeline into sub-stages and thus increasing the number of instructions which
are active in the pipeline at a given moment. By dividing each stage into two, the cycle
period τ is reduced to the half, τ/2 => at maximum capacity, a result is produced every τ/2
s (see Fig. 4). For a given architecture and the corresponding instruction set there is an
optimal number of pipeline stages; increasing the number of stages over this limit reduces
the overall performance [24].

By analyzing Fig. 4 we can observe the following:
1. Base pipeline: i) Issues one instruction per clock cycle; ii) Can perform one pipeline
stage per clock cycle; iii) Several instructions are executing concurrently; iv) Only one
instruction is in its execution stage at any one time; and vi) Total time to execute 6
instructions is 10 cycles.
2. Super-Pipelined implementation: j) Capable of performing two pipeline stages per
clock cycle; jj) Each stage can be split into two non-overlapping parts: jjj) Each executing
in half a clock cycle; jiv) Total time to execute 6 instructions is 7.5 cycles; jv) Theoretical
speedup is equal to 1 − 7.5 / 10 ≈ 25%.
3. Superscalar implementation: k) Capable of executing two instances of each stage in
parallel; kk) Total time to execute 6 instructions is 7 cycles; and kkk) Theoretical speedup: 1 –
7/10 ≈ 30%.

Fig. 4 Comparison of superscalar and super-pipeline approaches

 Fifty Years of Microprocessor Evolution: from Single CPU to Multicore and Manycore Systems 165

From the Fig. 4 we can notice that both the Super-Pipeline and the Superscalar
implementations: a) Have the same number of instructions executing at the same time;
b) However, Super-Pipelined processor falls behind the superscalar processor; and c)
Parallelism empowers greater performance. So, a better solution to further improve speed is
the Superscalar architecture.

6. VECTOR PROCESSOR

A vector is an ordered set of the same type of scalar data items that can be of type a
floating-point number, an integer, or a logical value. Vector processing is the arithmetic,
or logical computation, applied on vectors whereas in scalar processing only one or pair
of data is processed. Therefore, vector processing is faster compared to scalar processing.
When the scalar code is converted to vector form then it is called vectorization. A vector
processor is a special accelerator building block, which is designed to handle the vector
computations [25], [26].

There are the following types of vector instructions:
a) Vector-Vector Instructions: Vector operands are fetched from the vector register and
after processing generated results are stored in another vector register. These instructions
are marked with the following function mappings:

1: 1 2

2 : 1 2 3

P V V

P V V V



 

For example, P1 type denotes vector square root, and P2 addition (or multiplication) of
two vectors.
b) Vector-Scalar Instructions: Scalar and vector operands are fetched and stored in vector
register. These instructions are denoted with the following function mappings:

3 : 1 2P S V V  ; where S is the scalar item

For example, P3 type denotes vector-scalar subtraction or divisions.
c) Vector-Reduction Instructions: This type of instructions is used when operations on
vector are being reduced to scalar items as the result. These instructions are presented
with the following function mappings:

4 : 1 1P V S

5 : 1 2 2P V V S 

For example, P4 type corresponds to finding the maximum, minimum and summation of
all the elements of vector, while P5 is used for the dot product of two vectors.
d) Vector-Memory Instructions: This type of instructions is used when vector operations
with memory M are performed. These instructions are marked with the following
function mappings:

6 : 1 1P M V

7 : 1 2P V M

For example, P6 type corresponds to vector load and P7 to vector store operation.
Typical examples of vector operations are the following:

1. 2 1V V ; Complement all elements

2. 1S V ; Min, Max, Sum

3. 3 2 1V V V  ; Vector addition, multiplication, division

4. 2 1V V S  ; Multiply or add a scalar to a vector

5. 2 1S V V  ; Calculate an element of a matrix

166 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

Vector Processing with Pipelining: Due to the repetition of the same computation on

different operands, vector processing is very suitable for pipelining. A vector processor

performs better if length of vector is larger, but it causes the problem in storage and

manipulating of vectors.

Efficiency of Vector Processing over Scalar Processing: As we have already mentioned, a

sequential computer processes vector item by item. Therefore, with aim to process a vector of

length n through the sequential computer then the vector must be divided into n scalar steps

and executed one by one.

For example, consider the following example which is used for addition of two vectors of

length 1000:
+ A B C

The sequential computer implements this operation by 1000 add instructions in the

following way:

[1] [1] [1]

[2] [2] [2]

.

.

.

[1000] [1000] [1000]

C A B

C A B

C A B

= +

= +

= +

A vector processor does not divide the vectors in 1000 add statements to perform

identical operation, because it has the set of vector instructions that allow the operations

to be specified in single vector instruction as:

(1:1000) (1:1000) (1:1000)+ A B C

Comparative execution of addition instruction by scalar and vector processor is presented

in Fig. 5.

Fig. 5 Scalar vs Vector operations execution

Thus, the main advantage of using vector in respect to scalar processing is reflected in

the elimination of overhead caused by the loop control.

 Fifty Years of Microprocessor Evolution: from Single CPU to Multicore and Manycore Systems 167

Properties of Vector Instructions:

a) Single Instruction implies lot of operations: Hence reduce the number of instruction’s

fetch and decode.

b) Each operation is independent of each other: i) Simple design; ii) Multiple Operations

can be run in parallel.

c) Data hazards has to be checked for each vector operation and not each operation.

d) Reduces Control hazards by reducing branches.

e) Knows memory access pattern.

Nowadays, large number of microprocessors contain a set of instructions that

manipulate with relatively small vectors (e.g., up to 8 single-precision FP elements in the

Intel AVX extensions [27]). These instructions are often referred to as SIMD (single

instruction, multiple data) instructions.

Table 3 shows the comparative properties (advantages vs disadvantages) of vector

processors.

Table 3 Comparative properties of vector processors

Advantages of Vector Processors Disadvantages of Vector Processors

▪ Instruction bandwidth is lower

▪ Fetch and decode phases are reduced

▪ Main memory addressing is easier

▪ Load/Store units use known patterns for memory access

▪ Memory wastage is eliminated – no cache misses,

latency only occurs during vector loading

▪ Control hazards logic is simple – loop-related control

hazards are eliminated

▪ Scalable platform – larger number of hardware

resources increases performance

▪ Code size is reduced – N operations are described by

single instruction

▪ Works (only) if parallelism is

regular (data/SIMD parallelism).

▪ Very inefficient if parallelism is

irregular.

▪ Memory (bandwidth) can easily

become a bottleneck especially if: a)

Compute/memory operation balance

is not maintained; b) Data is not

mapped appropriately to memory

banks

Vector Processing Applications include problems that can be efficiently formulated in

terms of vectors such as: a) Long-range weather forecasting; b) Petroleum explorations;

c) Seismic data analysis; d) Medical diagnosis; e) Aerodynamics and space flight simulations;

f) Artificial intelligence and expert systems; g) Mapping the human genome; and h) Image

processing.

7. MULTICORE PROCESSORS

Nowadays, large uniprocessors no longer scale in performance, because conventional

superscalar techniques for instruction issue allow only a limited amount of parallelism to

be extracted from the instruction flow. In addition, it is not possible to further increase

the clock speed, because the power dissipation will become prohibitive.

For more than thirty years (time period between 1972-2003 year, often called as time

intensive microarchitecture processor design), a variety of modifications have been

conducted to perform one of two goals: 1) increasing the number of instructions that can

be issued per cycle; and 2) increasing the clock frequency faster than Moore’s law and

168 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

Denard’s rule would normally allow [28]. Pipelining and super-pipelining of individual

instruction execution into a sequence of stages has allowed designers to increase clock

rates. Superscalar processors were designed to execute multiple instructions from an

instruction stream on each cycle. These function by dynamically examining sets of

instructions from the stream to find one’s capable candidates for parallel execution on

each cycle. These can be often executed in out-of-order manner with respect to the

original sequence. This concept is referred as instruction-level parallelism (ILP). Typical

instruction streams have only a limited amount of usable parallelism among instructions

[1], [29], so superscalar processors that can issue more than about four instructions per

cycle achieve very little additional benefit on most applications.

Today, advances in processor core development have slowed dramatically because of a

simple physical limit: power dissipation. In modern pipelined and superscalar processors,

typical high-end power exceeds 100 W. In order to bypass the mentioned design constraints,

processor manufacturers are now switching to a new microprocessor design paradigm:

multicore (also called chip multiprocessor, or CMP for short) and many-core.

A multi-core processor is a single computing component with two or more independent

actual processing units (called "cores" - made up of computation units and caches [30]),

which are functional units that read and execute program instructions. Multiple cores can

run multiple instructions (ordinary CPU instructions) at the same time, increasing overall

speed for programs suitable to parallel computing. Coupling multiple cores on a single

chip should achieve the performance of a single faster processor. The individual cores on

a multi-core processor are not necessary to run as fast as the highest performing single-

core processors, but in general they improve overall performance by executing more tasks

in parallel [31]. The increase in performance can be seen by considering the way single-

core and multi-core processors execute programs. Single-core processors that run multiple

programs will assign different time slices to all programs, and they will run sequentially. If

one of the processes lasts longer, then all the other processes start to lag behind. However,

with multi-core processors, if there are multiple tasks that can run in parallel at the same time,

then each of them will be executed by a separate core in parallel. This improves performance.

Depending on the application requirements, multi-core processors can be implemented in

different ways. It can be a group of heterogeneous cores or a group of homogeneous cores or a

combination of both. In a homogeneous core architecture, all cores in the processor are

identical [32] and in order to improve overall performance they break down a computationally

intensive application into less intensive applications and run them in parallel [4].

Significant advantages of a homogeneous multi-core processor are reduced design

complexity, reusability, and reduced verification effort [33]. Heterogeneous cores, on the

other hand, consist of dedicated application specific processor cores that would run

various applications [34].

Cores in multi-core systems, as well as single-processor systems, can implement

architectures such as VLIW, superscalar, vector, or multithreading. Multicore processors

are used in many application domains, such as general purpose, embedded, multimedia,

network, digital signal processing (DSP) and graphics (GPU). They can be harnessed as

complex cores that address computationally intensive applications, or a remedial core that

deals with less computationally intensive applications [24].

Software algorithms and their implementations greatly influence the performance

improvement obtained by using multi-core processors. In particular, possible gains are

limited by the fraction of the software that can run in parallel simultaneously on multiple

 Fifty Years of Microprocessor Evolution: from Single CPU to Multicore and Manycore Systems 169

cores. At best, parallel problems can achieve acceleration factors close to the number of

cores, or even more if the problem is sufficiently split to fit in the local core cache(s). In

this way the number of accesses to much slower main system memory are reduced.

However, most applications are not so fast without the effort of programmers to reshape

the whole problem. Currently, software parallelization is a significant ongoing research

topic [4].

A comparison between single and multiple-core processor is given in Table 4.

Table 4 Comparation of Single-Core processor and Multi-Core processor

Parameter Single-Core Processor Multi-Core Processor

Number of cores on a die Single Multiple

Instruction Execution Single instruction is executed

at a time

Multiple instructions are executed by

using multiple cores

Gain Speed up every program Speed up the programs intended for

multi-core processor

Performance Depend on the clock

frequency

Depend on the clock frequency, number

of cores and program

Examples 80386, 80486, AMD 29000,

AMD K6, Pentium I, II, III

etc.

Core-2-Duo, Athlon 64 X2, I3, I5, I7 etc.

7.1. Multicore topologies

In the sequel we will point out to four types of multicore topologies: symmetric (or

homogeneous), asymmetric, dynamic, and composed (alternatively referred as "fused" or

"heterogeneous") [20], [35].

The symmetric multicore topology is composed of multiple copies of the same core

that functioning at the same frequency and voltage. In this topology, the resources such as

the power and the area budget, are evenly distributed on all cores. In Figure 6a)

symmetric multicore processor is presented where each block is a Basic Core Equivalent

(BCE) and contains L1 and L2 caches as constituents. L3 cache and on-chip network are

not presented.

The asymmetric multicore topology is composed of one large monolithic core and a

number of identical small cores. This topology uses a large high-performance core that

performs the serial part of the code and uses a number of small cores as well as the large

core to take advantage of the parallel part of the code. In Figures 6b) and 6c) asymmetric

multicore processors are presented with: b) one complex core and 12 BCEs; c) two

complex cores and 8 BCEs.

The dynamic multicore topology is a modification of the asymmetric topology. Parallel

parts of the code are executed by small cores while the large core is off, and the serial

part of the code is executed only on the large core, while small cores are inoperative. In

Figures 6d) and 6e) dynamic multicore processors are presented with: d) 16 BCEs or one

large core; e) four cores and frequency scaling using power budget of 8 BCEs (currently

one core is at full core thermal design point (TDP), two cores are at 0.5 core TDP, and

one core is switched off).

170 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

Fig. 6 a) Symmetric multicore processor; b) and c) Asymmetric multicore processors;

d) and e) Dynamic multicore processors; f) Heterogeneous multicore

The heterogeneous (composed) multicore topology is composed of a set of small

cores that are logically combined to assemble a large high-performance core for serial

code execution. In serial or parallel cases, exclusively large or small cores are used. In

Figure 6f) heterogeneous multicore is presented with large core, four BCEs, two

accelerators or co-processors of type A, B, D, E each.

Some of the limits of multicore processors are the following [36]:

1. Present days CMPs are designed to exploit both instruction-level parallelism (ILP)

and thread-level parallelism (TLP). In such solutions, the number of processors

and the complexity of each processor are fixed at design time.

2. Performance improvement mainly achieved by increasing the number of cores

cannot always lead to effective design solution due to: a) Dark silicon problem (all

the cores cannot be powered at the same time); and b) Declining yield in TLP.

Nowadays, we have multicore processors all over the place, single thread programs

are no longer an option. In essence, we moved from single core to multicore not because

the software community was ready for concurrency but because the hardware community

could not afford to neglect the power issue.

 Fifty Years of Microprocessor Evolution: from Single CPU to Multicore and Manycore Systems 171

Today, multi-core technology has become commonly used in most personal electronic

devices that contain multiple cores. Therefore, in order to take advantage of multiple

cores on such machines, creating parallel programs is crucial to achieving high

performance and enabling large-scale data processing.

In addition to multicore technology (mainly realized as shared memory systems) [37],

parallel computing can be in the form of distributed systems. Unlike multicore shared

memory systems, distributed systems can solve problems that do not fit in the memory of

a single machine. In contrast to multicores with shared memory, communication and data

replication in distributed systems causes high additional overheads. Compared to distributed

memory systems, multicores with shared memory are more efficient for programs that can fit

in memory. Efficiency is reflected in reduced hardware, cost, and power consumption [3].

Today’s multicore CPUs use most of their transistors on processing logic and cache

memory. During operation most of the power is consumed by non-computational units.

Alternative strategy are heterogeneous architectures, i.e. multi-core architectures in

combination with accelerator cores. Accelerators are specialized hardware cores designed

with fewer transistors, operating at lower frequencies than traditional CPUs, and enabling

increased system performance.

8. MULTITHREADED PROCESSORS

As hardware complexity of modern processor and capabilities have increased, so

demands related to higher performance increased too. This requirement has led to an

increase in CPU resource efficiency to the same extent. The main idea is that the time

while the processor is waiting to perform certain tasks, i.e. it is in idle state, is used to

perform another activities. To achieve this goal, software designers involved new

approach in possibilities of the operating system that support running pieces of programs,

called threads. Threads are small tasks that can run independently [38]. During execution,

each thread gets its own time period. As a consequence, the processor time is efficiently

utilized. Fig. 7 shows multithreading execution on single processor and two-way

superscalar processor.

Fig. 7 Multithreading in a CPU: (a) Single processor running a single thread. (b) Single

processor running several threads. (c) Two-way superscalar processor running a

single thread. (d) Two-way superscalar processor running multiple (two) threads.

172 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

8.1. Difference between Multitasking, Multiprocessing and Multithreading

Several threads make up one process (task), and share access to processor resources.

This new concept of operating systems, known as multi treading, has ensured the run of

one thread while the other is in a state of waiting for an event. Contemporary commercially

available PC machines and servers, mainly based on Intel or AMD processors, that run

Microsoft Windows, support multithreading [28].

Each program requires resources that are occupied by the process (task). The process is

assigned a virtual address space, executable code, system object manipulation, a security

context, a unique process identifier, environment variables, a priority type, working set

sizes, and at least one thread of execution. A thread is a single entity within a process that

can be planned for execution. All threads that are part of a process share its previously

mentioned resources. In addition, each thread maintains code for manipulation with

exceptions, a planning priority, a local thread memory, a thread identifier, and structures

that the system will use in order to preserve the context of the thread. The thread context

consists of a set of machine registers, a kernel stack, an environment block, and a user

thread stack. Each thread is characterized by: 1) thread ID; 2) register state, including PC

and SP; 3) stack; 4) signal mask; 5) priority; and 6) thread-private memory. Threads

share instructions and data of the process to which they belong. All threads in the process

can see changes in the shared data of any thread. Threads in the same process can interact

with each other without involving the operating environment.

Multitasking is a mode of operation where the CPU performs multiple tasks at the same

time (see Fig. 8). It is characterized by CPU switching between multiple tasks so that

users can work together with each program. Unlike multithreading, in multitasking,

processes share separate memory and resources. In multitasking, CPU switching between

tasks is relatively fast.

Fig. 8 Multitasking operating system for single processor

Multithreading is an operating mode in which during process execution many threads

are active. In this manner, higher computer power is achieved. In multithreading (see Fig.

9), CPU executes many threads that are part of a process at a time. Processes share the

same memory and resources. Property of multithreading is that two or more threads can

run concurrently. Therefore, multithreading is also referred as concurrency [39].

 Fifty Years of Microprocessor Evolution: from Single CPU to Multicore and Manycore Systems 173

Fig. 9 Multithreading system for single processor

The difference between multitasking and multithreading [40] is presented in Table 5.

Table 5 Difference between Multitasking and Multithreading

No. Multitasking Multithreading

1. CPU performs many user tasks Within a process many threads are created

2. CPU switching among the tasks CPU switching among the threads

3. Processes share separate memory Processes share same memory

4. Multiprocessing can be involved Multiprocessing cannot be involved

5. CPU executes many tasks at a time CPU executes many threads at a time

6. Each process has separate resources Each process shares same resources

7. Multitasking is slower Multithreading is faster

8. Termination of process is longer Termination of thread is shorter

A computer system composed of two or more processors is called a multiprocessing

system (see Fig. 10). In this way, the computing speed of the system is increased. In such

systems, each processor has its own registers and main memory. The division of

processes and resources among processors is done dynamically.

The main characteristics of multiprocessing are the following: i) The organization of

memory determines the type of multiprocessing; ii) System reliability is improved, and

iii) Decomposing programs into parallel executable tasks leads to performance increase.

Advantages of multiprocessing are the following: a) more activity can be performed in

a shorter time; b) code is simple; c) system is composed of multiple CPU and cores;

d) synchronization is simplified; e) child processes are interruptible/killable; and f) cost-

efficient because processors share resources.

Disadvantages of multiprocessing are: a) inter-process communication involves time

overhead; and b) larger memory is needed.

The main characteristics of multithreading are the following: j) each thread is executed

parallel with other; and jj) program performance is increased since threads share the same

memory area.

174 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

Fig. 10 Multiprocessing system

Advantages of multithreading are the following: a) the address space is shared for all

threads; b) lower amount of memory is needed; c) cost-efficient and fast communication

between threads; d) fast context switching; e) suitable for input/output-oriented applications;

and f) switching time between two threads is short.

Disadvantages of multithreading are the following: a) not interruptible/killable; b) manual

synchronization is often necessary; and c) program code is harder to understand and testing

and debugging is harder due to race conditions.

Both multiprocessing and multithreading as operating modes increase a computing power

[41]. A multiprocessing system is composed of multiple processors where a multithreading

comprises multiple threads.

Table 6 Multiprocessing vs Multithreading

Multiprocessing Multithreading

Multiple CPUs increase

computing power

Multiple threads of a single process

increase computing power

Multiple processes are

executed concurrently

Multiple threads of a single process are

executed concurrently

9. MULTITHREADING: EXECUTION MODEL

One decade later in respect to software architects, hardware architects designed a
multithreaded processor which can run more than one thread on some of its cores at the
same time. A multithreaded architecture is one in which a single processor has the ability
to follow multiple streams of execution without the aid of software context switches. In
order for a conventional processor to stop executing one thread and start executing
instructions from another thread, it requires special software. The role of this software is
to transfer the state of the running thread to memory (usually to stack memory) and then
load the state of the selected other thread into the processor. This process usually requires
hundreds (or thousands) of cycles, especially if an operating system was introduced. A
multithreaded architecture, on the other hand, can access the state of multiple threads in,
or near, the processor core. This allows the multithreaded architecture to quickly switch
between threads, and potentially more efficiently and effectively use processor resources
[42] (see for illustration Fig. 11).

 Fifty Years of Microprocessor Evolution: from Single CPU to Multicore and Manycore Systems 175

Fig. 11 Multithreaded pipeline example

Multicore and multithreading can be used simultaneously because they are two

orthogonal concepts. For instance, the Intel Core i7 processor has multiple cores, and each

core is two-way multithreaded [43]. In the case where multiple threads are executed

simultaneously, then those threads use mostly different hardware resources in the multicore,

while they share most of the hardware resources in the multithreaded processor.

In order to achieve this, a multithreaded architecture must be able to store the state of

multiple threads in hardware - this storage is referred to as hardware contexts, where the

number of supported hardware contexts defines the level of multithreading (the number

of threads that can share the processor without software intervention). The state of a

thread is primarily composed of the program counter (PC), the contents of general-

purpose registers, and special purpose and program status registers. It does not include

memory (because that remains in place), or dynamic state that can be rebuilt or retained

between thread invocations (branch predictor, cache, or TLB contents).

9.1. Instructions issue

Multithreaded processors are divided into two groups depending on how many threads

can issue instructions in a given cycle. When instructions can be issued only from a

single thread in a given cycle, explicit multithreading is used. In that case, the following

two main techniques can be applied [44] (see Fig. 12): i) Coarse-grain multithreading

(CGMT) or Blocked multithreading (BMT); and ii) Fine-grain multithreading (FGMT) or

Interleaved multithreading (IMT). When instructions can be issued from multiple threads

in a given cycle, Simultaneous multithreading (SMT) is used.

Fig. 12 Explicit multithreading

176 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

Coarse-grain multithreading, also called blocked multithreading or switch-on-event

multithreading, has multiple hardware contexts associated with each processor core [45].

The instructions of a thread are executed successively, but when an event occurs that may

cause latency, then it produces a context switch. Instructions of one thread continue to be

executed until there is a long delay such as a branch or no cache data is found (see Fig.

13). When such a delay is achieved, it is switched to another thread, and this thread is

also executed until a long delay occurs. This process is constantly repeated. The strategy

of this technique makes it possible to hide long delays, but omits shorter delays where the

cost of switching is higher than the cost of tolerating delays. A hardware context is the

program counter, register file, and other data required to enable a software thread to

execute on a core. A coarse-grain multithreaded processor operates similarly to a software

time-shared system, but with hardware support for fast context switch, allowing it to switch

within a small number of cycles (e.g., less than 10) rather than thousands or tens of thousands.

Fig. 13 Coarse-grain multithreading

Fine-grain multithreading, also called interleaved multithreading, also has multiple

hardware contexts associated with each core, but can switch between them with no additional

delay. An instruction of another thread is fetched and entered into the execution pipeline at

each cycle, and therefore the processor can execute an instruction or instructions from

different thread in each cycle. Unlike coarse-grain multithreading, then, a fine-grain

multithreaded processor has instructions from different threads active in the processor at once,

within different pipeline stages [46]. But within a single pipeline stage (or given our particular

definitions, within the issue stage) there is only one thread represented. In this approach, the

CPU executes one instruction of each thread in succession (one after the other) before going

back (in a circular way) to execute the next instruction of the first thread. During execution,

the CPU skips the instruction of any thread that is waiting for an event to occur and has a long

delay (stalled). In this manner, the processor is busy because the pipeline system is almost

always full. Such a processor has significantly complex hardware structure because for each

thread it needs a separate copy of register file and program counter.

Since the next instruction of a thread is fed into the pipeline after the withdrawal of the

previous instruction of this thread, control and data dependencies between instructions do not

occur in FGMT. The pipeline system is simple and potentially very fast because there is no

need for complex hardware hazard detection. In addition, the context switching time between

threads is zero cycles. Memory latency is compensated by not scheduling a thread until

memory access is completed. In this model, the number of CPU pipeline stages determines the

number of threads that can be executed. The processing power available to one thread is

limited by the instruction interleaving from other threads.

 Fifty Years of Microprocessor Evolution: from Single CPU to Multicore and Manycore Systems 177

In simultaneous multithreading (SMT) instructions are simultaneously initiated from

multiple threads to the execution units of a superscalar CPU. In this way, the initiation of

several superscalar instructions is linked with hardware resources for multiple-context

approach. The CPU can issue multiple instructions from multiple threads each cycle. In

this way, both unused cycles in the case of latencies and unused issue slots within one

cycle can be filled by instructions of alternative threads. From one hand, TLP exists as a

consequence of multithreading, parallel programs or multiple independent programs in a

multiprogramming workload. From the other hand, ILP is based on execution of individual

threads. SMT processor achieves better throughput and speedup in respect to single

threaded superscalar processor for multithreaded workloads because it efficiently uses

coarse- and fine-grain parallelism, at cost of more complex hardware architecture.

SMT, CGMT and FGMT are approaches which are often used in RISC or VLIW

processors [39], [47]. Intel Pentium 4 implements SMT from 2002, starting from the

3.06 GHz model. Intel calls SMT technique as Hyper-Threading. Other processors that

use SMT are Alpha AXP 21464, IBM Power5, and Intel Nehalem i7 [48]. One simple

SMT architecture is presented in Fig. 14.

Fig. 14 SMT processor architecture

Much like pipelining, superscalar architecture (presented in Fig. 14) also extends very

naturally the possibility to support multiple threads of instructions. A multi-threaded

superscalar processor executes instructions from multiple threads. Each thread executes

its logical instruction stream and uses separate registers, etc., but shares most of the

available physical resources. The additional hardware required to support multiple thread

execution is minor, but performance is significantly improved.

Short remarks related to explicit multithreading: Coarse-grain multithreaded processors

directly execute one thread at a time, but can switch contexts relatively quickly, in a matter of

a few cycles. This allows them to switch to the execution of a new thread to hide long

latencies (such as memory accesses), but they are less effective at hiding short latencies. Fine-

grain multithreaded processors can context switch every cycle with no delay. This allows

them to hide even short latencies by interleaving instructions from different threads while one

thread is stalled. However, this processor cannot hide single-cycle latencies. A simultaneous

multithreaded processor can issue instructions from multiple threads in the same cycle,

178 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

allowing it to fill out the full issue width of the processor, even when one thread does not have

sufficient ILP to use the entire issue bandwidth.

Illustration purpose only, two different approaches that are possible with single-issue

(scalar) processors and multiple-issue processors are given in Fig. 15 and Fig. 16,

respectively [37]. Fig. 17 presents two cases of issuing multiple threads in a cycle [38].

Fig. 15 Different approaches possible with single-issue (scalar) processors: a) single-threaded

scalar, b) interleaved multithreading scalar, c) blocked multithreading scalar

Fig. 16 Different approaches possible with multiple-issue processors: (a) single-threaded

four-wide superscalar, (b) interleaved multithreading four-wide superscalar,

(c) blocked multithreading four-wide superscalar
Notice: Vertical waste corresponds to darker marked box, while horizontal waste corresponds to

lighter marked box

 Fifty Years of Microprocessor Evolution: from Single CPU to Multicore and Manycore Systems 179

Fig. 17 Issuing from multiple threads in a cycle: a) simultaneous multithreading, b) chip

multiprocessor

10. PARALLEL VS SERIAL COMPUTING

What is Serial Computing: Computer software is conventionally created for serial

execution, where the algorithm divides the problem into smaller parts, i.e. instructions. These

instructions are then serially executed on the CPU of the computer one by one [18]. After

completing the current instruction, the next one begins. So, in short, Serial (sequential)

Computing is following (see Fig. 18):

▪ A problem is broken into a discrete series of instructions

▪ Instructions are executed sequentially one after another

▪ Executed on a single processor

▪ Only one instruction may execute at any moment in time.

Fig. 18 Serial Computing generic example

What is Parallel Computing: Contrary to the serial approach, parallelism can be

defined as an approach of dividing big problems into smaller ones. After that, smaller

problems are simultaneously solved by multiple processors. The terms parallelism and

concurrency are often confused. Parallelism means that two or more program sequences

180 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

are executed independently of each other by a number of processors, while in concurrent

execution there are dependencies between program sequences so that the execution of

one program sequence must wait for the execution of another to continue. Every parallel

processing is not needed to be considered as concurrent. For example, bit-level

parallelism is not concurrent.

As can be seen from Fig. 19, to solve a computational problem Parallel Computing

involves the simultaneous usage of multiple computing resources [49]:

▪ A problem is decomposed into several parts that can be solved concurrently

▪ Each part is further decomposed down to a series of instructions

▪ Instructions from each part execute simultaneously on different processors

▪ A general control/coordination mechanism is implemented.

Concurrency vs Parallelism: We can see how concurrency and parallelism work with

the below example. As shown in Fig. 20, there are two cores and two tasks. In a

concurrent approach, each core is executing both tasks by switching among them over

time. In contrast, the parallel approach doesn’t switch among tasks, but instead executes

them in parallel over time [50]. This simple example for concurrent processing can be

any user-interactive program, like a text editor. In such a program, there can be some IO

operations that waste CPU cycles. When we save a file or print it, the user can concurrently

type. The main thread launches many threads for typing, saving, and similar activities

concurrently. They may run in the same time period; however, they aren’t actually running in

parallel.

Types of Parallelism: In essence, the parallelism can be implemented at two levels,

hardware and software, respectively [51].

Fig. 19 Parallel Computing generic example

Parallelism at hardware level is built into machines architecture and hardware

multiplicity, so it is also known as machine parallelism. This type of parallelism is a

function of cost and performance trade off. It also displays resource utilization patterns of

simultaneously executable operations and indicates the peak performance of processor

resources. It is characterized by number of instruction issues per machine cycle [1].

 Fifty Years of Microprocessor Evolution: from Single CPU to Multicore and Manycore Systems 181

Fig. 20 Concurrent vs Parallel execution

In summary, we distinguish the following types of hardware parallelism:
1. Parallelism in a Uniprocessor level implemented as: i) Pipelining, Super-pipelining;

ii) Superscalar, VLIW etc.
2. Parallelism implemented with SIMD instructions, Vector processors, GPUs
3. Parallelism at Multiprocessor level: j) Symmetric shared-memory multiprocessors;

jj) Distributed-memory multiprocessors; jjj) Chip-multiprocessors a.k.a. multi-cores;
ivj) Multicomputer a.k.a. clusters.

Parallelism at software level is exploited by the concurrent execution of machine
language instructions in a program. This type of parallelism is a function of algorithm,
programming style and compiler optimization. It also displays patterns of simultaneously
executable operations using the program flow graph [52].

We distinguish the following two types of software parallelism:
1. Control parallelism – allows two or more operations to be performed simultaneously;
2. Data parallelism – at most same operation is performed over many data elements by

many processors simultaneously.
Data level parallelism (DLP) arises from executing essentially the same code on a

large number of objects [53], while control level parallelism (CLP) arises from executing
different threads of control concurrently [54].

Parallelism in software level can be implemented at instruction, task, data or
transaction level parallelism [55].

10.1. Implementations of the Most Common Type of Parallelism

Bit-level Parallelism: This type of parallelism (implemented at hardware level) uses
doubling the processor word size. It provides faster execution of arithmetic operations for
large numbers. For instance, an 8-bit CPU executes 16-bit addition for two cycles,
whereas a 16-bit processor needs just one cycle for the same activity. This level of
parallelism is also used in 64-bit processors.

Instruction-level parallelism (ILP): This type of parallelism (implemented at hardware
level) exploits the potential overlap between instructions in a program. In most cases, ILP is
implemented on each processor’s hardware as: i) Instruction pipelining; ii) Superscalar
processing; iii) Out-of-order execution; and iv) Speculative execution/Branch prediction.

Most processors use a combination of the aforementioned ILP techniques to achieve
higher performance. Very Long Instruction Word (VLIW) processors use specialized
compilers to achieve static ILP parallelism at the software level. Compilers prepare
parallel instruction streams for VLIW processors so that they take full advantage of a
number of executive units organized in multiple pipelines.

182 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

Task/Thread-level parallelism (TLP): This type of high-level parallel computing

(implemented at software level) is based on partitioning the application in distinct task or

threads, that can be then executed simultaneously. Threads are executed on different

computer units and can work on independent data or share data. Until recently, programming

was done sequentially, with a single thread representing the entire application. Today, it is

necessary to use the new paradigm of multi-threaded programming in order to take full

advantage of the available multicore processors. In that sense, modern operating systems

(OSs) provide scheduling of different processes on different cores. However, in the case of

complex applications such as bioinformatics, the OS cannot efficiently distribute the

computational load of each process to available cores. In order to improve performance,

these applications need to be redeveloped to achieve thread-level parallelism.

Data parallelism: This form of high-level parallelism partitions data into various

available computing units. Data is assigned to cores that independently execute the same

task code on each fragment of data. Therefore, this type of parallelism requires advanced

code development skills and can only be applied to specific problems.

Computer graphics is an important area of application of high-level data parallelism. The

design of graphic processor units (GPUs) enables efficient execution of every graphics

processing task. First, each frame is divided into regions, and then, based on the command,

hundreds of processor units perform the task independently on each data region.

Many incarnations of DLP architectures over decades are the following [49]: a) Old

vector processors (Cray processors: Cray-1, Cray-2, …, Cray X1); b) SIMD extensions

(Intel SSE and AVX units, Alpha Tarantula (didn’t see light of day)); c) Old massively

parallel computers (Connection Machines, MasPar machines); and d) Modern GPUs

(NVIDIA, AMD, Qualcomm, ...). In general, DLP focus of throughput rather than latency.

In Fig. 21 a classification scheme of parallel computer architectures based on type of

instruction processing is given.

Fig. 21 Classification of Parallel Architectures based on type of instruction processing

The difference among the three major categories ILP, TLP and DLP that are nowadays

mainly used in computer systems to exploit parallelism is sketched in Fig. 22, and that is [56]:

▪ Instruction-Level Parallelism (ILP) - Multiple instructions from one instruction

stream are executed simultaneously;

▪ Thread-Level Parallelism (TLP) - Multiple instruction streams are executed

simultaneously;

▪ Vector Data Parallelism (VDP) - The same operation is performed simultaneously

on arrays of elements.

 Fifty Years of Microprocessor Evolution: from Single CPU to Multicore and Manycore Systems 183

There are many reasons to use parallel computing [4]. First of all, the whole real world has

a dynamic nature, i.e. many things happen at a certain time, but in different places at the same

time, so this data is very huge to manage and requires more dynamic simulation and

modeling. It is parallel computing that ensures the concurrency and organization of complex,

large datasets and their management while saving money and time. It also provides efficient

use of hardware resources and real-time system implementation.

Fig. 22 Differences in execution among ILP, TLP and VDP

Parallel computing finds application in many areas of science and engineering, then in

databases and data mining, in real-time system simulations, as well as in advanced

graphics, augmented reality and virtual reality.

In addition to a number of advantages, there are some limitations of parallel computing.

The main problem is the difficulty in achieving communication and synchronization between

multiple subtasks and processes. Also, algorithms or programs must be provided with low

coupling and high cohesion as well as the possibility that they can be handled in a parallel

mechanism. Developers must be experts and technically skilled in order to be able to

effectively code a program based on parallelism.

11. CONCLUSION

Nowadays, the microprocessor represents one of the most complex applications of the

transistor, with well over 10 billion transistors of the most powerful microprocessor. In

fact, throughout its 50 years of evolution period, the microprocessor has always used the

technology of the day. The intention to permanently increase performance has led to

rapid technological improvements that have made it possible to build more complex

microprocessors. Advances in semiconductor fabrication processes, computer architecture and

organization, as well as CMOS IC VLSI design methodologies, were all needed to create

today’s microprocessor. The development of microprocessors since 1971 has been aimed at

(a) improving architecture, (b) improving instruction set, (c) increasing speeds, (d) simplifying

power requirements [57], [58] and (e) embedding more and more memory space and I/O

facilities in the same chip (using single chip computers).

This paper discusses first, fifty years of microprocessor history and its generations.

Then it describes the benefits of switching from non-pipelined processor to single core

184 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

pipelined processor, and switching from single core pipelined and superscalar processor

to multicore pipelined and superscalar processor. Finally, it presents the design of a

multicore processor. The transition from single-core to multi-core is inevitable because

past techniques for accelerating processor architectures that do not modify the basic Von

Neumann computer model, such as pipelining and superscalar, encounter strong limits.

The question is, why have multi-core machines become so widespread in the last decade?

According to Moore's Law, the density of transistors doubles approximately every 18 months

[59], and according to Dennard's scaling, the power density of transistors is constant [60]. This

has historically corresponded to increase in clock speed of single core machines of

approximately 30% per year since the mid-1970s [61]. However, since the mid-2000s,

Dennard scaling has no longer been maintained due to physical hardware limitations, and

therefore, there has been a need for new mechanisms. To improve performance, hardware

vendors have focused on developing processors with multiple cores [62]. As a result, the

microprocessor industry is moving towards multicore architectures. However, the full

potential of these architectures will not be exploited until the software industry fully

accepts parallel programming. Multiprocessor programming is much more complex than

programming single processor machines and requires an understanding of new algorithms,

computational principles, and software tools. Only a small number of developers currently

master these skills. There are many techniques that can be used to facilitate the transition to

multicore processors, but to take full advantage of the potential offered by such systems, some

form of parallel programming will always be needed [4]. Multicore technology has become

ubiquitous today with most personal computers and even mobile phones [63], so writing

parallel programs is crucial to achieving scalable performance and enabling large-scale data

processing. In addition, to take full advantage of multicore technology, software applications

must be multithreaded. The total work to be performed must be able to be distributed among

the execution units of a multicore processor in such a way that they can execute at the same

time. In order to consider multithreading in more detail, it is first necessary to understand

parallel hardware and parallel computing [44]. Finally, this paper provides some details on

how to implement hardware parallelism in multicore systems.

Acknowledgement: This work was supported by the Serbian Ministry of Education and Science,

Project No TR-32009 – "Low power reconfigurable fault-tolerant platforms".

REFERENCES

[1] D. Patterson and J. Hennessy, Computer Architecture: A Quantitative Approach, 6th Ed., Morgan

Kaufmann, 2017.

[2] J.-L. Baer, Microprocessor Architecture: From Simple Pipelines to Chip Multiprocessors, Cambridge
University Press, 2009.

[3] Y. Solihin, Fundamentals of Parallel Multicore Architecture, Chapman & Hall/CRC, 2015.

[4] R. Kuhn and D. Padua, Parallel Processing, 1980 to 2020", Morgan & Claypool, 2021.
[5] M. Stojčev, Microprocessor architectures I part, in serbian, Elektronski fakultet Niš, 2004

[6] B. Parhami, Computer Architecture: From Microprocessors to Supercomputers, Oxford University Press,

2005
[7] Semiconductor Industry Association, International Technology Roadmap for Semiconductors (ITRS),

2013 edition, 2013

[8] K. Olukotun, L. Hammond, and J. Laudon, Chip Multiprocessor Architecture: Techniques to Improve
Throughput and Latency, Morgan & Claypool, 2007

 Fifty Years of Microprocessor Evolution: from Single CPU to Multicore and Manycore Systems 185

[9] R. V. Mehta, K. R. Bhatt and V. V. Dwivedi, "Multicore Processor Challenges – Design Aspects", J.
Emerg. Technol. Innov. Res. (JETIR), vol. 8, no. 5, pp. C171-C174, May 2021.

[10] A. Gonzalez, F. Latorre and G. Magklis, Processor Microarchitecture: An Implementation Perspective,

Morgan & Claypool, 2011.
[11] M. Stojčev and P. Krtolica, Computer systems: Principle of digital systems, in serbian, Elektronski

fakultet Niš i Prirodno-matematički fakultet Niš, 2005.

[12] "Microprocessor Chronology", av.at. https://en.wikipedia.org/wiki/Microprocessor_chronology, last
access 28.03.2022.

[13] M. Stojčev, Contemporary 16-bit microprocessors, Vol. I, in serbian, Naučna knjiga, Beograd, 1988.

[14] M. Stojčev, Contemporary 16-bit microprocessors, Vol. II, in serbian, Naučna knjiga, Beograd, 1988.
[15] M. Stojčev, Contemporary 16-bit microprocessors, Vol. III, in serbian, Naučna knjiga, Beograd, 1988.

[16] M. Stojčev, RISC, CISC and DSP processors, in serbian, Elektronski fakultet Niš, 1997.

[17] M. Stojčev, Branislav Petrović, Architectures and programming microcomputer systems based on
processor family 80x86, in serbian, Elektronski fakultet Niš, 1999.

[18] D. Patterson and J. Hennessy, Computer Organization and Design: The Hardware/Software Interface,

5th Ed., Morgan Kaufmann, 2014.
[19] Y. Etsion, "Computer Architecture Out-of-order Execution", av.at. https://iis-people.ee.ethz.ch/~gmichi/

asocd/addinfo/Out-of-Order_execution.pdf, last access 28.03.2022.

[20] "Superscalar Processors", av. at. https://www.cambridge.org/core/terms, last access. 28.03.2022.
[21] M. Stojčev and T. Nikolić, Pipeline processing and scalar RISC processor, in serbian, Elektronski

fakultet Niš, 2012.

[22] M. Stojčev and T. Nikolić, Superscalar and VLIW processors, in serbian, Elektronski fakultet Niš, 2012 .
[23] Philips Semiconductors, Introduction to VLIW Computer Architecture, av. at. https://www.isi.edu/

~youngcho/cse560m/vliw.pdf. Last access 28.03.2022

[24] N. P. Jouppi and D. W. Wall, "Available Instruction Level Parallelism for Superscalar and
Superpipelined Machines", WRL Research Report 89/7, av. at. https://www.hpl.hp.com/techreports/

Compaq-DEC/WRL-89-7.pdf, last access 28.03.2022

[25] C. E. Kozyrakis and D.A. Patterson, "Scalable Vector Processors for Embedded System", IEEE Micro,
vol. 23, no. 6, pp. 36– 45, Nov.-Dec. 2003.

[26] E. Aldakheel, G. Chandrasekaran and A. Kshemkalyani, "Vector Procesors", av. at.

https://www.cs.uic.edu/~ajayk/c566/VectorProcessors.pdf, last access 29.03.2022
[27] C. Lomont, "Introduction to Intel® Advanced Vector Extensions", av. at. https://hpc.llnl.gov/sites/

default/files/intelAVXintro.pdf, last access 29.03.2022.

[28] M. Stojčev, E. Milovanović and T. Nikolić, Multiprocessor systems on chip, in serbian, Elektronski
fakultet Niš, 2012.

[29] J. L. Lo and S. J. Eggers, "Improving Balanced Scheduling with Compiler Optimizations that Increase

Instruction-Level Parallelism", av. at. https://homes.cs.washington.edu/~eggers/Research/bsOpt.pdf, last
access 29.03.2022.

[30] S. Akhter and J. Roberts, Multi-Core Programming, Intel Press, 2006.
[31] G. Koch, "Intel’s Road to Multi-Core Chip Architecture", av. at. http://www.intel.com/cd/ids/

developer/asmo-na/eng/220997.htm

[32] G. Koch, "Transitioning to multi-core architecture", av.at. www.intel.com/cd/ids/developer/asmo-
na/eng/recent /221170.htm, last access 29.03.2022.

[33] M. Brorsson, "Multi-core and Many-core Processor Architectures", Chapter 2 in Programming Many-

Core Chips, Ed. A. Vajda, Springer, 2011.
[34] M. Zahran, Heterogeneous Computing: Hardware and Software Perspectives, ACM Books #26, 2019.

[35] M. Mitić, M. Stojčev and Z. Stamenković, "An Overview of SoC Buses", in Embedded Systems

Handbook, Digital Systems and Aplications, Ed. V. Oklobdzija, Chapter 7, 7.1- 7.16, CRC Press, Boca

Raton, 2008.

[36] J. Rehman, "Advantages and disadvantages of multi-core processors", av. at https://www.itrelease.com/
2020/07/advantages-and-disadvantages-of-multi-core-processors/, last access 29.03.2022

[37] J. Shun, Shared-Memory Parallelism Can Be Simple, Fast, and Scalable, Morgan & Claypool Pub., 2017

[38] T. Ungerer, B. Rogic and J. Silc, "Multithreaded Processors", Comput J., vol. 45, no. 3, pp. 320–348,
2002.

[39] A. Silberschatz, G. Gagne and P. B. Galvin, "Multithreaded Programming", Chapter 4 in Operating

System Concepts, 8th Ed., John Wiley, 2009.
[40] DifferenceBetween.com, "Difference Between Multithreading and Multitasking", av.at.

https://www.differencebetween.com/difference-between-multithreading-and-vs-multitasking/, last access

29.03.2022.

https://en.wikipedia.org/wiki/Microprocessor_chronology
https://iis-people.ee.ethz.ch/~gmichi/%0basocd/addinfo/Out-of-Order_execution.pdf
https://iis-people.ee.ethz.ch/~gmichi/%0basocd/addinfo/Out-of-Order_execution.pdf
https://www.cambridge.org/core/terms
https://www.hpl.hp.com/techreports/%0bCompaq-DEC/WRL-89-7.pdf
https://www.hpl.hp.com/techreports/%0bCompaq-DEC/WRL-89-7.pdf
https://www.cs.uic.edu/~ajayk/c566/VectorProcessors.pdf
https://homes.cs.washington.edu/~eggers/Research/bsOpt.pdf
http://www.intel.com/cd/ids/developer/asmo-na/eng/recent%20/221170.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/recent%20/221170.htm
https://www.itrelease.com/%0b2020/07/advantages-and-disadvantages-of-multi-core-processors/
https://www.itrelease.com/%0b2020/07/advantages-and-disadvantages-of-multi-core-processors/
https://www.differencebetween.com/difference-between-multithreading-and-vs-multitasking/

186 G. NIKOLIĆ, B. DIMITRIJEVIĆ, T. NIKOLIĆ, M. STOJČEV

[41] TechDifferences, "Difference Between Multitasking and Multithreading in OS", av. at.
https://techdifferences.com/difference-between-multitasking-and-multithreading-in-os.html, last access

29.03.2022

[42] tutorialspoint, "Multi-Threading Models", av.at https://www.tutorialspoint.com/multi-threading-models,
last access 22.03.2022

[43] Wikipedia, "List of Intel Core i7 Processors", av. at https://en.wikipedia.org/wiki/List_of_Intel_

Core_i7_processors, last access 29.03.2022
[44] M. Nemirovsky and D. M. Tullsen, Multithreading Architecture, Morgan & Claypool, 2013.

[45] O. Mutlu, "Computer Architecture: Multithreading", av. at. https://rmd.ac.in/dept/ece/Supporting_

Online_%20Materials/5/CAO/unit5.pdf, last access 22.03.2022
[46] N. Manjikian, "Implementation of Hardware Multithreading in a Pipelined Processor", In Proceedings of

the IEEE North-East Workshop on Circuits and Systems, 2006, pp. 145–148.

[47] P. Manadhata, and V. Sekar, "Simultaneous Multithreading”, av. at https://www.cs.cmu.edu/afs/cs/
academic/class/15740-f03/www/lectures/smt.pdf, last access 29.03.2022

[48] Intel, "Products formerly Nehalem EP", av. at

[49] https://ark.intel.com/content/www/us/en/ark/products/codename/54499/products-formerly-nehalem-ep.html,
last access 29.03.2022

[50] K. Hwang and Z. Xu, Scalable Parallel Computing: Technology, Architecture, Programming, McGraw-

Hill, 1998.
[51] D. Malkhi, Concurrency: The Works of Leslie Lamport, ACM Books #29, 2019.

[52] CS4/MSc Parallel Architectures, "Lect. 2: Types of Parallelism", av. at https://www.inf.ed.ac.uk/

teaching/courses/pa/Notes/lecture02-types.pdf, last access 29.03.2022
[53] Chapter 3: "Understanding Parallelism", av. at

https://courses.cs.washington.edu/courses/cse590o/06au/LNLCh-3-4.pdf, last access 29.03.2022

[54] J. Owens, "Data Level Parallelism", av. at https://www.ece.ucdavis.edu/~jowens/171/lectures/dlp3.pdf.
Last access 29.03.2022

[55] A. A. Freitas, S. H. Lavington, "Data Parallelism, Control Parallelism, and Related Issues", in Mining

Very Large Databases with Parallel Processing, Springer, 2000.
[56] E. I. Milovanović, T. R. Nikolić, M. K. Stojčev and I. Ž. Milovanović, "Multi-functional Systolic Array

with Reconfigurable Micro-Power Processing Elements", Microelectron. Reliab., vol. 49, no. 7,

pp. 813–820, July 2009.
[57] C. Severance and K. Dowd, High Performance Computing, Connexions, Rice University, Houston,

Texas, 2012.

[58] G. Nikolić, M. Stojčev, Z. Stamenković, G. Panić and B. Petrović, "Wireless Sensor Node with Low-

Power Sensing", Facta Univ. Ser.: Elec. Energ., vol. 27, no 3, pp. 435–453, Sept. 2014.

[59] T. Nikolić, M. Stojčev, G. Nikolić and G. Jovanović, "Energy Harvesting Techniques In Wireless Sensor

Networks", Facta Univ. Ser.: Aut. Cont. Rob., vol. 17, no. 2, pp. 117-142, Dec. 2018.

[60] G. E. Moore. "Cramming More Components onto Integrated Circuits", Electronics, vol. 38, no. 8,

pp. 114–117, April 1965.
[61] R. H. Dennard, F. H. Gaensslen and K. Mai, "Design of Ion-Implanted MOSFET’s with Very Small

Physical Dimensions", IEEE J. Solid-State Circuits, vol. 9, no. 5, pp. 256–268, Oct. 1974.

[62] S. Naffziger, J. Warnock and H. Knapp. "When Processors Hit the Power Wall", In Proceedings of the
IEEE International Solid-State Circuits Conference (ISSCC), 2005, pp. 16–17.

[63] S. Borkar and A. A. Chien, "The Future of Microprocessors", Commun. ACM, vol. 54, no. 5, pp.67–77,

May 2011.
[64] M. D. Hill and M. R. Marty, "Amdahl’s Law in the Multicore Era", IEEE Comput. Mag., vol. 41, no.7,

pp. 33–38, July 2008.

https://techdifferences.com/difference-between-multitasking-and-multithreading-in-os.html
https://www.tutorialspoint.com/multi-threading-models
https://en.wikipedia.org/wiki/List_of_Intel_%0bCore_i7_processors
https://en.wikipedia.org/wiki/List_of_Intel_%0bCore_i7_processors
https://rmd.ac.in/dept/ece/Supporting_%0bOnline_%20Materials/5/CAO/unit5.pdf
https://rmd.ac.in/dept/ece/Supporting_%0bOnline_%20Materials/5/CAO/unit5.pdf
https://ieeexplore.ieee.org/xpl/conhome/4016922/proceeding
https://www.cs.cmu.edu/afs/cs/%0bacademic/class/15740-f03/www/lectures/smt.pdf
https://www.cs.cmu.edu/afs/cs/%0bacademic/class/15740-f03/www/lectures/smt.pdf
https://ark.intel.com/content/www/us/en/ark/products/codename/54499/products-formerly-nehalem-ep.html
https://www.inf.ed.ac.uk/%0bteaching/courses/pa/Notes/lecture02-types.pdf
https://www.inf.ed.ac.uk/%0bteaching/courses/pa/Notes/lecture02-types.pdf
https://www.ece.ucdavis.edu/~jowens/171/lectures/dlp3.pdf
http://casopisi.junis.ni.ac.rs/index.php/FUElectEnerg/article/view/140
http://casopisi.junis.ni.ac.rs/index.php/FUElectEnerg/article/view/140

