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Abstract. In this work, a fractional-order controller (FOC) is designed in a discrete 

domain using delta operator parameterization. FOC gets rationally approximated 

using continued fraction expansion (CFE) in the delta domain. Whenever discretization 

of any continuous-time system takes place, the choice of sampling time becomes the 

most critical parameter to get most accurate results. Obtaining a higher sampling rate 

using conventional shift operator parameterization is not possible and delta operator 

parameterized discretize time system takes the advantages to circumvent the problem 

associated with the shift operator parameterization at a high sampling limit. In this 

work, a first-order plant with delay is considered to be controlled with FOC, and is 

implemented in discrete delta domain. The plant model is designed using MATLAB as 

well as in hardware. The fractional-order controller is tuned in the continuous domain 

and discretized in delta domain to make the discrete delta FOC. Continuous time 

fractional order operator (s±α) is directly discretized in delta domain to get the overall 

FOC in discrete domain. The designed controller in implemented using MATLABSimulink 

and dSPACE board such that dSPACEboard acts as the hardware implemented FOC. 

The step response characteristics of the closed-loop system using delta domain FOC 

resembles to that of the results obtained by continuous time controller. It proves that at 

a high sampling rate, the continuous-time result and discrete-time result are obtained 

hand to hand rather than the two individual cases. Therefore, the analysis and design of 

FOC parameterized with delta operator opens up a new area in the design and 

implementation of discrete FOC, which unifies both continuous and discrete-time 

results. The discrete model performance characteristics are evaluated in software simulation 

using MATLAB, and results are validated through the hardware implementation using 

dSPACE. 
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1. INTRODUCTION 

A fractional-order system (FOS) is a system having a non-integer order differentiator 

and integrator. Nowadays FOS has become a vital research arena not only in mathematics 

but also in the system theory and control. From the literature, most of the real-world 

system is inevitably fractional order [1]–[3]. Since its inception in the year 1695, the 

mathematicians have done value addition and its utilization in control theory [4]. For the 

last few decades, the researchers have paid attention in modeling, analysis, simulation, 

solution of differential equations in fractional order domain to deliver a clear concept on 

FOS [5]–[7]. The control engineers are nowadays using the fractional-order calculus as a 

background of fractional-order controllers (FOC). To control the plant, the fractional-

order controller becomes very much essential tools rather than the integer-order controller, 

and it is evident from the literature that the performance of the fractional-order controller is 

better than that of the integer-order controller [8]. The electrochemical process [9], dielectric 

polarization [10], visco-electric materials [11], chaos electromagnetic fractional poles [12], 

signal processing [13] are the primary areas where the fractional order calculus has been 

rigorously used for the last decade. In the case of FOS, the differentiator/integrator is 

symbolized by an irrational operator s±μ,where s is a complex quantity and known as Laplace 

transform variable. For the value of μ = ±1 the irrational operator becomes an integer order 

operator s±1.The infinite dimensional irrational operator s±μ is usually converted to the rational 

function either in a continuous domain (s-domain) or discrete domain (z or δ domain). To 

implement the fractional operators in the discrete domain, the discretization of the same 

operator is of primary concern [14]. The most common discretization method is Tustin 

operator-based discretization method. The comparative study between the different 

discretization methods in the z-domain is summarized in [14] to get the merits and demerits 

of each of the methods. For the realization of the fractional order operator in discrete domain, 

sampling rate during discretization should be at least 6-10 times the system bandwidth, as 

suggested by Shannon. But when the sampling rate is increased to a certain extent, 

corresponding z-domain transfer function becomes numerically ill conditioned thereby fails to 

provide meaningful insights. 

The digital controller design in delta domain is better than the corresponding controller 

designed using shift operator [15]. The advantages of the delta operator parameterization 

are elaborated in [16], [17] particularly while the discrete 𝓏-domain results fails at high 

sampling rate. Delta operator has proven its potential for its application in control theory 

[18], system identification [19] in case of fault detection and network control [20], for 

Kalman filter-based controller design used in cyber-physical systems [21]. Direct 

discretization from continuous time domain to delta domain can make the procedure for FO 

controller design smoother and methods for the same has been proposed in [22], [23]. High 

speed digital realization for the fractional order operator can be possible using the properties 

of delta operator parameterization [24]. Moreover, delta operator parameterization has made 

it possible to understand both continuous and discrete-time systems in a unified 

framework. 

 For designing the fractional order controller, there are different works of literatures 

(AN231E04 Data sheet., 2012), [25]–[27]where different realization techniques are 

discussed. The tuning of parameters for the controllers is a fundamental issue. Several 

optimization techniques [28], [29] in the frequency domain [8], [30] are available. The 

analog realizations of fractional-order PID controllers have been proposed in [31]–[34]. 
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Digital implementation of the FOC for Boost Converter using shift operator parameterization 

has been successfully done in [33]. Digital implementation of fractional-order controllers 

using FPGA via shift operator parameterization in indirect discretization domain is 

presented in [35], [36]. In this paper, DS1202 dSPACE board is a platform where a real-

time controller in the discrete delta domain is implemented. In this paper, the performance of 

the proposed controller is studied using both simulations and digital hardware platforms, 

and a comparative study is done. 

The significant contributions are made in this paper in manifold: In the earlier work, 

the fractional-order controllers are designed in different analog realization techniques. 

The discrete-time systems so far designed are done using shift operator parameterization, 

but shift operator parameterization fails to provide meaningful information at a high 

sampling rate. The real-time implementation of the controller in the digital domain needs 

a very high sampling rate to get a better result. In this work, the FO controller design for 

the integer-order plant with dead time is done using the delta operator parameterization 

and hardware realization is made using dSPACE. At a fast-sampling limit, the discrete 

domain results resemble to that of the continuous-time results providing a unified method 

of FOC design in delta domain. A new direct discretization method for discretizing the 

fractional order continuous time operator into discrete delta domain is utilized to obtain 

the rational transfer function in delta domain for the implementation using dSPACE board. 

Therefore, digital design and implementation of FOC using delta operator parameterization 

using dSPACE is a newer concept and a new direction for further research. 

The organization of the paper is as: The basics of fractional-order system and 

controller are discussed in section 2. In Section 3, the discretization of fractional order 

operators using the delta operator is described. The digital realization of the FOPID 

controller using the delta operator is demonstrated in section 4. In Section 5, the 

implementation of the proposed controller in Simulink and dSPACE board is discussed. 

Finally, Section 6 & Section 7 is devoted to analyzing the result analysis and conclusion, 

respectively. 

2. FRACTIONAL ORDER SYSTEM 

2.1. Fractional order Calculus 

In fractional calculus, the non-integer order differentiation/integration is denoted by a 

fundamental operator mD

, where ψ is used to specify the order of the operation like 

differentiation or integration. This operator is known as an integro-differentiator operator; 

this is mathematically represented as 
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There are two popular definitions, such as Grünwald-Letnikov (GL) and Riemann-

Liouville (RL) definitions, to express the integro-differentiator operator. (2) and(3) 

describe the GL and RL definitions, respectively. 



192 S. K. DOLAI, A. MONDAL, P. SARKAR 

 

GL definition: 
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RL definition: 
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Where the value of  varies from (x − 1) to x  and   is used to represent the Euler's 

gamma function. 

2.2. Fractional order differential equation and transfer function 

The fractional-order differential equation is used to describe the dynamics of a 

fractional-order system (FOS). Likewise, with the case of the classical integer order 

system, the Laplace transform of the fractional-order differential equation generates the 

transfer function of the FOS. The mathematical equation of a fractional-order system is 

described by (4). 
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Where, 
tDD 0 is known as RL-derivative or Caputo fractional derivative. The 

input and the output of the system are denoted by u(t) and y(t) respectively, 

ai(i = 0,......,n) and bi(i = 0,......,m) are constants and i(i = 0,......,n), ri(i = 0,......,m) 

are arbitrary real numbers. In general, the values of iψ and rj can be considered as 

01 ψ.....ψψ nn  − , and 01 r.....rr mm  − . Laplace transform of (1) gives rise to a 

continuous-time transfer function as given by (5). 
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According to the definition of Caputo, the fractional derivative m  is taken equal to 0  

, and the Laplace transform ( )t  is denoted by ( )s . 

By using the expression as derived in (6), Laplace transform is applied on both 

sides of the (4) gives rise to the transfer function of a system with y(t) as the output 

and u(t) is the input. 
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where, U(s) = Lu(t) and Y(s) = Ly(t),  

2.3. Fractional Order PID controller (PID) 

The fractional order PID controller performs better than the integer-order PID 

controller owing to its greater number of degrees of freedom. In case of the FOPID 

controller, the orders of the Integrator and Differentiator ( < 0,  > 0)  are non-integer. 
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Therefore, by using the fractional-order calculus for differentiation, integration and Laplace 

transform, the continuous-time domain transfer function of fractional order PID  

controller gets the following form: 

 ( )
( )

( )  , 0
( )

c p i d

U s
G s K K s K s

E s

− = = + +             (7) 

where, U(s) = Lu(t) and E(s) = Le(t) are output and the input of the controller, respectively.  

The integer-order PID controller can be obtained by using  = 1 and  = 1  in (7). 

Likewise, the PD controller can be obtained if the value of  = 0, and Ki = 0. This may 

conclude that (7) is the generalized transfer function of integer/fractional-order controller. 

The basic structure of the FOPID controller is given in Fig. 1. 

 

Fig. 1 Fractional order PI D  Controller 

3. DIRECT DISCRETIZATION OF FRACTIONAL ORDER INTEGRATOR AND DIFFERENTIATOR 

USING DELTA OPERATOR 

3.1. Relationship between s-domain and  -domain 

The shift operator parameterization is used to describe the discrete-time system. The 

forward shift operator is usually denoted by q. The delta domain is an area where 

discrete-time systems are represented using the delta operator . The delta operator () is 

nothing but the scaled and shifted version of the forward shift operator (q). The -

operator is related with the forward shift operator q as (  is the sampling time). 

 


−
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At high sampling period ( → 0), the following identity is obtained when delta 

operator is applied on a differentiable signal y(t): 
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The continuous-time derivative can be obtained from the delta operated signal at a 

fast-sampling limit as can be seen from (9). The relationship between the frequency 
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variable ''  in the delta domain and the frequency variable '' z  of the shift operator 

domain is given below: 
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In (10), replacing = sez  the relationship between the frequency variables in continuous 

time and discrete delta time is obtained and is depicted by (11).  



−
=

 1se
  , 

or, 

+= 1se  

 )1ln(
1

+


= s  (11) 

Equation (11) represents the direct relationship between the variable s and . 

3.2. Direct discretization of fractional order operator in delta domain 

For the realization of FOC in delta domain, discretization of the fractional order operator 

(s) in delta domain plays the pivotal role. From (11), the transformation of the fractional 

order operator into delta domain from continuous time domain can be re-established as: 
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By using trapezoidal quadrature rule [37] and CFE, ln (1 + x) function can be successfully 

approximated to its closed form is as follow: 
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Replacing x  by   in (13), (11) can be rewritten as   
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From (14), it is evident that at fast sampling rate ( → 0), s   meaning, the continuous 

and discrete delta domain becomes replicate to each other, thereby (14) gives a direct 

relationship between the two domains. 

Equation (12) can be rewritten as: 
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Rational transfer function in delta domain corresponding to any fractional order operator 

can be realized using (15) through the direct discretization method as demonstrated in [23] 

In continuous-time system representation, fractional-order differentiator (FOD) and 

fractional-order integrator (FOI)are mathematically expressed as: 
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Continued Fraction Expansion (CFE) [38], [39] is used as a powerful tool that operates on 

the generating function to get a rational transfer function. 

The CFE approximation is mathematically formulated using (18)[39]. 
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To obtain the standard form of CFE as given in (18), p is replaced by 
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get the result obtained by CFE in (15).
 

 Here, (15) is used as the generating function for the integer order approximation of 

the fractional-order differentiator/integrator in the delta domain as mathematically 

represented by (19). 
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In this work, third order approximation of FOD and FOI are considered for the 

realization and implementation purpose. Delta domain coefficients [23] for the third order 

approximation of rs are tabulated in Table 1. 

Table 1 Delta-Domain coefficients for third-order approximation of rs  

6 5 4 3 2

3 (3 ) ( 1) (4096 26624 9472 201472 252944 331304 506955)Dnum / r / r + / r + r + r - r - r + r += 
 

Coefficient Numerator 

0H  
 

6 3 5

2 7 4

3

(30720 454416 36096 838259

78360 4096 192000 506955)

r + r - r - r +

r - r - r + Dnum
 

1H  2

3 5 6 4

3

( 938460 1388142 723408

608640 76800 12288 12288 )

- r + - r +

r - r + r + r Dnum

  

   
 

2H  2 2 2 2 3

2 5 2 2 4

3

( 465120 195900 128640

15360 714105 57600 )

- r - r + r

- r + + r Dnum

  

  
 

3H   3 2 3 4 3

3( 64320 7680 97950 )+ - r + r + Dnum    

Coefficient Denominator 

0I  7 6 5 4

3 2

3

(4096 30720 36096 192000

454416 78360 838259 506955)

r + r + r - r

- r + r + r + / Dnum
 

 1I  
 

2 3

5 6 4

3

(938460 1388142 723408 608640

76800 12288 12288 )

+ r + - r - r

+ r + r + r / Dnum

   

  
 

 2I  
 

2 2 2 2 3

2 5 2 2 4

3

( 465120 195900 128640

15360 714105 57600 )

+ - r + r - r

+ r + + r / Dnum

  

  
 

 
3I   3 2 3 4 3

3( 64320 7680 97950 )+ - r + r + / Dnum    



196 S. K. DOLAI, A. MONDAL, P. SARKAR 

 

From the coefficients of Table 1, the 3rd order rational approximation of sr can be 

obtained and 3rd order generalized transfer function as given by (20). 
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4. DIGITAL REALIZATION OF FRACTIONAL-ORDER PID CONTROLLER IN THE DELTA DOMAIN 

The transfer function of the PID controller in continuous time is given by (7). To 

realize the controller transfer functions in the delta domain, fractional order operator such 

as s− and s are to be implemented in the delta domain using (20).The PID controller in 

the delta domain takes the form as 
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In this work, the proposed FOC, designed in the delta domain is to control a plant, 

which is of a first order with time delay [33]. The plant transfer function Gp(s) is modeled 

through the first order Padé approximation to obtain (22). 
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Considering T = 1, L = 0.1, the plant becomes  
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The FOPID controller in the continuous-time domain is tuned using Particle Swarm 

Optimization (PSO) [33]for the plant as given by (23) and tuned parameters of the 

FOPID controllers are as: Proportional gain(Kp) = 0.7469, integral gain(Ki) = 0.874, 

derivative gain ( ) 0.0001, 1.2089dK = =  and 0603.0=  

The FOPID in discrete delta domain takes the form as shown in  (24). 
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3rd order rational approximation of the controller in delta domain (sampling time is 

considered to be 001.0= second) is obtained using (20) and expressed by (25). 
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4.1. Realization of controller using DF-II method 

In this work, the delta domain FOPID controller is realized using Direct Form II (DF-

II) realization method. 

The FOC can be realized in IIR form in z-domain as follows 
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The FOC can be realized in IIR form in  -domain as follows: 
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The functional diagram of the Delta DF-II realization method is depicted in Fig.2. 

corresponding to governing IIR equation (27). 

 

Fig. 2 Delta Direct Form II realization structure 

The unit delay block (z−1) corresponding to discrete z-domain is rebuilt in the discrete -

domain using (10) to realize the FOC in delta domain. This can be called as Delta Direct Form 

-II(DDF-II) realization. The unit delay block ( −1) in the -domain in represented by (28). 
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4.1.1. Delta Direct Form-II realization of FOI 

The integrator part of (25) is considered for the DDF-II realization purpose. In Fig. 3, 

the DDF-II realization of integrator section is demonstrated. 
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Fig. 3 Delta Direct Form II realization of Fractional-order integrator section of fractional- 

order controller 

4.1.2. Delta Direct Form-II realization of FOD 

The differentiator part of (25) is considered for the DDF-II realization purpose. In Fig. 

4, the DDF-II realization of differentiator section is demonstrated   

 

Fig. 4 Delta Direct Form II realization of Fractional-order differentiator section of fractional 

order controller 
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4.2. Implementation of digital controller designed in delta domain using dSPACE 

Data acquisition and control of the prototype system with a controller is accomplished 

using DS1202 dSPACEMicroLabBox, which can be reprogrammed using MATLAB/ 

Simulink, and dSPACE software. The dSPACE is a software package where the real-time 

interface with the model-based input-output can be integrated with the Simulink control desk. 

If any continuous system is to be controlled with a digital controller having a 

sampling time of , the following functional diagram as shown in Fig. 5can be utilized. 

The interfacing of the system and the controller can be pictorially demonstrated in Fig.5. 

To get the information from the sensor to the controller in dSPACE, analog to digital 

(ADC) converter is used and digital to analog (DAC) is used to send the signal back. 

 

Fig. 5 Real-Time Control Structure 

The selection of sample time of the control program using dSPACE depends on the time 

constant of the physical system, which is again related to the dynamics of the system. 

The actual hardware set up for the experiment is shown in Fig.6 where the plant is 

designed in a continuous-time domain and controller is designed in the delta domain 

(discrete-time domain) and implemented through the DS1202 dSPACE board. 

 

Fig.  6. Actual Photograph of the experimental setup 

In Fig. 7, analog realization of FO plant [8] controller in the continuous-time domain is 

shown. The parameters required to design the FO plant as shown in Fig.7.  is summarized in 

Table 2. 
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Table 2 Component specifications for designing the FO Plant 

Elements Value 

R1 40 K 

R2 10 K 

R3 500  

C1, C2 15 nF 

 

Fig. 7 Analog realization of Fractional order Plant 

Fig. 8 shows the digital realization of the FOPID Controller designed using the delta 

operator used to control the continuous-time plant in MATLAB/Simulink. Fig. 9 demonstrates 

the step response of the overall system where the FOPID controller using the delta operator 

is designed using MATLAB/Simulink.  

 

Fig. 8 Digital realization of FOPID controller designed in the delta domain (kp = 0.25) 
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Fig. 9 Step response of the overall system with FOPID controller designed in delta domain  

(kp = 0.25)      

 

Fig. 10 Hardware implementation of the plant of first order with time delay 



202 S. K. DOLAI, A. MONDAL, P. SARKAR 

 

5. RESULT ANALYSIS 

In this work, delta operator parameterization is used to design the discrete FOPID 

controller, and the same is realized by Delta Direct Form II structure. The plant is considered 

to be one first order with time delay, is designed on a real-time basis. The designed delta 

FOPID controller is implemented using the DS1202 dSPACE board, and the unit step 

responses of the overall system for variation of the dc gain kp are demonstrated in Fig. 12 to 

Fig. 17. 

 

Fig. 12 Step response characteristics of the overall system with delta FOPID controller in 

dSPACE (kp = 0.25, the maximum overshoot percentage or Mp (%) = 1.4 and  

ts (ms) =1.3) 

 

Fig. 13 Step response characteristics of the overall system with delta FOPID controller in 

dSPACE (kp = 0.5, the maximum overshoot percentage or Mp (%) = 9.28 and  

ts (ms) = 1.5) 
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Fig. 14 Step response characteristics of the overall system with delta FOPID controller in 

dSPACE (kp = 1, the maximum overshoot percentage or Mp (%) = 14.53 and  

ts (ms) = 1.6) 

 

Fig. 15 Response characteristics of the overall system with delta FOPID controller in 

dSPACE (kp  = 2, the maximum overshoot percentage or Mp (%) = 13.59 and ts 

(ms) = 1.2) 
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Fig. 16 Step response characteristics of the overall system with delta FOPID controller in 

dSPACE (kp = 4, the maximum overshoot percentage or Mp (%) = 7.15 and ts (ms) 

= 1.14) 

 

Fig. 17 Step response characteristics of the overall system with delta FOPID controller in 

dSPACE (kp = 8, the maximum overshoot percentage or Mp (%) = 2.309 and 

ts (ms) = 0.96) 

5.1. Robustness analysis for the proposed controller 

To study the robustness analysis of the developed delta domain FOC, the dc gain (kp) 

is varied and the responses of the closed loop system are measured. For the variation of 

dc gain (kp), the peak percentage overshoot and the settling time are measured, and variation 

of the percentage peak overshoot and settling times does not vary considerably for the 

variation of dc-gain. The iso-damping property of fractional-order system is thus satisfied 

through the designing of discrete FOC in delta domain. A comparative analysis of the time 

domain parameters for variation of the dc gain (kp) has been summarized in Table 3. 
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From the plots shown in Fig. 12 to Fig. 17, proves that the closed loop system with 

delta FOPID controller realized using dSPACE is robust against process gain (k) variations 

and exhibits the iso-damping properties. 

5.2 Sensitivity analysis of the system 

A perturbation (± 20 % pu) is applied to the closed loop system containing the 

fractional order plant and the developed delta domain FOPID using dSPACE and the 

steady state response in noted. The output of the closed loop system with random variation of 

step input, is demonstrated in Fig. 18. From the Fig. 18, it is very clear that the steady 

state error becomes zero though a sufficient perturbation is applied at the input side. This 

proves the system to be a robust one and sensitive to input variation . 

 

Fig. 18 Steady state error of the  closed loop system for a random perturbation  

The FOC designed using continuous and discrete delta domain must have to be stable. 

The pole -zero plotting of the designed controller in both domains are shown in Fig. 19 

and Fig. 20. From Fig. 19 and Fig. 20 the stability of the realized controllers is ensured. 

 

Fig. 19 Pole-Zero Plot of  discrete delta(  ) FOPID Controller 
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Fig. 20 Pole-Zero Plot of continuous time FOPID Controller 

Table 3 Comparative analysis of the time domain parameters for variation of the dc gain ‘kp’ 

6. CONCLUSION 

In this paper, the design and implementation of fractional order controller in the delta 

domain is presented. One of the essential properties of the fractional-order system is iso-

damping property. The fractional-order PID controller is designed in delta domain from 

corresponding continuous-time FOPID controller transfer function by using the direct 

discretization method and the delta FOPID controller is then realized using delta direct 

form-II structure of filter realization. The DS1202 dSPACE board is used in this work to 

implement the controller through the MATLAB/Simulink and control desk interface of 

the dSPACE board. This approach is devoid of ill-conditioning which is inherentin the 

case with shift operator parameterization. In this work, the sampling rate (Δ=0.001 sec) is 

considered very close to zero to obtain a discrete time system with very high sampling 

Realization methods 
S-Domain 

realization 

Analog 

realization 

[33] 

Delta Domain 

realization 

kp = 0.25 
%MP  11.2  4.11  1.4 

tS (ms)   0.86  0.54  1.1 

kp = 0.5 
%MP  12.9  10.9  9.28 

tS (ms)   0.52  0.32  .95 

kp = 1 
%MP  14.23  14  14.53 

tS (ms)   0.29  0.2  .74 

  kp = 2 
%MP  11.29  12.3  12.59 

tS (ms)   0.17  0.11  1.1 

kp = 4 
%MP  7.3  7.9  7.1 

tS (ms)   0.07  0.052  1.14 

kp = 8 
%MP  8.1  5.8  2.3 

tS (ms)   0.021  0.017  0.96 
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rate. The FOPID controller designed in the delta domain gives the response characteristics 

very close to the responses obtained from the analog realization of the FOPID controller, 

which is designed in the S-domain. When the dc gain "kp" is varied over a specified range, the 

response characteristics of the overall system remains almost unaltered meaning the property 

of iso-damping is satisfied. From the Table 3, it is evident that the results are very close 

to each other in regard to the time response parameters among the three methods of designing 

FOPID controller. The stability of the realized system is also verified through the pole and 

zero locations of developed delta domain controller. The system response remains stable with 

a perturbation in the step input as demonstrated in Fig.18.The results obtained using delta 

parameterized discrete-time system resembles to that of the results as obtained by continuous-

time system at a fast-sampling rate makes the design a unified one and a viable alternative for 

the discrete fractional order controller design and implementation. 
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