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Abstract. The fractional order operator (s**,0 < a <1) plays the pivotal role for the
realization of fractional orders systems (FOS). For the realization of the FOS, fractional
order operator (FOO) needs to be realized either in discrete or continuous time domain.
Discrete time rational approximation of FOO in the z-domain fails to provide
meaningful information at fast sampling interval. Moreover, z domain rational transfer
function becomes highly sensitive with respect to its coefficients variation resulting to the
poor finite word length effects for digital realization. In the other hand delta operator
parameterized system allows to develop unification of continuous and discrete time
formulations leading to the development of a unified framework for digital realization at
fast sampling interval. The discrete time approximation of the FOO in delta domain is
found to be robust to its coefficient variation in comparison to the shift operator based
discretization of FOO. In this paper, discrete & -operator parameterization is proposed
for the digital realization using direct discretization of FOO. As a result, superior finite
word length effect is observed for the realization of the FOO in discrete delta domain.
Fractional order operator with different orders (« ) are considered for the realization
purpose using the proposed method and the results obtained using MATLAB are
presented for validation.

Key words: Delta domain, delta operator parameterization, finite word length effects,
fractional order operator (FOO), fractional order system (FOS)

1. INTRODUCTION

Non-integer order controllers (NIC) are also known as fractional order controller
(FOC), have received an increased attention for the last few decades to the researchers
particularly in the field of system theory and control [1, 2]. Fractional Calculus (FC) are
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the backbone of designing fractional order controllers (FOC) and FOCs are showing better
response than that of integer order controller [3] for controlling the fractional order plants.
For the last few decades FC has proven its applicability in the versatile areas of research
such as signal processing [4], chaos electromagnetic fractional poles [5], dielectric
polarization [6] etc. Improved dynamic properties of the control loops as well as the
robustness of the controller are the prime features of FOC [7]. Fractional order
differentiator (FOD) or fractional order integrator (FOI) are commonly known as fractional
order operator (FOO), and are symbolized as s**, with 0<a <1, a e®R. FOO is the
fundamental component for the realization of the FOC/FOS. In order to implement any
FOC or FOS, the irrational infinite dimensional operator (s**) is to be rationally
approximated traditionally, either in continuous time domain (s-TF)or discrete time
domain (z-TF) . For the digital realization of the FOC, the fractional order operator is to
be discretized using shift operator parameterization (z-TF) either by indirect or direct
discretization methods. In case of indirect discretization method [7], the FOO is first fitted
into continuous time rational transfer function (s—TF) in frequency domain and then
discretized using Tustin discretization method. But in case of direct discretization, the FOO
is directly converted to the z-domain rational transfer function (z-TF) by the use of
generating function and its expansion through the continued fraction expansion method
(CFE) [8], [9]. Some of the popular direct discretization methods in z-domain are
described in [10], [11], [12].

As per the Shannon’s theorem, for the digital realization of the FOS or FOC, the
continuous time system (s—TF) should be sampled at a sampling rate of at least 10 times
that of the system bandwidth but for the practical implementation of the system, the
sampling rate is recommended to be 50 to 70 times of bandwidth [13]. It is the need of the
hour to get higher bandwidth in closed loop system for physical implementation like in low
budget consumer products [14] and digital controller design for invertors [15]. At a very
fast sampling interval (A ), the resultant shift operator parameterized system (z—TF) fails
to provide meaningful information. As the sampling interval ( A ) is increasing, the resultant
poles of the z—TF come close to each other and found to have been concentrated near
(1,0) point making the system highly sensitive to its coefficient variation [16].This will
lead to serious finite word length issue for the realization of FOS or FOC in digital domain.

At a very fast sampling interval (A),when the digital shift operator parametrized
system fails to provide meaningful information ,the delta operator [17] parameterized
system is devoid of ill conditioning at fast sampling rate (A — 0) [18] and it is suitable for
the high speed realization with improved finite word length characteristics [19]. Therefore,
the problems with the shift operator parameterization at very fast sampling interval can be
circumvented by the introduction of the & -operator for the system realization in digital
domain. Nowadays, delta operator is getting attention for the researchers in the field of
control and signal processing [20 -32] . In this work, a direct discretization method in delta
domain for discretizing the FOO is systematically presented and it has been shown that the
rational approximation of FOO obtained in delta domain is robust to parameter variation
and less sensitive to coefficient changes. Moreover, at fast sampling rate (A — 0), the delta
operator parameterized system is producing similar results as can be obtained in continuous
time domain. This is the motivation for working with the delta operator parameterized
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system and using the superior property of the §-operator to implement the fractional order
operator digitally with the better finite word length effect.

In reviewing the literature regarding the direct discretization of FOO in delta domain,
it can be seen that no research has demonstrated about the coefficient sensitivity and
robustness of the parameter variation of the rational transfer function in delta operator
parameterized systems obtained through direct discretization method. This study is
essential to high speed implementation of the fractional order system/fractional order
controller in discrete time domain.

This paper deals with the high speed digital design and implementation of FOC using
delta operator parameterization by direct discretization method. The main scientific
contribution of this paper is to prove the superiority of the rational transfer function in delta
domain which is obtained by using the direct discretization of the FOO in delta domain in
terms of stability, robustness with respect to parameter variation and finite word length
implementation, particularly at fast sampling interval.

The paper is organized as follows: Section 2 describes the fundamentals of fractional
calculus and fractional order operator. Direct discretization of the FOO in delta domain is
discussed in section 3. Section 4 describes the finite word length property of delta operator
transfer function. Results are analyzed in section 5 and section 6 is devoted for summary
and conclusions.

2. FRACTIONAL ORDER CALCULUS AND FRACTIONAL ORDER OPERATOR
2.1. Fractional order Calculus

Fractional calculus (FC) is the study of the extension of non-integer order derivative
and integrals. In this study a common operator, called as fractional order differ-integral is
defined by (1).

a

dt”
D% ={1 (a=0) 1)

jww (a < 0)

(a>0)

In this study the following definitions of the fractional order differ-integral is
reproduced [2].
Definition - Riemann-Liouville [R-L] definition of fractional order differ-integral:

1 d"
r(m-a) d"

Dl = i(t-7)"“g()dr @

where, m—1<a<meN and « € Ris a fractional order of the differ-integral of function g(t).
Laplace transformation of (2) gives the following equation.

“G
L[,D%g(t)] = {S )

3
s“G(s) -G (s) ®)

G(s) = gs(’; D& *?g(0) is the initial condition and n-1<a<neN.
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2.2. Fractional order operator

From the definition mentioned in (2) and its Laplace transformation represented by (3),
the term s®is known as fractional order operator (FOO) and if the value of a <0, it is
called as fractional order derivative, the fractional order integral is represented if the value
of a > 0. This is why the operator is called as fractional order differ-integral operator. To
represent any FOC or FOS, the Laplace transform of the fractional order differential
equation is done and the transfer function is a function of s

3. DIRECT DISCRETIZATION OF FRACTIONAL ORDER OPERATOR IN DELTA DOMAIN

3.1. Fundamentals of Delta operator

Delta operator is an alternative operator used to describe any discrete time systems and
it is represented by §. Usually, any discrete time systems are represented using shift
operator parameterization and denoted as q .The delta operator is defined by (4)[17].

5= @)

where, A is the sampling interval.
The following identity is obtained in a limiting case, if delta operator is applied on a
differentiable signal x(t) at a high sampling rate (A—0)

: Cx(t+A)-x(t) _ d
1@05 x(t)= A = x(t) (5)
From (5), it may be observed that at fast sampling rate (A—0), delta operator () resembles
to the d/dt operator in continuous time domain. One of the most important properties of
the delta operator is that at fast sampling interval, the continuous time result and discrete
time result can be obtained simultaneously. To establish the relationship between the
frequency variables in continuous time domain (s) and discrete delta domain (y), following
intermediate steps are carried out.
The relationship between the frequency variable (z) in shift operator parameterization
and the frequency variable (y) in delta operator parameterization is given by

The frequency variable ‘s’ and ‘2’ are related by z = e** and therefore (6) can be rewritten as

ero1 1

y= =e¥ =1+)A = s==In(l+)A) )
A A

Therefore, the frequency variables in continuous time domain (s) and discrete delta domain
(y) is expressed by (7).
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3.2. Rational approximation of FOO using direct discretization in Delta domain

Fractional order operators need to be discretized to realize and implement the FOS. For
the implementation in delta domain, it is required to develop the generating function and
(7) is used for this purpose.

Revisiting (7), following relationship is obtained.

s = (%In(ﬁ yA)ji (®)

In order to expand (8), logarithmic function in the right hand side is to be approximated in closed
form. A trapezoidal quadrature rule [33] is utilized to get the close form approximation of
In(L+ B) as given below:

68 +383°
6+68+ ° ®)

Combining (8) and (9), the fractional order operator in continuous time domain can be
approximated in delta domain and expressed by (10).

i [1 6y +3y2A2 Jm { 6y +3y2A jm
S N 222 = 22 (10)
AB+6)A+y°A 6+6)A+y°A

A clear observation from (10) can be made that at limiting value of A —0, s = y means
at fast sampling interval ,the frequency variables in continuous time domain and discrete
delta domain maps each other .Therefore , (10) can be treated as the direct relationship
between variable ‘s and “y” and right hand side of the (10) is called the generating function.
To get the rational approximation of FOO (s*%) in delta domain, direct discretization method
proposed in [34] is considered in this work. The direct discretization method for discretizing the
FOO in delta domain as explained in [34] is chosen in this work as the method proved to be
superior to the other relevant methods in the literature. The generating function as shown in (10)

is expanded using the continued fraction expansion method (CFE)[35].
The CFE formulation is mathematically expressed by (11).

dc
@-d)c
(L+d)c
(2-d)c
(2+d)c
24+
5. (3-d)c

In(1+ B) =

@+c)! =1+ (11)

1+

2+

3+

6y +3y°A
6+ 6A + y°A?
generating function. So, the integer order rational transfer function in delta domain
corresponding to the FOO can be expressed as

The variable c'can be replaced by [1— ]with ‘d’ as ‘a’ to expand the

*Ta
6y +3y%A
G;(y) =CFE| ————— 12
5(7) [6+6yA+}/2A2 (12)
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In this work, a third order approximation of s* is considered through the direct

discretization method in delta domain [34] and the coefficients of rational delta transfer
function are enumerated in Table 1. The method is termed as CFE-2PGILOGDEL.

Table 1 Coefficients for third-order approximation of s*

Den, = (3/ A)a / (a+1) | (4096a° +26624a° +9472¢" - 2014720.* - 2529440 +331304a + 506955)

Coefficient Numerator
A (30720c® + 454416 - 36096c° - 838259« +
78360c” - 4096 -192000c* +506955) Den,
A (-938460Ar +1388142A - 723408Aa” +
608640Ac° - 76800Aa® +12288Ac *+12288A«a*) Den,
A (-465120°A? -195900A%¢r +128640A% ¢
-15360A%a *+714105A% +57600A*) Den,
A +(-64320A°a® + 7680A°%* +97950A°%) Den,
Coefficient Denominator
By (40960 +30720° +36096¢° -192000c*
-454416a° +78360a” +838259« +506955) / Den,
B +(938460Acr +1388142A - 723408Aa” - 608640A°
+76800Ac® +12288Ac® +12288Ac*) / Den,
B, +(-465120a° A% +195900A%r -128640A%c®
+15360A%a° +714105A% +57600A%c*) / Den,
B, +(-64320A%a? + 7680A°% " +97950A%) / Den,

Therefore, 3rd order rational approximation of delta transfer function corresponding to
FOO is given by (13).

" 6y+387% | + A Ay Ay
$ — Gy, () = CFE| — yz | - A A1771 Az772 A3y73
6+6)A+Ay By+By  +Byy “+Byy

(13)

3rd order approximation of the FOO in continuous time domain transfer function,
G.arq (S) Can be obtained using the Oustaloup’s approximation method [1].

4. FINITE WORD LENGTH CHARACTERISTICS OF RATIONAL DELTA TRANSFER FUNCTION

This paper deals with the effects of finite word length (FWL) representation of delta
transfer function (Gs (y, @)) which is approximated using the direct discretization of
fractional order operator. A shift operator parameterized transfer function (Gq(z, )) is also
derived corresponding to the FOO using the trapezoidal rule (Tustin) [10] as a generating
function and expressed by (14) to compare the effects of FWL representation.
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ayyee (21220 )°
W(z™) [ AL le (14)
Both the shift and delta operator based rational transfer functions are obtained using the
generating function and CFE, the resultant transfer functions are taking the IIR filter form.
If the range of fractional order («) lies in the range between 0 and 1 means « < (0,1) ,all the
poles of G; (y, &) and Gq(z, o) are real and negative [19]. Therefore, in IR form realization,
both the transfer function takes the following forms.

- 1
G (z.@) =T+ h—— (15)
Z — Oy

i 1
]
Gs(ri@)=r,+>,, T m (16)

where , r,, , Iy, o, I are the residues and o, , o, are the poles.

For the digital implementation of the fractional order controller or fractional order
system, the corresponding irrational FOO is discretized and corresponding rational transfer
functions are obtained in both the z-domain and & -domain. Once the transfer functions
are implemented digitally using finite number of bits or finite word length registers, round
off of the coefficients like poles and residues are essential. In other word, the coefficients
are to be quantized.

In this paper, frequency response analysis is done using both the desired coefficients
and quantized coefficients for both discrete domain transfer functions. To study the finite
word length characteristics of the delta domain transfer function corresponding to FOO, a
16b floating point representation (half precision) is used in this work. This is similar to the
IEEE 754 32b floating point representation for single precision numbers. Half precision
representation reduces the requirement of storage and increase the computational speed. In
16b representation format of coefficient quantization, 1 bit is reserved for sign, 6 bits are
used to represent the exponent and rest of the 9 bits is used for normalized mantissa.

5. RESULT ANALYSIS

Pentium i7, 2.4 GHz processor with 32.0 GB RAM PC is used to perform the
experimentation using MATLAB R2020a version.

A Y th order differentiator is considered as an example and 3' order approximation
(Gsra (7,0.25) ) of it has been done using direct discretization in delta domain via CFE-
2PGILOGDEL method [34] and is used as the backbone on which the finite word length
effects has been studied in this work. Though fifth order approximation of the ¥4 order
differentiator in delta domain provides better frequency response but for the simplicity of
operation, 3rd order approximation is considered in this paper. A comparison of frequency
response for 3rd order (Gaq(7.025) and 5™ order approximations (Gsp(7.0.25)) is
graphically presented in Fig. 1. Frequency response analysis (Bode diagram) of the %
order differentiator (G(s,0.25)) and corresponding rational approximation of it in delta
domain ( Gz (7,0.25) ) are shown in Fig. 2a where rational approximations are obtained
using three different sampling intervals such as A=0.05sec, A=0.01sec and A =0.001sec.
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It is clearly visible from Fig. 2b (error in approximation) that with faster sampling interval
(A =0.001), frequency response of the approximate rational transfer function is more closely
matching with that of the original continuous time fractional order differentiator over a
large range of frequencies. This essence of delta operator property is making method
unified when discretization of continuous time systems are done in delta domain.
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Fig. 1 a) Frequency responses of G(s,0.25), Gz (7.0.25) and Gey, (7,0.25) at A = 0.001sec;
b) Errors in approximations
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Fig. 2 a) Frequency response of G(s,0.25) and Ggq (7,0.25) for sampling rates of A =0.05
sec, A=0.01sec and A =0.001sec; b) Errors in approximations

The residues and poles must be quantized since (15) and (16) are implemented using finite
word length registers. To validate the results, an example of fractional order operator with
degree « =0.4 is considered and the 3rd order approximation of the same in both the discrete
z - domain and y - domain when sampled at sampling interval A = 0.001sec is analysed.

The MATLAB computation to obtain the desired realization gives the following results.
The poles and residues (desired) corresponding to
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Gara (2,0,4) provides: o, =-0.8535,5,, =0.6869 ,5,; =-0.1334 , ;o = -0.2530, 11 =
—0.1003, rz = —0.2467 r;; = 1.

The poles and residues (desired) corresponding to Gara (7, 0.4) provides: O, =11.8987,
5,, =—1.2970, 5, = —0.1858, I, = ~20.8509, Iy = —0.6461, 2 = —0.0707, ;3 = 2.9565.

A 16b floating point representation is used to get approximated realization
representation. The poles and residues (approximated) corresponding to:

Gara (2,0,4) provides: 6,, =-0.8535,6,,, =0.6869 , 5,5, =—0.13339 , rya = -0.25299,

r1a = —0.10029, 2, = —0.2467.

The poles and residues (approximated) corresponding to Gsrq (3, 0.4) provides:

C_Fyla = —11.8906’ Em =-1.2969 Eyga = —0.1858, l0a = —20.8438, rya = —0.6455,
rpa=—0.0707, r;za = 2.9531.

The frequency response obtained for the discrete time realization (z-domain and
y-domain) using the actual and quantized coefficients is shown in Fig. 3. In case of both
the discrete time realizations, the absolute errors in magnitude and phase between the
desired and approximated realization are shown in Fig. 4. From the response as shown in
Figure 4, it may be noted that the error becomes much more in case of realization of the
fractional order operator using shift operator parameterization (z-domain) where as in case
of delta operator parameterization (y-domain), almost zero error occurred using the
quantized coefficients using 16 bit representation.
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Fig. 3 a) Frequency response of the realization using z-domain and »domain for ¢ =0.4
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Fig. 4 Absolute errors between actual and approximated realization in z-domain and y-domain

The same method can be used to get the discrete time realization of different fractional
order operators. The Table 1 enumerates the desired and quantized coefficients for different
fractional orders such as «=0.5,0.6,0.7,0.80.9.
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The frequency response analysis using the approximate realization of the discrete
z-domain and y-domain transfer functions for « =0.5,0.6,0.7,0.8,0.9 is illustrated in Fig. 5

using the quantized coefficients as listed in Table 1.

Table 2 Desired and approximated values of coefficients for z-domain and y-domain
transfer functions

" Transfer Desired Approximate Desired poles  Approximate.
Function residue residue Poles
05 z-TF 0849 + 0.00i 0849 + 0.00i -0849 + 0.00i -0849+ 0.00i
0146 + 042i 0146+ 042i -0146 + 042 -0146+ 042
0146- 042i 0146- 0.42i -01469-042i -0146- 042
-0321+ 023 -032H 023 0321+ 0.23i 0321+ 0.23i
-0321 023 -0321 023 0321 0.23i 0321-0.23
141421 141421
y—TF  -6207750+ 00i  -620786+ 00i -628943+ 0.0i -628943 + 0.00i
103650 +11i 103643 + 11i 10417 +12773i 10417 +12773i
103650- 11i 103643 11i 10417 - 12777 10417 -12777i
-387+ 0.00i -430+ 0.00i 19116+ 000G -19116+ 0.000i
-057+ 0.00i -063+ 0.00i 1572+ 0.000i 157 + 0.000i
-0.03+ 0.00i -0.05 + 0.00i -0.23 + 0.00i -0.23+ 0.0i
7 7
06 z-TF 0889+ 0.00i 088 + 0.00i -0889 + 0.000i -0889 + 0.000i
015 + 0.30i 0155+ 0390i -01545+ 03900 -0155+ 03990
0155- 0390i 0155- 03990 -01545- 0390i -0155- 0390
-029 + 0222 -0293+ 0222 0.2993+ 0222 0293+ 02234
-0.293- 0223 -0.293- 0222 0.293-0.22i 0.293-0.222
380736 380733
y-TF  -62750+000i -62788+ 000G -62376+ 0,000 -62443+ 0.000i
103658 +1098i 10364 + 11037i 13339 +134237 13414 +13377i
103658 -1098i 103646 - 11037 13339-13427i  134174-13377i
-38 + 000i -43075+ 0000 -24889 + 0.00i 19119+ 0.000
-056 +000i  -0.63594+ 0.00i 41721+ 000i 1720+ 000i
-0030+000i  -00522+ 0.000i -0.258 + 0.00i -0.239 + 000
111421 111421
0.7 z-TF 093 + 0.000 09233+ 00i -0.924+0.00i -0.92 + 0.000i
0168+0362 01608+ 03644 -0.168+0.362i -0168+ 0362
0168-036404  0160- 0362 -0.168-0.362i -0168- 03644
-0270+ 0209  -0270+ 0.209 0.2721+0.200i 0271+ 0.20i
-0270-0.209 -0270-0.209 0.2721-0.200i 0.271-0.200i
1024.9 10249
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y—TF -627717 + 000i -627718 + 0.00i -621017 + 0.0i -621017 + 0.0i
103654 +1193i 103656 +18i 1318 +1503i 13187 +1503i
10365 -1193i 10365 -119378 131871-1503i 131871-1503i
-3500+ 0.00i -35020+ 0.000i -34554 + 0.00i -3454 + 0.0i
-05243+000i -05243+ 0.000 -19 + 0.0i -19 + 0.0i
-0.0287+ 0.00i -0.0287+ 0.00i -0.282 + 0.0i -0.2852+ 0.0i
18930 18930
0.8 z-TF 0954+ 0.00i 0953+ 0.000 -0953+ 0.00i -0953+ 0.00i
016 + 0.31i 01618+ 03181 -01617+ 03181 -01617+ 031
0168-031i 01618-03181 -01617- 0311 -01617- 0311
-0.29 + 018i -0.239+ 01894 029 + 0188 0239+ 0188
-0239-018  -0.239-0189d 0.239-0188 0.23-018i
27594 27594
y—TF -620769 + 0.00i -620769 + 0.00i -61549 + 0.00i -6154 + 0.00i
103661+1189i 1036611+ 1189i 1089 +11364i 10839 +11364i
103661-1189i 1036611-1189i 1089 -11364i 10839 -11364i
-315+ 0.00i -31725+ 000i -5390 + 0.000i -53960 + 0.00i
-04736+ 0.00i -0476 + 0.00i -2104+ 0.00i -21094+ 0.00i
-0.016 + 0.0i -0.0186+ 0.0i -0315+ 0.00i -0315+ 0.00i
3627 36.27
0.9 z-TF 0978+ 0.000 09783+ 0.000 -09780+ 0.000 -0970+ 0.00i
0153+ 0.2525 0159+ 0.2525 -01539+ 0.255 -0159+ 0.255
0153-0.2525 0159-0.255 -01539- 0.2525 -0159-0.2525
-0194+01593  -019 + 015983 01924+ 01592 01924+ 0159
-0194- 01593 -0194- 01593 01924- 01594 0194-01592
742894 742894
y—-TF -67665 + 0.0i -67665 + 0.0i -62892 + 0.00i -62892 + 0.00i
10666 +11856i 10666 +118567 10966 +13009i 10966 + 13009i
103666-11856i 10366 -11856i 10966- 13009i 10966 -13007i
-28 +0.00i -287 + 0.00i -11171+ 0.00i -11171+ 0.00i
-0426+ 0.00i -0426 + 0.00i -2343+ 000i -234 +000i
-0.008 + 0.00i -0.0087+ 0.00i -0.34+ 0.00i -034 + 0.00i
9302 93.018

The maximum percentage of relative error in magnitude and phase for realization of
different fractional order operators are described in Table 2. It can be visualized that the
maximum percentage relative error in magnitude is occurring in case of z-domain realization
where as in case of y-domain realization, the response characteristics are very much aligned
with that of the continuous time domain results for fractional order differentiator of different
orders ().

This paper deals with the unified method for the digital realization of FOO in delta domain.
The order of the factional order operator is considered from 0.5 to 0.9 to validate the method as
compared to the order of FOO considered for digital realization in [19]. Moreover, the sampling
interval is here considered as 4 = 0.001 sec which is much less than the sampling considered in
[19]. As the sampling interval is reduced much, the notion of using delta operator is justified.
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With the present approach, the maximum percentage of relative error in magnitude and phase
are less as compared to the method adopted in [19].For example, in [19] , the maximum
percentage of relative error in magnitude and phase are 13.33 % and 7.83% respectively in delta
domain for ¢ = 0.7, where as in this work , the maximum percentage of relative error in
magnitude and phase are 0.35 % and 4.52% respectively in delta domain for a = 0.7. This
proves the superiority of this proposed method.
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Fig. 5 Frequency response of Gy (7,@) for «=05,0.6,0.7,0.80.9 at A=0.001sec

Table 3 Maximum percentage relative errors in magnitude and phase responses

Amplitude Max.%  Amplitude Phase Phase
a Relative Max.% Max.% Max.%
Error Relative Error  Relative Error  Relative Error
(z-TF) (y-TF) (z-TF) (y-TF)
0.5 72.2063 0.1414 8.054600 6.6341
0.6 73.0387 0.2316 52.33260 7.9628
0.7 89.4212 0.3516 132.3962 45271
0.8 89.6875 0.4701 133.5642 3.2106
0.9 93.4510 0.4682 145.4541 1.7190
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6. CONCLUSIONS

This paper deals with the digital realization of fractional order operator using delta
operator parameterization. Whenever any fractional order operator is represented using the
corresponding rational approximated transfer function in discrete z -domain, the transfer
function approximations become sensitive to coefficient variation resulting in a poor finite
word length effect. Instead, delta operator parameterized rational transfer function is
considerably less sensitive to parameter variation. In this paper a 3rd order approximation
of the fractional order operator of different orders are considered and the operators are
directly discretized to get the corresponding delta domain transfer functions. Through the
direct discretization method used in this work for the discretization of the FOO in delta
domain, the rational transfer function corresponding to the FOO becomes stable for fast
sampling rate (4—0) which may not be possible in all case of indirect discretization method
at fast sampling interval. The frequency response analysis of the different transfer functions
in delta domain using the desired coefficients and approximated coefficients using half
precision quantization logic reveals that delta operator parameterized transfer function
provides much more robust with respect to coefficient variation. The maximum percentage
relative error for magnitude and phase for different fractional order operator are tabulated
from Fig. 5 and the results as shown in Table 2 ensure that rational approximation using delta
operator gives very small relative error as compared to the rational approximation using the
shift operator parameterization (z-domain). Therefore, the digital transfer function
rationalized using delta operator is a robust one for finite word length implementation. At fast
sampling interval (4=0.001), the rational approximation using J-domain resembles to the
result obtained using continuous time domain representation making the realization a
unified one.
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