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Abstract. The fractional order operator (s,0 <  <1) plays the pivotal role for the 

realization of fractional orders systems (FOS). For the realization of the FOS, fractional 

order operator (FOO) needs to be realized either in discrete or continuous time domain. 

Discrete time rational approximation of FOO in the z -domain fails to provide 

meaningful information at fast sampling interval. Moreover, z domain rational transfer 

function becomes highly sensitive with respect to its coefficients variation resulting to the 

poor finite word length effects for digital realization. In the other hand delta operator 

parameterized system allows to develop unification of continuous and discrete time 

formulations leading to the development of a unified framework for digital realization at 

fast sampling interval. The discrete time approximation of the FOO in delta domain is 

found to be robust to its coefficient variation in comparison to the shift operator based 

discretization of FOO. In this paper, discrete  -operator parameterization is proposed 

for the digital realization using direct discretization of FOO. As a result, superior finite 

word length effect is observed for the realization of the FOO in discrete delta domain. 

Fractional order operator with different orders ( ) are considered for the realization 

purpose using the proposed method and the results obtained using MATLAB are 

presented for validation. 

Key words: Delta domain, delta operator parameterization, finite word length effects, 

fractional order operator (FOO), fractional order system (FOS)  

1. INTRODUCTION  

Non-integer order controllers (NIC) are also known as fractional order controller 

(FOC), have received an increased attention for the last few decades to the researchers 

particularly in the field of system theory and control [1, 2]. Fractional Calculus (FC) are 
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the backbone of designing fractional order controllers (FOC) and FOCs are showing better 

response than that of integer order controller [3] for controlling the fractional order plants. 

For the last few decades FC has proven its applicability in the versatile areas of research 

such as signal processing [4], chaos electromagnetic fractional poles [5], dielectric 

polarization [6] etc. Improved dynamic properties of the control loops as well as the 

robustness of the controller are the prime features of FOC [7]. Fractional order 

differentiator (FOD) or fractional order integrator (FOI) are commonly known as fractional 

order operator (FOO), and are symbolized as s , with   , 10 . FOO is the 

fundamental component for the realization of the FOC/FOS. In order to implement any 

FOC or FOS, the irrational infinite dimensional operator ( s ) is to be rationally 

approximated traditionally, either in continuous time domain ( )TFs − or discrete time 

domain ( )TFz − . For the digital realization of the FOC, the fractional order operator is to 

be discretized using shift operator parameterization ( )TFz − either by indirect or direct 

discretization methods. In case of indirect discretization method [7], the FOO is first fitted 

into continuous time rational transfer function ( )TFs −  in frequency domain and then 

discretized using Tustin discretization method. But in case of direct discretization, the FOO 

is directly converted to the z -domain rational transfer function ( )TFz − by the use of 

generating function and its expansion through the continued fraction expansion method 

(CFE) [8], [9]. Some of the popular direct discretization methods in z -domain are 

described in [10], [11], [12].  

As per the Shannon’s theorem, for the digital realization of the FOS or FOC, the 

continuous time system ( )TFs − should be sampled at a sampling rate of at least 10 times 

that of the system bandwidth but for the practical implementation of the system, the 

sampling rate is  recommended to be 50 to 70 times of bandwidth [13]. It is the need of the 

hour to get higher bandwidth in closed loop system for physical implementation like in low 

budget consumer products [14] and digital controller design for invertors [15].  At a very 

fast sampling interval (  ), the resultant shift operator parameterized system ( )TFz − fails 

to provide meaningful information. As the sampling interval ( ) is increasing, the resultant 

poles of the TFz −  come close to each other and found to have been concentrated near 

(1,0) point making the system highly sensitive to its coefficient variation [16].This will 

lead to serious finite word length issue for the realization of FOS or FOC in digital domain.  

 At a very fast sampling interval (  ),when the digital shift operator parametrized 
system fails to provide meaningful information ,the  delta operator [17] parameterized 

system is devoid of ill conditioning at fast sampling rate ( 0→ ) [18] and it is suitable for 

the high speed realization with improved finite word length characteristics [19]. Therefore, 
the problems with the shift operator parameterization at very fast sampling interval can be 

circumvented by the introduction of the  -operator  for the system realization in digital 

domain. Nowadays, delta operator is getting attention for the researchers in the field of 
control and signal processing [20 -32] . In this work, a direct discretization method in delta 
domain for discretizing the FOO is systematically presented and it has been shown that the 
rational approximation of FOO obtained in delta domain is robust to parameter variation 

and less sensitive to coefficient changes. Moreover, at fast sampling rate ( 0→ ), the delta 

operator parameterized system is producing similar results as can be obtained in continuous 
time domain. This is the motivation for working with the delta operator parameterized 
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system and using the  superior property of the 𝛿-operator to implement the fractional order 
operator digitally with the better finite word length effect. 

In reviewing the literature regarding the direct discretization of FOO in delta domain, 
it can be seen that no research has demonstrated about the coefficient sensitivity and 
robustness of the parameter variation of the rational transfer function in delta operator 
parameterized systems obtained through direct discretization method. This study is 
essential to high speed implementation of the fractional order system/fractional order 
controller in discrete time domain.  

This paper deals with the high speed digital design and implementation of FOC using 
delta operator parameterization by direct discretization method. The main scientific 
contribution of this paper is to prove the superiority of the rational transfer function in delta 
domain which is obtained by using the direct discretization of the FOO in delta domain in 
terms of stability, robustness with respect to parameter variation and finite word length 
implementation, particularly at fast sampling interval. 

The paper is organized as follows: Section 2 describes the fundamentals of fractional 
calculus and fractional order operator. Direct discretization of the FOO in delta domain is 
discussed in section 3. Section 4 describes the finite word length property of delta operator 
transfer function. Results are analyzed in section 5 and section 6 is devoted for summary 
and conclusions. 

2. FRACTIONAL ORDER CALCULUS AND FRACTIONAL ORDER OPERATOR 

2.1. Fractional order Calculus 

Fractional calculus (FC) is the study of the extension of non-integer order derivative 

and integrals. In this study a common operator, called as fractional order differ-integral is 

defined by (1). 
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In this study the following definitions of the fractional order differ-integral is 

reproduced [2]. 

Definition -   Riemann-Liouville [R-L] definition of fractional order differ-integral: 
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where, Nmm − 1  and R is a fractional order of the differ-integral of function g(t).  

Laplace transformation of (2) gives the following equation. 
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2.2. Fractional order operator 

From the definition mentioned in (2) and its Laplace transformation represented by (3), 

the term s is known as fractional order operator (FOO) and if the value of α < 0, it is 

called as fractional order derivative, the fractional order integral is represented if the value 

of α > 0. This is why the operator is called as fractional order differ-integral operator. To 

represent any FOC or FOS, the Laplace transform of the fractional order differential 

equation is done and the transfer function is a function of sα. 

3. DIRECT DISCRETIZATION OF FRACTIONAL ORDER OPERATOR IN DELTA DOMAIN 

3.1. Fundamentals of Delta operator 

Delta operator is an alternative operator used to describe any discrete time systems and 

it is represented by  . Usually, any discrete time systems are represented using shift 

operator parameterization and denoted as q  .The delta operator is defined by (4)[17]. 
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where,  is the sampling interval. 

The following identity is obtained in a limiting case, if delta operator is applied on a 

differentiable signal )(tx  at a high sampling rate (→0) 
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From (5), it may be observed that at fast sampling rate (→0), delta operator () resembles 

to the  d /dt operator in continuous time domain. One of the most important properties of 

the delta operator is that at fast sampling interval, the continuous time result and discrete 

time result can be obtained simultaneously. To establish the relationship between the 

frequency variables in continuous time domain (s) and discrete delta domain (γ), following 

intermediate steps are carried out. 

The relationship between the frequency variable (z) in shift operator parameterization 

and the frequency variable (γ) in delta operator parameterization is given by  
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The frequency variable ‘s’ and ‘z’ are related by = sez and therefore (6) can be rewritten as  
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Therefore, the frequency variables in continuous time domain (s) and discrete delta domain 

(γ) is expressed by (7). 
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3.2. Rational approximation of FOO using direct discretization in Delta domain  

Fractional order operators need to be discretized to realize and implement the FOS. For 

the implementation in delta domain, it is required to develop the generating function and 

(7) is used for this purpose. 

Revisiting (7), following relationship is obtained. 
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In order to expand (8), logarithmic function in the right hand side is to be approximated in closed 

form. A trapezoidal quadrature rule [33] is utilized to get the close form approximation of 

)1ln( + as given below: 
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Combining (8) and (9), the fractional order operator in continuous time domain can be 

approximated in delta domain and expressed by (10). 
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A clear observation from (10) can be made that at  limiting value of 0→ , s ≌ γ  means 

at fast sampling interval ,the frequency variables in continuous time domain and discrete  

delta domain maps each other .Therefore , (10) can be treated as the direct relationship 

between variable ‘s‘ and ‘γ’ and right hand side of the (10) is called the generating function. 

To get the rational approximation of FOO (s±α) in delta domain, direct discretization method 

proposed in [34] is considered in this work. The direct discretization method for discretizing the 

FOO in delta domain as explained in [34] is chosen in this work as the method proved to be 

superior to the other relevant methods in the literature. The generating function as shown in (10) 

is expanded using the continued fraction expansion method (CFE)[35]. 

The CFE formulation is mathematically expressed by (11). 
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generating function. So, the integer order rational transfer function in delta domain 

corresponding to the FOO can be expressed as  
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In this work, a third order approximation of s is considered through the direct 

discretization method in delta domain [34] and the coefficients of rational delta transfer 

function are enumerated in Table 1. The method is termed as CFE-2PGILOGDEL. 

Table 1 Coefficients for third-order approximation of s  
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Therefore, 3rd order rational approximation of delta transfer function corresponding to 

FOO is given by (13).  
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3rd order approximation of the FOO in continuous time domain transfer function,

)(3 sG rdc  can be obtained using the Oustaloup’s approximation method [1]. 

4. FINITE WORD LENGTH CHARACTERISTICS OF RATIONAL DELTA TRANSFER FUNCTION 

This paper deals with the effects of finite word length (FWL) representation of delta 

transfer function (Gδ (γ, α)) which is approximated using the direct discretization of 

fractional order operator. A shift operator parameterized transfer function (Gq(z, α)) is also 

derived corresponding to the FOO using the trapezoidal rule (Tustin) [10] as a generating 

function and  expressed by (14) to compare the effects of FWL representation.  
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Both the shift and delta operator based rational transfer functions are obtained using the 

generating function and CFE, the resultant transfer functions are taking the IIR filter form. 

If the range of fractional order (α) lies in the range between 0 and 1 means )1,0( ,all the 

poles of Gδ (γ, α) and Gq(z, α) are real and negative [19]. Therefore, in IIR form realization, 

both the transfer function takes the following forms. 
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where , 0zr  , zkr  , 0r  , kr  are the residues and zk , k  are the poles. 

For the digital implementation of the fractional order controller or fractional order 

system, the corresponding irrational FOO is discretized and corresponding rational transfer 

functions are obtained in both the z -domain and  -domain. Once the transfer functions 

are implemented digitally using finite number of bits or finite word length registers, round 

off of the coefficients like poles and residues are essential. In other word, the coefficients 

are to be quantized. 

In this paper, frequency response analysis is done using both the desired coefficients 

and quantized coefficients for both discrete domain transfer functions. To study the finite 

word length characteristics of the delta domain transfer function corresponding to FOO, a 

16b floating point representation (half precision) is used in this work. This is similar to the 

IEEE 754 32b floating point representation for single precision numbers. Half precision 

representation reduces the requirement of storage and increase the computational speed. In 

16b representation format of coefficient quantization, 1 bit is reserved for sign, 6 bits are 

used to represent the exponent and rest of the 9 bits is used for normalized mantissa. 

5. RESULT ANALYSIS 

Pentium i7, 2.4 GHz processor with 32.0 GB RAM PC is used to perform the 

experimentation using MATLAB R2020a version. 

A ¼ th order differentiator is considered as an example and 3rd order approximation        

( )25.0,(3 rdG ) of it has been done using direct discretization in delta domain via CFE-

2PGILOGDEL method [34] and is used as the backbone on which the finite word length 

effects has been studied in this work. Though fifth order approximation of the ¼ order 

differentiator in delta domain provides better frequency response but for the simplicity of 

operation, 3rd order approximation is considered in this paper. A comparison of frequency 

response for 3rd order ( )25.0,(3 rdG ) and 5th order approximations ( )25.0,(5 thG ) is 

graphically presented in Fig. 1. Frequency response analysis (Bode diagram) of the ¼  

order differentiator ( )25.0,(sG ) and corresponding rational approximation of it in delta 

domain ( )25.0,(3 rdG ) are shown in Fig. 2a where rational approximations are obtained 

using three different sampling intervals such as 05.0= sec, 01.0= sec and 001.0= sec. 
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It is clearly visible from Fig. 2b (error in approximation) that with faster sampling interval 

( 001.0= ), frequency response of the approximate rational transfer function is more closely 

matching with that of the original continuous time fractional order differentiator over a 

large range of frequencies. This essence of delta operator property is making method 

unified when discretization of continuous time systems are done in delta domain. 

 
(a) 

 
(b) 

Fig. 1 a) Frequency responses of )25.0,(sG , )25.0,(3 rdG  and )25.0,(5 thG at 001.0= sec; 

b) Errors in approximations 
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                                                     (a) 

 
(b) 

Fig. 2 a) Frequency response of )25.0,(sG  and )25.0,(3 rdG  for sampling rates of 05.0=

sec, 01.0= sec and 001.0= sec; b) Errors in approximations  

The residues and poles must be quantized since (15) and (16) are implemented using finite 

word length registers. To validate the results, an example of fractional order operator with 

degree 4.0=  is considered and the 3rd order approximation of the same in both the discrete 

z - domain and  - domain when sampled at sampling interval 001.0= sec is analysed. 

The MATLAB computation to obtain the desired realization gives the following results. 

The poles and residues (desired) corresponding to 
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G3rd (z,0,4) provides: 
8535.01 −=z , 6869.02 =z , 1334.03 −=z , rz0 = −0.2530, rz1 =  

−0.1003, rz2 = −0.2467 rz2 = 1. 

The poles and residues (desired) corresponding  to G3rd (, 0.4) provides:
 8987.111 = , 

2970.12 −= , 1858.03 −= , r0 = −20.8509, r1 = −0.6461, r2 = −0.0707, r3 = 2.9565. 
A 16b floating point representation is used to get approximated realization 

representation. The poles and residues (approximated) corresponding to: 
G3rd (z,0,4) provides: 8535.01 −= az , 6869.02 = az , 13339.03 −= az , rz0a = −0.25299, 

rz1a = −0.10029, rz2a = −0.2467. 

The poles and residues (approximated) corresponding to G3rd (, 0.4) provides: 
8906.111 −= a , 2969.12 −=  a , 1858.03 −= a , r0a = −20.8438, r1a = −0.6455, 

r2a = −0.0707, r3a = 2.9531. 

The frequency response obtained for the discrete time realization (z-domain and              

γ-domain) using the actual and quantized coefficients is shown in Fig. 3. In case of both 

the discrete time realizations, the absolute errors in magnitude and phase between the 

desired and approximated realization are shown in Fig. 4. From the response as shown in 

Figure 4, it may be noted that the error becomes much more in case of realization of the 

fractional order operator using shift operator parameterization (z-domain) where as in case 

of delta operator parameterization (γ-domain), almost zero error occurred using the 

quantized coefficients using 16 bit representation. 

 

(a) 
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(b) 

Fig. 3 a) Frequency response of the realization using z-domain and -domain for  = 0.4 

with  = 0.001 sec; b) Fréquency responses of G (s,0.4), G3rd (,0.4) and G5rd (,0.4)  

at  = 0.001 sec 

 

Fig. 4 Absolute errors between actual and approximated realization in z-domain and γ-domain 

The same method can be used to get the discrete time realization of different fractional 

order operators. The Table 1 enumerates the desired and quantized coefficients for different 

fractional orders such as  9.0,8.0,7.0,6.0,5.0= . 
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The frequency response analysis using the approximate realization of the discrete           

z-domain and γ-domain transfer functions for 9.0,8.0,7.0,6.0,5.0=  is illustrated in Fig. 5 

using the quantized coefficients as listed in Table 1. 

Table 2 Desired and approximated values of coefficients for z-domain and γ-domain 

transfer functions 
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.

i.- .

i. + .

i. - .-

i. + .-

i. + .-

 

421141

2303210

2303210

4201460

4201460

0008490

.

i. - .

i. + .

i.- .-

i.+ .-

i. + .-

 

TF−  

i.+ .-

i.+ .-

i.+ .-

i- .

i + .

i.+ .-

000030

000570

000873

11501036

11501036

005062077

 

i. + .-

i.+ .-

i.+ .-

i- .

i + .

i.+ .-

000050

000630

000304

11431036

11431036

00866207

 

7

000230

00005721

000011619

7712717104

7312717104

00436289

i. + .-

i.+ .-

i. + .-

i. - .

i. + .

i.+ .-

 

7

00230

0000571

000011619

7712717104

7312717104

000436289

i.+ .-

i. + .-

i. + .-

i. - .

i. + .

i. + .-

 

0.6 TFz −  

i. - .-

i. + .-

i. - .

i. + .

i. + .

22202930

2220290

39001550

300150

0008890

 

i. - .-

i. + .-

i. - .

i. + .

i. + .

22202930

22202930

399001550

39001550

000880

 

736380

2202930

222029930

390015450

390015450

00008890

.

i. - .

i. + .

i. - .-

i. + .-

i. + .-

 

733.380

22202930

223202930

39001550

399001550

00008890

i. - .

i. + .

i. - .-

i. + .-

i. + .-

 

TF−  

i. + .-

i. + .-

i. + .-

i. - .

i. + .

i. + .-

0000300

000560

00083

8109581036

8109581036

00050627

 

i. + .-

i. + .-

i. + .-

i. - .

i. + .

i. + .-

000005220

000635940

000030754

37110461036

3711041036

000088627

 

142111

0002580

0007211

00088924

2713439133

23713439133

000076623

.

i. + .-

i. + .-

i. + .-

i. - .

i. + .

i.+ .-

 

1421.11

0002390

0007201

000011919

77133174134

7713314134

000043624

i. + .-

i. + .-

i. + .-

i. - .

i. + .

i.+ .-

 

0.7 TFz −  

i. - .-

i. + .-

i. - .

i. + .

i. + .

20902700

20902700

3640201680

36201680

0000930

 

i. - .-

i. + .-

i. - .

i. + .

i. + .

20902700

20902700

36201600

3642016080

0092330

 

1024.9

0.200i - 0.2721

0.200i + 0.2721

0.362i - 0.168-

0.362i + 0.168-

0.00i + -0.924

 

91024

20002710

2002710

364201680

36201680

0000920

.

i. - .

i. + .

i. - .-

i. + .-

i. + .-
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TF−  

i. + .-

i. + .-

i. + .-

i. - .

i. + .

i. + .-

00002870

00052430

0005003

311951036

3119541036

000176277

 

i. + .-

i. + .-

i. + .-

i. - .

i + .

i. + .-

00002870

000052430

000050203

37811951036

18561036

000186277

 

93018

002820

0091

00055434

0315871131

03158131

00762101

.

i. + .-

i. + .-

i. + .-

i. - .

i. + .

i. + .-

 

930.18

0028520

0091

005434

0315871131

031587131

00762101

i. + .-

i. + .-

i. + .-

i. - .

i. + .

i. + .-

 

0.8 TFz −  

i. - .-

i. + .-

i. - .

i. + .

i. + .

1802390

180290

3101680

310160

0009540

 

i. - .-

i. + .-

i. - .

i. + .

i. + .

189802390

189802390

3181016180

3181016180

00009530

 

42759

18802390

1880290

311016170

3181016170

0009530

.

i. - .

i. + .

i. - .-

i. + .-

i. + .-

 

4.2759

180230

18802390

311016170

31016170

0009530

i. - .

i. + .

i. - .-

i. + .-

i. + .-

 

TF−  

i. + .-

i. + .-

i. + .-

i. - .

i. + .

i. + .-

000160

00047360

000153

9118611036

9118611036

000962076

 

i. + .-

i. + .-

i. + .-

i. - .

i. + .

i. + .-

0001860

0004760

00017253

91186111036

91186111036

000962076

 

2736

0003150

0001042

00009053

641139108

641139108

00049615

.

i. + .-

i. + .-

i. + .-

i. - .

i. + .

i. + .-

 

27.36

0003150

00010942

00096053

6411339108

6411339108

0004615

i. + .-

i. + .-

i. + .-

i. - .

i. + .

i. + .-

 

0.9 TFz −  

i. - .-

i. + .-

i. - .

i. + .

i. + .

159301940

159301940

252501530

252501530

00009780

 

i. - .-

i. + .-

i. - .

i. + .

i. + .

159301940

159830190

25501590

252501590

000097830

 

947428

1592019240

1592019240

2525015390

255015390

000097800

.

i. - .

i. + .

i. - .-

i. + .-

i. + .-

 

94.7428

159201940

159019240

252501590

25501590

0009700

i. - .

i. + .

i. - .-

i. + .-

i. + .-

 

TF−  

i. + .-

i. + .-

i. + .-

i.- .

i. + .

i. + .-

0000080

0004260

00082

56118661036

5611866106

0065676

 

i. + .-

i. + .-

i. + .-

i. - .

i. + .

i. + .-

00000870

0004260

000872

5611861036

56711866106

0065676

 

0293

000340

0003432

00071111

0913066109

0913066109

00092628

.

i.+ .-

i. + .-

i. + .-

i.- .

i. + .

i. + .-

 

018.93

000340

000342

00071111

0713066109

0913066109

00092628

i. + .-

i. + .-

i. + .-

i. - .

i. + .

i. + .-

 

 

The maximum percentage of relative error in magnitude and phase for realization of 

different fractional order operators are described in Table 2. It can be visualized that the 

maximum percentage relative error in magnitude is occurring in case of z-domain realization 

where as in case of γ-domain realization, the response characteristics are very much aligned 

with that of the continuous time domain results for fractional order differentiator of different 

orders (α). 

This paper deals with the unified method for the digital realization of FOO in delta domain. 

The order of the factional order operator is considered from 0.5 to 0.9 to validate the method as 

compared to the order of FOO considered for digital realization in [19]. Moreover, the sampling 

interval is here considered as Δ = 0.001 sec which is much less than the sampling considered in 

[19]. As the sampling interval is reduced much, the notion of using delta operator is justified. 
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With the present approach, the maximum percentage of relative error in magnitude and phase 

are less as compared to the method adopted in [19].For example, in [19] , the maximum 

percentage of relative error in magnitude and phase are 13.33 % and 7.83% respectively in delta 

domain for 𝛼 = 0.7, where as  in this work , the  maximum percentage of relative error in 

magnitude and phase are 0.35  % and 4.52% respectively in delta domain for 𝛼 = 0.7. This 

proves the superiority of this proposed method. 

 

Fig. 5 Frequency response of ),(3 rdG  for 9.0,8.0,7.0,6.0,5.0=  at 001.0= sec 

Table 3 Maximum percentage relative errors in magnitude and phase responses 

  
  

Amplitude Max.% 

Relative 

Error 

)( TFz −  

Amplitude 

Max.%  

Relative Error 

)( TF−  

Phase 

Max.%  

Relative Error 

)( TFz −  

Phase 

Max.% 

Relative Error 

)( TF−  

0.5 72.2063 0.1414 8.054600 6.6341 

0.6 73.0387 0.2316 52.33260 7.9628 

0.7 89.4212 0.3516 132.3962 4.5271 

0.8 89.6875 0.4701 133.5642 3.2106 

0.9 93.4510 0.4682 145.4541 1.7190 
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6. CONCLUSIONS 

This paper deals with the digital realization of fractional order operator using delta 

operator parameterization. Whenever any fractional order operator is represented using the 

corresponding rational approximated transfer function in discrete z -domain, the transfer 

function approximations become sensitive to coefficient variation resulting in a poor finite 

word length effect. Instead, delta operator parameterized rational transfer function is 

considerably less sensitive to parameter variation. In this paper a 3rd order approximation 

of the fractional order operator of different orders are considered and the operators are 

directly discretized to get the corresponding delta domain transfer functions. Through the 

direct discretization method used in this work for the discretization of the FOO in delta 

domain, the rational transfer function corresponding to the FOO becomes stable for fast 

sampling rate (Δ→0) which may not be possible in all case of indirect discretization method 

at fast sampling interval. The frequency response analysis of the different transfer functions 

in delta domain using the desired coefficients and approximated coefficients  using half 

precision quantization logic reveals that delta operator parameterized transfer function 

provides much more robust with respect to coefficient variation. The maximum percentage 

relative error for magnitude and phase for different fractional order operator are tabulated 

from Fig. 5 and the results as shown in Table 2 ensure that rational approximation using delta 

operator gives very small relative error as compared to the rational approximation using the 

shift operator parameterization (z-domain). Therefore, the digital transfer function 

rationalized using delta operator is a robust one for finite word length implementation. At fast 

sampling interval (Δ=0.001), the rational approximation using δ-domain resembles to the 

result obtained using continuous time domain representation making the realization a 

unified one. 
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