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Abstract.  Generally, when studying the capacitive coupling between power lines and 

pipelines the soil is considered a perfect conductor and its real conductivity is ignored; 

in this paper we want to overcome this limitation and present a study about the influence 

of soil conductivity just in the context of the above mentioned phenomenon. In order to do 

that, we derive analytical formulas for calculating the electric scalar potential, both in 

the air and in the ground, generated by an overhead conductor, and we compare some 

results obtained by means of these formulas with the ones deriving from the well known 

method of images that is based on the assumption of perfectly conducting soil. 
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1. INTRODUCTION 

A typical Electromagnetic Compatibility (EMC) problem, at power frequencies (50-60Hz), 

is represented by the electromagnetic interference generated by power lines/electrified railway 

lines (sources of the interference) on pipelines and metallic telecommunication cables (victims 

of the interference); as a consequence of this phenomenon, dangerous over-voltages and 

over-currents can be generated on the victim line, thus representing a risk for staff operating 

along it and for equipment/apparatuses connected to the induced plant [1-2]. In the specific 

case of pipelines, also an incremented risk of AC corrosion due to induced voltage has to be 

considered [3-4].  

The basic assumption common to the various models available in literature to study 

these problems 5-8] is the quasi-static approximation; according to it, the electromagnetic 

coupling between source and victim of the interference can be split into: inductive (or 

magnetic), conductive (also said resistive or galvanic) and capacitive (or electric) coupling 

and each one of them may be analyzed separately. 

While inductive and conductive couplings are studied by taking into account the 

ground conductivity, when dealing with capacitive coupling, the ground is considered a 
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perfect conductor [6], [9]. Even if such an assumption leads to correct results which are 

confirmed by field experience, from the logical and theoretical point of view, this is 

contradictory because, in the context of the same physical phenomenon (i.e. the whole 

electromagnetic interference sum of inductive, conductive and capacitive couplings), the 

ground is considered, on one side, a medium having finite conductivity and on the other 

side a perfect conductor. 

The purpose of this paper is to propose a different approach to the modeling of the 

capacitive coupling which is no more based on the hypothesis of ground as a perfect 

conductor, but, on the contrary, the soil conductivity and permittivity are taken into 

account. In such a way, it is possible to have an idea of the influence of the aforementioned 

parameters which, on the contrary, is hidden in the approach based on the hypothesis of a 

perfectly conductive ground. 

 2. MATHEMATICAL FORMULATION OF THE PROBLEM 

As the plants that are sources of the electromagnetic field (power/railway lines) have 

the characteristic of being long filamentary structures, they can be represented, for our 

purposes, by means of the transmission line model; as known, the advantage of the 

transmission line model is the cylindrical symmetry so that the electromagnetic field 

generated by the structure is equal in any transveral plane perpendicular to the line axis. In 

such a way, the geometry of the problem from tridimensional can be simplified into 

bidimensional.  

Moreover, as in this paper we are dealing solely with capacitive coupling, the only 

electromagnetic quantity to be considered is the scalar electric potential V; thus in the 

following we are going to focus on the differential equations and on their solutions relevant 

to V in both the media involved in the problem that is: air and ground. 

Another assumption adopted is that all the materials involved are homogeneous, linear 

and isotropic; nevertheless, when considering the soil conductivity and relative permettivity 

it is necessary to mention that they are not constant but have a frequency dependent 

behaviour. In fact, according to a frequently used model for soil parameters proposed by 

Visacro and Alipio [10-11], both the above mentioned parameters can be expressed by means 

of simple analytical formulas (see Appendix A), in the range [100Hz, 4MHz]. Nevertheless 

our analysis will be restricted to frequencies lesser than 10kHz because this is the range of 

interest of electromagnetic interference produced by power/railway lines on pipelines. 

For simplicity we shall consider a source represented by a single conductor, but the 

results presented in this paragraph can be immediately extended to the case of a source 

composed by more than one conductor by simply applying the superposition principle. 

In Fig. 1, a simple representation of the geometry of the problem is shown. In the 

drawing we can see that the air is characterized by the electrical parameters (0, 0, 0) 

being its conductivity 0=0 while 0 and 0 are the vacuum absolute magnetic permeability 

and permittivity respectively; as far as the ground is concerned, it is characterized by 

conductivity 1, magnetic permeability 1 (that will be assumed equal to 0) and permittivity 

1=0r1 being r1 its relative dielectric constant. 

Finally, the conductor axis, having coordinates (D, H), is carrying a per unit length 

(p.u.l.) linear current density lin. 
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Fig. 1 Sketch of the geometry of the problem 

For the following, it is necessary to introduce these parameters: 
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Being j the imaginary unit, =2f the angular frequency and f the frequency. 

It is also worthwhile to define the complex relative ground permittivity 
1

ˆ
r by means of: 
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From Maxwell equations expressed in phasor form and by assuming a time dependence 

of the type exp(jt), it is possible to obtain the partial differential equations for the 

potential Vi=Vi(x, y) in both the media: air (i=0) and ground (i=1). 

For the air we have: 
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Being  the Dirac delta. 

Note that by writing equation (4), we have assumed that the p.u.l. linear charge density  

lin carried by the conductor, can be expressed by: 

 ( , ) ( ) ( )lin linx y x D y H   = − −  (5) 
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For the ground we have: 

 
2 2

21 1

1 12 2

( , ) ( , )
( , ) 0

V x y V x y
k V x y

x y

 
+ + =

 
 (6) 

To complete the formulation, we have to add the boundary conditions at the air-ground 

interface that is for y=0. 

The first one is the continuity condition of the potential which yields: 

0 1( ,0) ( ,0)V x V x=                                                     (7) 

The second one is the condition relating the continuity of the normal derivative of the 

scalar potential at the interface between two media having finite conductivities [12];  in our 

case, such a condition can be written as: 
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Lastly, at infinity, the potential both in air and ground must vanish so that we have: 

0 0lim ( , ) 0 lim ( , ) 0
x y

V x y V x y
→ →+

= =                                (9) 

1 1lim ( , ) 0 lim ( , ) 0
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3. EXPRESSIONS OF THE SCALAR POTENTIAL 

3.1. Exact expressions  

In this paragraph we present, in a concise way, the main steps to obtain the solutions of 

equations (4) and (6). 

As far as equation (4) is concerned, its solution is given by the sum of a particular 

solution and a solution of its associated homogeneous equation. 

A particular solution Vp0(x, y) of equation (4) fullfilling the conditions expressed in 

equations (9) is [13]: 
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where K0 is the modified Bessel function of second kind and 0 order (see Appendix B). 

For the following, it is useful to write also an integral representation of V0p(x,y) [14] 

that is: 
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Regarding the solution V0h(x, y) of the associated homogeneous equation, by using the 

separation variable technique and by taking into account the conditions given by equations 

(9), one has: 
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being E() a function to be determined from boundary conditions at air-ground interface. 

In a similar way, the solution of equation (6), that fullfills the conditions expressed by 

formulas (10), is: 
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being F() a second function to be determined from boundary conditions at air-ground 

interface. 

The functions E() and F() are solutions of the following linear system obtained by 

taking into account of equations (12), (13) and (14) and by imposing the boundary 

conditions represented by equations (7) and (8): 
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By solving this system one gets: 
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By adding equations (12) and (13) and by taking into account of the first relationship 

expressing E() in formula (16), one can write the expression for the potential in the air 

V0(x, y): 
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Notice that the first addend in equation (17) represents the primary contribution of a  

source having p.u.l. charge density lin placed at coordinates (D, H) in an infinite space, 
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having the characteristics of the air, while the second addend represents, in the same space, 

an image source placed at coordinates (D, -H) and carrying an opposite p.u.l. charge 

density -lin. The role played by the second addend is to simulate the presence of the 

ground modelled as a perfect conductor; notice that both the terms do not depend on the 

soil conductivity 1. 

On the contrary the third addend in equation (17) depends on 1 and it can be 

considered a further correction term related to the presence of the ground.    

Coming to the potential in the ground V1(x, y), by substituting the expression for F() 

contained in formula (16), one obtains: 
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3.2. Closed form approximated expressions 

It possible to give some closed form approximated expressions for both V0(x, y) and 

V1(x, y); the usefulness of such approximated expressions is related to the difficulty in 

calculating the scalar potential by means of the exact formulas given by expressions (17) 

and (18); the problematic in calculating the two integrals contained in them (Sommerfeld 

integrals) consists in the fact they slowly converge and the integrands have a strongly 

oscillating behaviour; thus, they may require a certain computational effort especially if 

they have to be evaluated inside the same program many times in correspondence of 

different points and/or different frequencies. For such a reason it is worthwile to have at 

disposal also easier expressions that may be used in practical applications. 

As far as V0(x, y) is concerned and by considering the third addend, we have that in 

most of the integration range for  the following approximation holds: 
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and consequently, by substituting (20) in place of the third term in formula (17), we obtain 

the following approximate expression for V0(x, y): 
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The first term in equation (21) represents the primary contribution of the source, while 

the second term represents the contribution of a image source placed in specular position 

with respect to the air-ground interface; the intensity of the image source lin is reduced of 

a factor R given by: 
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Notice that the factor R still depends on , 1 and r1 (see equation 3). 

It is possible to further simplify the relationship given by equation (21) obtaining the 

expression that could be directly derived by applying the well known method of images [15]. 

In fact, for low frequencies and in the ordinary range of values for 1 and r1 we have that: 
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Therefore, by substituting in formula (21) the modified Bessel functions K0 with its 

small argument approximation [16] (see also Appendix B formula (B4)) and by using the 

second relationship in formula (23), we obtain the following expression V0mi(x,y) for the 

potential in air: 
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Notice that this expression does not depend on frequency f, on ground conductivity 1 

and on ground permittivity 1. 

As far as V1(x, y) is concerned, starting from equation (18) we have that in most of the 

integration range for , the approximation expressed by formula (19) holds; thus, we obtain 

the following equation for V1app(x, y): 
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Notice that this expression still depends on frequency f, on ground conductivity 1 and 

on ground permittivity 1. 

4. COMPARISON AMONG DIFFERENT EXPRESSIONS 

In this section we present some comparisons among the different expressions for the 

scalar potential previously presented. 

The integrals appearing in formulas (17) and (18) have been numerically evaluated by 

means of the trapezoidal rule by using an extremely small integration step equal to 10-5 

covering the integration range [0, 8]; we have verified that the contribution to the integral 

outside that integration range was negligible. 

As mentioned before, the comparison is oriented to very low frequencies and covers the 

range [10Hz, 10kHz]; in this interval we did not find problems of numerical instability 

concerning the integrals in formulas (17) and (18).  

Firstly, let us define the per cent relative difference between the exact formula and the 

corresponding approximate one; thus we have for the air two cases: 
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while, for the ground, we have: 

1 1

1

1

( , ) ( , )
% ( , ) 100

( , )

app

app

V x y V x y
x y

V x y

 −
  =
 
 

                             (28) 

We have considered a source placed at D=0m and H=20m and soil parameters having 

frequency dependence according to the formula of Visacro-Alipio (see Appendix A) and 

characterized by different values of 100Hz (100Hz is the value of soil conductivity for 

f=100Hz) i.e.: 10-4S/m, 10-3S/m, 10-2S/m and with relative dielectric constant r1=1921. 

Moreover, in the examples that follow, we have reasonably assumed that in the range 

[0Hz, 100Hz] the value of the soil conductivity is constant and equal to 100Hz. 

 In Fig. 2 the values of %0 app and %0 mi have been plotted versus lateral distance from 

the source for different values of 100Hz and for f=50Hz.  

 

Fig. 2 Percent relative difference versus lateral distance for different values of 100Hz; 

f=50Hz, y=1m 

Fig. 2 shows that at 50Hz both the approximations are very good; the quantities %0 app 

and %0 mi show an increasing trend by increasing the distance from the source and by 

decreasing the value of 100Hz. 

 
1 This is the suggested value coming from the Visacro-Alipio formula for frequencies lower than 10kHz 
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 In Fig. 3 the values of %0 app and %0 mi have been plotted versus the frequency, for 

different values of soil conductivity and for x=50m, y=1m. 

By looking at Fig. 3, we can see that for soils having medium-high values of 100Hz both 

the approximations are very good till to some kHz, while for soils of very low values of 

100Hz both the approximations are very good till to some hundreds of Hz.  

In Fig. 4 the values of %1 app have been plotted versus lateral distance from the source 

for different values of 100Hz and for f=50Hz. 

 

 

Fig. 3 Percent relative difference versus frequency for different values of 100Hz; x=50m, y=1m 

 

Fig. 4 Percent relative difference versus lateral distance for different values of 100Hz; 

f=50Hz, y=-1m 
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Fig. 4 shows that at 50 Hz the approximation is very good especially for medium-low 

values of 100Hz; the differences tend to increase by increasing the distance from the source; 

such a trend is much more evident for high values of 100Hz. 

In Fig. 5 the values of %1 app have been plotted versus the frequency, for different 

values of 100Hz and for x=10m,  y=-1m. 

 

Fig. 5 Percent relative difference versus frequency for different values of soil 100Hz; 

x=10m, y=-1m. 

By looking at Fig. 5, we can see that for soils having high values of 100Hz the 

approximation is good till to about 1 kHz, while for soils having medium-low values of 

100Hz the approximations are very good till to 10 kHz.  

5. CAPACITIVE COUPLING BETWEEN POWER LINE AND PIPELINE 

5.1. Basic assumptions and formulas  

In this paragraph we present two examples of calculation of capacitive interference 

generated by an High Voltage (HV) power line on a pipeline; in order to have only 

capacitive coupling, we consider the ideal case where the HV line axis is exactly 

perpendicular to the pipeline (see Fig. 6) so that no inductive interference exists; moreover, 

we suppose that the HV line is under normal operating condition so that no currents, 

injected into soil through the tower grounding electrodes as in case of fault of a phase to 

ground, are present and consequently neither conductive coupling exists. 

In both the examples that follow, the inducing source is represented by a tri-phase 

380kV-50Hz line provided with two shield wires while the pipeline, having length L, shall 

be considered overhead (height h>0) in the first example and buried in the soil (burial depth 

h<0) in the second example.    
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Fig. 6 Sketch of HV line and pipeline layouts 

The pipeline has no grounding points and the voltage induced along it U=U(x) can be 

calculated by means of the following formula (see [5]) that represents the analytical solution 

of a two-wire transmission line of length L, open circuited  at both the terminations and 

drived by a distributed ideal current generator J(x) (see next formula (33)).   
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where  is the propagation constant of the pipeline circuit with ground return given by: 

Z Y =                                                          (30) 

being Z and Y respectively the p.u.l. impedance and admittance of the circuit itself. 

The quantities G1(x) and G2(x) are given by [5]: 
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and 

                         ( ) ( , )J x YV x h=                                                   (33) 

is the p.u.l. current generator applied to the pipeline-ground circuit that models the 

capacitive influence generated by the HV line. In fact, in equation (33) V=V(x, h) is the 

potential generated at the location of the pipeline axis by the power line that can be 

calculated according to the formulas presented in the previous section 3. 
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5.2. Overhead pipeline  

The case of an overhead pipeline in proximity of a HV powerline and with no 

connections to ground is often encounted before the burial operations of the pipe. For 

example a relatively short conductor, such as a single joint of line pipe supported by a 

nonmetallic sling or on a rubber- tired vehicle. 

Thus, we consider a single joint of pipe having length L=20m and placed at height 1.5m 

above ground. By calculating the potential in the air produced by the HV line according to 

the formulas presented in par. 3 and applying formula (29) we obtain a voltage practically 

constant along the whole length of the pipe. In Table 1, the induced pipe voltage is shown 

for different values of 100Hz that, as already mentioned, we have assumed to be valid also 

for f=50Hz so that 1=100Hz. 

   Table 1 Induced voltage for different value of soil conductivity; overhead pipeline   

1 [S/m] Voltage [V] 

10-2 124.93 

10-3 124.95 

10-4 125.21 

10-5 129.01 

If one applies the method of images to calculate the potential in air, the result for the 

induced voltage along the pipe is a constant value equal to 124.95V that does not depend on 1. 

In contrast to the method of images, the results in Table 1 show a very weak but 

non-zero dependence on the soil conductivity and the values of induced voltage increase by 

decreasing the soil conductivity. 

5.3. Buried pipeline 

We consider a buried pipeline section 4km long between two insulating joints; in such a 

way one can study this portion of pipe ignoring the remaining part of the the route.  

Also in this case, calculations show that the induced voltage along the pipe is practically 

constant and the results for different values of soil conductivity are shown in Table 2. 

   Table 2 Induced voltage for different value of soil conductivity; buried pipeline   

Soil conductivity 1 [S/m] Voltage [V] 

10-2 0.0007 

10-3 0.021 

10-4 0.393 

10-5 5.91   

By looking at Table 2 we can notice the very small values for the induced voltage; that 

explains why in practical applications the capacitive coupling between power lines and 

buried pipelines is usually ignored. Anyway, we can notice that the influence of the soil 

actually exists with an increasing trend that follows the decrease of the conductivity. 
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  6. CONCLUSIONS 

In this paper, we have presented a study about capacitive coupling, at power frequencies, 

between power lines and pipelines, that differently from what commonly appears in literature, 

does not model the ground as perfect conductor but it takes into account its conductivity and 

permittivity. 

The results obtained by comparing the model of perfectly conducting ground and the 

model of soil with non-zero conductivity show that the differences are very small at power 

frequencies. Nevertheless, in applications where higher frequencies are involved (higher 

harmonics, transients), the model here presented seems more adequate because in these 

cases the influence of the ground conductivity and permittivity is not so negligible. 

APPENDIX A 

According to the work of Visacro-Alipio [10-11] about the frequency dependence of soil 

parameters relevant to lightning response of grounding electrodes, one has that ground 

conductivity and relative permettivity are not constant quantities but depend on the frequency. 

On the basis of many measurements and subsequent analysis, the authors found an empirical 

formula able to describe their frequency dependence in the range [100Hz-4MHz]. 

By using the resistivity , instead of the conductivity , they proposed the following 

expressions: 

  
1
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In formula (A1) the quantity 100Hz is the value of soil resistivity for f=100Hz; in the 

rest of our paper, we used, for convenience, its reciprocal 100Hz. 

APPENDIX B 

We report here from [17] the explicit formula for K0 that is the modified Bessel 

function of second kind and zero order. 

If z is a complex number with |arg(z)|</2, K0(z) is given by the following ascending series: 
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where =0.57721.. is the Euler-Mascheroni constant and I0(z) is the modified Bessel function of 

first kind and zero order that is expressed by: 
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In formula (B2),  is the Gamma function which, for integer values of the argument, 

becomes the factorial function that is: 

 ( 1) ! 0,1, 2,k k k + = =  (B3) 

For small values of the argument z, formula (B1) simplifies into: 
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