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Abstract. Currently, there is a great extent of academic research focused on evaluating 

fatigue among drivers due to its growing recognition as a major contributor to vehicle 

tragedies. Combining advanced features and machine learning techniques, signals from 

the electroencephalogram (EEG) can be analyzed to efficiently detect fatigue in the 

shortest possible time. This study presents an innovative approach to detect driver 

fatigue states utilizing ensemble-based machine learning techniques from EEG signals. 

Two ensemble models (Ensemble-based RUSBoosted Decision Trees and Ensemble-

based Random Subspace Discriminant) were applied and compared. The study utilized 

an online EEG dataset of 12 individuals, with data collected during normal and 

fatigued driving conditions and Fast Fourier Transform was applied for feature 

extraction. The Ensemble-based RUSBoosted Decision Trees model achieved superior 

performance with 98.53% classification accuracy, compared to 83.13% for the Random 

Subspace Discriminant model. Multiple performance metrics were used for evaluation 

model performance. Finally, the proposed Ensemble-based RUSBoosted Decision Trees 

model outperformed Ensemble-based Random Subspace Discriminant model and 

existing conventional methods for fatigue state detection. This research contributes to 

the development of more accurate and reliable fatigue detection systems, which could 

potentially improve road safety by identifying fatigued drivers in real-time.  
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1. INTRODUCTION  

The excessive frequency of highways catastrophes has led to socioeconomic problems 

that endanger both human beings and their belongings. The WHO mentions that road 

accidents cause more than 1,300,000 deaths worldwide each year, and millions additional 

individuals are injured or left permanently disabled [1]. Furthermore, there has been a 

noticeable rise in the frequency of vehicle crashes lately, which has prompted communities 

and governments to give this problem a lot of emphasis [2]. Road accidents are so prevalent 

that it is critical to focus resources on international projects that try mitigating them. Studies 

previously conducted indicate that between twenty percent and thirty percent of vehicular 

crashes are caused by fatigued driving. Consequently, this emphasizes how important it is 

that tired driving be considered a preliminary aspect in highway mishaps [2]. Fatigued 

drivers are more likely to make careless mistakes, have trouble focusing, and have slower 

reaction times, all of which raise the risk of a collision between two vehicles [3]. However, 

due to adrenaline ability to conceal fatigue after an occurrence, people who were involved 

in accidents involving fatigue circumstances might not be aware of their pre-accident 

emotions or the momentary loss of awareness [4].  

It is currently being worked on using three main methods to create a strong and 

effective fatigue recognition system. Specifically, the operations in question can be 

broken down into three main categories: physical strategies, behavioral strategies, and 

vehicle strategies [5]. Figure 1 offers a detailed summary of main elements used in the 

three principal approaches of fatigue systems for identification. 

Initially, physical-based solutions involve utilizing external equipment connected to the 

driver's head, hands, chest, and fingers to gather numerous physiological data. The driver's 

situation can be assessed by examining different information, such as electrical neural activity, 

blood pressure, variation in heart rate, inhalation rates, body temperatures, pulmonary rates, 

and total heartbeats [6]. Behavioral-based solutions utilize visual processing and automated 

vision methods to analyze pictures and videoclips monitored from the driver of the vehicle. 

This method involves analyzing key indicators displayed by the driver to determine their 

degree of alertness, tiredness, or drowsiness. Extracting crucial insights depends on observing 

multiple factors such as absence of eyesight, napping via mouth motions, pupil closures, facial 

features, and head movement [7]. In final analysis, vehicle-based techniques are utilized to 

construct a built-in system for the goal of evaluating drivers' weariness. These methodologies 

make use of mechanisms and indications that are integrated within the vehicle's wheels of an 

automobile. The research employs computerized technology to assess driver behavior through 

the continuous monitoring of various factors including steering wheel angle, speed, hand 

activity, lane deviation, and position of the steering [8]. 

Researchers have recently started using electroencephalography (EEG) to detect driving 

fatigue. The EEG has specific features that make it potentially useful for detecting driving 

fatigue. These factors consist of its ability to move, accuracy in timing, and exceptional 

sensitivity to the state of the nervous system. EEG is used as a diagnostic method for 

evaluating neuronal activities on the surface of the scalp to examine if the person is feeling 

fatigued [9]. However, using multiple-electrode methods to collect EEG data can be affected 
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by external factors. Therefore, it is essential to extricate relevant information from mixed brain 

data to accurately detect weariness while operating a vehicle [10]. Recordings from multiple 

EEG channels provide thorough information of neural events. Particular channel may 

comprise extraneous and irrelevant information [11]. Choosing the relevant channels is 

challenging to optimize the effectuality of models that depend on electroencephalography 

(EEG) [11]. Developing a high-quality single classifier might be crucial as a consequence 

of the unpredictable nature of brain data and limited size of the training dataset. As a result, 

each classifier may show less than ideal performance or lack reliability. 

 

Fig. 1 Preliminary ways of fatigue detection 

This is why, this research study introduces a method of categorization for identifying 

driver fatigue in an EEG-based system, using ensemble learning methods. This initiative 

primarily aims to enhance the performance of identifying driver fatigue states while 

simultaneously decreasing computational intricacies. This study has investigated two 

ensemble-based machine learning models and proposed the best model in terms of detecting 

fatigue states utilizing EEG signals. 

The remainder of the article is organized as follows: A comprehensive literature 

review is provided in section 2. Complete methodology of this study is explained in 



674 M. M. HASAN, M. N. ISLAM, S. KHANDAKER, N. SULAIMAN, A. ISLAM, M. M. HOSSAIN 

 

section 3, which includes data description, Fast Fourier Transformation, ensemble-based 

machine learning techniques and assessment of performance. A comprehensive experimental 

result is explained in section 4. This section 5 discusses the proposed model's comparison with 

related studies and the significant advantages of our proposed approach over the earlier 

studies. Section 6 concludes the outcome of the presented study. 

2. LITERATURE REVIEW 

Diversified approaches have been put forth to determine the underlying mechanisms 

of fatigue via EEG data. In [12], a straightforward and efficient method for identifying 

drivers’ fatigue in real-time environments is presented. The suggested approach results in 

a 1.8-second latency and an identification rate of 92.7%. An advanced technique was 

created to detect fatigue among drivers by analyzing EEG data in [13]. The framework 

includes a characteristic synthesizing network which combines textural attributes and a 

combination of features selecting mechanism to enhance the identification efficiency. The 

suggested approach identified fatigue with 97.29% exactness using EEG data. Zhao et al. 

[14] classified fatigue conditions in driving circumstances using a Support Vector 

Machine (SVM) using KPCA, achieving a success rate of 81.64%. Another experiment that 

was conducted with 43 good-health people and utilized Bayesian Neural Networks as the 

classification model and autoregressive modeling as the technique for extracting features in 

order to identify fatigue, achieved an accuracy rate of 88.2% [15]. Two studies that analyzed a 

model based on CNN and EEG recordings to find signs of exhaustion were 85.42% and 

75.87% accurate, respectively [16 – 17]. A recent study utilized a single classifier Decision 

Tree to detect fatigue states from EEG signals, which gave an accuracy of 88.6% [18]. In the 

context of the real world, the main problem with these models is that they are not accurate to a 

great extent. 

A study assessed the effectiveness of numerous linear as well as nonlinear single 

classification methods, such as Decision Tree, Fisher Discriminant, Support Vector 

Machine, k-Nearest Neighbors, Neural Network, and Hidden Markov Model, in the detection 

of driver fatigue via electroencephalography signal [19]. Fu et al. presented tiredness detection 

approach based on Hidden Markov Model (HMM) [20]. Some research has shown that 

ensemble-based classifiers outperform single classifiers [21 - 23]; minimal research has been 

done on using ensemble-based algorithms that utilize electroencephalogram (EEG) signals to 

detect weariness in vehicle drivers. Hassan and Bhuiyan [21] developed a technique that 

utilizes Entire Ensemble Experimental Mode Decomposition in conjunction with Adjustable 

Noise and Bootstrap Combining (Bagging) to structure sleep patterns from EEG signals. The 

study's results showed that the suggested methodology had more accuracy than current state-

of-the-art procedures. Moreover, an investigation was carried out in [22], presented an 

innovative approach for identifying seizures using linear programming Boosting. Their 

research results showed that this method functioned better than earlier attempts. Chatterjee et 

al. [24] produced a method to classify myocardial infarct data by integrating Support Vector 

Machines, Naive Bayes, and k-Nearest Neighbors algorithms. Various collective learning 

models like loggitboost, AdaBoost, and bagging were used. 

However, the use of ensemble-based categorization for identifying fatigue stages 

through EEG signals is a relatively recent idea. 
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3. METHODOLOGY 

This study introduces an innovative automated fatigue detection technique, highlighting 

the significance of roadway security and saving lives of those on the road. Previous research 

studies have used different approaches to identify driver fatigue states. This study compared 

two ensemble-based classifiers, Ensemble-based RUSBoosted Decision Trees and Ensemble-

based Random Subspace Discriminant, for identifying fatigue conditions. During the course 

of our evaluation, we compared the performance of these models to that of other works that 

were already in existence. We found that the models that we suggested achieved a higher level 

of accuracy when it came to identifying fatigue states in drivers. The models can employ 

several tactics to achieve optimum efficiency in a short amount of time with minimal 

complexities. The study procedure is illustrated in Figure 2. 

 

Fig. 2 Methodological representation of the current study 

Technical computing and data analysis in the study were conducted using MATLAB 

R2021a, which was selected due to its outstanding effectiveness and reliability. The present 

study was conducted utilizing a PC equipped with an Intel(R) Core(TM) i7-8650U processor, 

16 GB RAM, and Windows 11 OS. 

3.1. Data Description 

We used an online electroencephalogram (EEG) dataset with 12 individuals for our 

study [25], which is widely used for fatigue state detection studies. The dataset description is 

available in reference [26]. This data set was gathered in two separate stages. Initially, in 1200 

seconds driven event, the final 300 seconds of EEG signals were collected and identified as 

normal. Furthermore, when participants drove continuously for 2400 to 6000 seconds, a 

questionnaire was used to evaluate their level of fatigue while driving. In addition, two 

measuring scales were also used [27 – 28]. The final 300 seconds of EEG waves were 

collected and recognized as representing levels of weariness. The data were fine-tuned 

relative to A1 and A2 mastoids that were electrically associated. The data was captured at 

1000Hz sampling rate using a 32-channels electrode device. The device contained activate of 

30 channels and 2 channels as reference. 

After the EEG readings were gathered, Neuroscan Scan- 4.3 version software was 

employed to prepare the data [29]. The raw signals were filtered with a 50Hz notch filter 

and a 0.15Hz to 45Hz bandpass filter that worked to get rid of noise. After that, the 

electroencephalogram (EEG) data that was collected from 32 electrodes for a period of 

five minutes was divided into epoch of each second, eventually a total of around 300 
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epochs. In a study with twelve individuals, the normal states produced 3600 datapoints, 

while exhausted states produced the same number of points. 

3.2. Fast Fourier Transformation 

The Fast Fourier Transform (FFT) is a computationally efficient algorithm used to 

compute the Discrete Fourier Transform (DFT). The algorithm decomposes the Fourier 

transform of an order of n points into smaller complications, resulting in a decrease in 

computing difficulty. Equation 1 demonstrates the computation of the Discrete Fourier 

Transform (DFT), where 𝑋𝑘 represents the Fourier transform of a given discrete 

sequences 𝑥𝑛 with a length of 𝑛. 
21
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3.3. Ensemble-based Classification Techniques 

Presently, ensemble methods and hybrid systems constitute a significant area of 

investigation within the domain of Artificial Intelligence. Ensemble methods utilize many 

learning algorithms to improve performance [30]. Furthermore, there have been proposals 

to use Model Trees that are regressive models structured in trees format. These methods 

link the leaves with different linear regression functions, allowing for the calculation of 

numerical values [31]. 

Ensemble-based classification methods make it easier to combine the forecasting 

power of several different classifiers, like decision tree or ANN. Because they are unstable 

and can be computed quickly, decision trees are great for groups [32]. It is because decision 

trees are particularly change-sensitive in the input data that they become unstable. This can 

cause them to make completely different trees. Using these things as a group helps to solve 

this problem. In ensemble learning, many classifiers are used. Each one is given a weight, 

and then they are all put together to make a classifier that is better than the sum of its parts. 

The method is like the idea of wisdom of the crowd [33] because it takes into account 

which people are more likely to look for or think about different points of view before 

making big decisions. 

Three methods are usually used to make ensemble-based decision trees: random 

subspace, boosting, and bagging, as explained within comparative inspection in [34]. A 

lot of people agree that boosting is the best way to choose model-guided cases. Boosting 

is a common method for making a bad learner, like a decision tree, work better by 

changing the weights given to training cases repeatedly. The method involves running a 

weak learner on a lot of different types of scattered datasets for training. After that, one 

strong classifying framework was created to combine the classification models of the 

learners that weren't doing so well, making the system more accurate than any single tree 

could be. The AdaBoost algorithm, which is also called Adaptive Boosting, was first 

suggested in [35]. In order to improve the efficiency of the basic boosting method, it is a 

popular ensemble method for classifying binary data. This advancement can be achieved 

by a repetition technique that emphasizes identifying complex patterns. 
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3.3.1. Ensemble-based RUSBoosted Decision Tree 

This method tries to get more accurate by using more than one model, which is more 

accurate than any one model alone. An ensemble inducer may include different 

conventional classification methods, and with various forms of conventional models. The 

study utilized decision trees as the basic learner and RUSBoost as the ensemble 

methodology. The current method utilizes the RUSBoosted technique along with decision 

trees to create a system called the Ensemble-based RUSBoosted Decision Trees. The 

maximum quantity of clusters allowed in this applied system is 20. There are 30 learners 

with a learning rate of 0.1. RUSBoost is a kind of hybrid algorithm which merges 

Boosting technique and under sampling. Following the method outlined in [36], N 

subsets of the dataset are created, and the preliminary weight of the overall weight is 

divided by N at random to determine every subset. Regularization is applied to update the 

weights after training the sub-dataset. An iterative process applies a classification for 

training which meets specified limitation on the subset of data. The optimal method is 

eventually chosen. 

 

Fig. 3 Architecture of Ensemble-based RUSBoosted Decision Tree 

Figure 3 illustrates the entire method. Within the Decision Tree model, an initial design is 

chosen as the testing samples, and considering the pertinent characteristics is employed as 

inputs. The technique of Ensemble-based RUSBoosted Decision Tree comprises routing 

every information set into the designated RUSBoost model. When RUSBoost technique is 

selected, a brand-new Ensemble-based Decision Tree model is generated. The trees 

determined by RUSBoost are aggregated, and the class membership of testing samples are 

concluded utilizing majority vote. The identical training sample is again introduced into this 

ensemble while it is limited to many chosen RUSBoost inside the center area of adjoining 

Decision Tree. 
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3.3.2. Ensemble-based Random Subspace Discriminant Analysis 

The subspace methods are crucial, especially in the linear discriminant analysis 

(LDA) framework, used to find a discriminant subspace with lower dimensions [37 – 39]. 

Several studies have investigated how different sub-spacing, weighting, and resampling 

methods affect the classification performance in ensemble technique [40 – 42]. The 

random subspace approach to apply random subspace features configurations is utilized 

in [43]. Each learner was built by randomly sampling features to decrease mistake rates 

[44]. One limitation of the random subspace technique is the random preference of 

qualities within subspace, that may result in insufficient discriminating ability in some 

cases. In this case, the overall group decision shows less than optimal performance. To 

address this constraint of the random subspace method, the majority voting (MV) 

methodology is utilized. Typically, single classifier method in an ensemble uses solely a 

small attainable features subset in the features space. Additionally, it is important to 

highlight that every classifier has the potential to categorize any newly acquired or 

unfamiliar example. The MV method utilizes distinct classifications for providing particular 

projections with relation to the class of a novel or unusual situation. The finalized 

classification of the instance is evaluated through a majority-vote relying on the prediction. 

The creation techniques of the ensemble-based random subspace technique entail 

utilizing an altered feature space to generate groups of learners. This sets them apart from 

the ensemble-based techniques of bagging and boosting [45]. Typically, creating 

individual classifiers entails using a certain set of attributes. The classification models' 

output is combined utilizing the MV strategy in the proposed method. Sorting unlabeled 

cases is done using the MV method. This method depends on an ensemble of classification 

model to identify classes that receive most votes for every occurrence. Equations 2 and 3 

depict the mathematical description of the MV. 

v i
( ) v

Class(a) arg max h(y (a),c )
ci dom y

 
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 
  (2) 

Where h(yv(a), ci) denotes an indication expression, and yv(a) classifies the 
classifier "v," using the preceding equation of h: 

v i

1    y=c
h(y (a),c )

0    y c


= 


 (3) 

3.4. Assessment of Performance 

Several indicators, including model accuracy, sensitivity, specificity, precision, F1-

score, recall, and AUC, MCC are utilized in order to evaluate the results for both models. 

The stats are listed as follows: 
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 100%
TN

Specificity
TN FP

= 
+

 (6) 

 100%
TP

Precision
TP FP

= 
+

 (7) 

By providing a comprehensible measurement of the classification model’s capacity to 

significantly categorize the whole samples, the precision metric ensures that positive 

examples are correctly identified as positives and negative instances are correctly identified as 

negatives. 

 
TP

Recall
TP FN

=
+

 (8) 

One way to evaluate the importance of recall is to consider the proportion of positive 

samples that are properly identified. 

 
2

1
Precision Recall

F score =
Precision Recall

 
−

+
 (9) 

The F1-score is an indicator which integrates precision and recall into one value, with 

a perfect score being one and the worst score being 0. 

The MCC being a statistic is frequently used in machine-learning to assess 

effectiveness of binary categorization activities [46]. The MCC is a quantitative measure 

which quantifies the strength and directions of the relationship between two variables. It 

runs from -1 to +1, indicating the degree of correlation within the elements [47]. 

 ( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

 − 
=

+ + + +  (10) 

 

Where "TP", "TN", "FP", and "FN" express the abbreviations for true positive, true 

negative, false positive, and false negative, correspondingly. 

A statistical measure called Cohen's kappa is used to assess how reliable or cooperative 

raters are while handling category items. When calculating the degree of agreement between 

two raters, Cohen's kappa statistic accounts for the agreement that would result from pure 

chance. The level of assessment as determined by Cohen's Kappa is shown in Table 1. 

Table 1 Evaluation Criterion of Cohen’s Kappa 

Cohen’s Kappa value Level of agreement 

≤0 No agreement 

0.01 – 0.20 None to slight 

0.21 – 0.40 Fair 

0.41 – 0.60 Moderate 

0.61 – 0.80 Substantial 

0.81 – 1.00 Almost perfect agreement 
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4. EXPERIMENTAL RESULT 

The initial method used was to combine testing from all individuals to examine the 

effectiveness of the classification models. This study utilized two distinct neural conditions of 

the car drivers: fatigue and normal. Mathematical numbers of 0 and 1 were assigned to 

indicate the normal states and fatigue states in the labelling procedure. The classifier's 

performance was determined using the k-folds cross-validation method. The parameter k 

is set to 5 in the k-fold cross-validation process in this experiment. The Ensemble-based 

RUSBoosted Decision Trees has 98.53% classification accuracy, whereas the Ensemble-

based Random Subspace Discriminant has 83.13% accuracy. 

 

Fig. 4 Comparisons between two classification models accuracy, sensitivity, specificity, 

and precision 

We evaluated the classifier's performance using various performance parameters in 

addition to analyzing its accuracy in classification. The study utilizes multiple 

performance evaluation metrics including accuracy, sensitivity, specificity, precision, 

recall, F1-score, MCC, and Cohen's Kappa. Both classifiers' performing comparisons are 

depicted in Figures 4 and 5, using different evaluation measures. 

 

Fig. 5 Comparisons between two classification models Recall, F1-Score, MCC, Cohen’s 

Kappa 
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Meantime, scatter plots and parallel coordinate plots were utilized in order to assess 

the two models respective levels of performance. Figures 6 and 7 are scatter plots that 

visually represent the identification of datapoints for both strategies. There are unique 

markers on the scatter plots that indicate scenarios of inaccurate detection of fatigue and 

normal states. Scatter plots exhibit the detection datapoints. A very high level of accuracy 

may be inferred from the detection rates of both systems. In contrast, the identification 

efficacy of Ensemble-based RUSBoosted Decision Trees demonstrates a considerable 

increase when compared with performance of the other model. 

 

Fig. 6 Scatter plots for Ensemble-based RUSBoosted Decision Trees (a) normal, (b) fatigue, 

(c) both 

 

Fig. 7 Scatter plots for Ensemble-based Random Subspace Discriminant (a) normal, 

(b) fatigue, (c) both 

It is possible to observe two-dimensional patterns for both models by using parallel 

coordination plots that are illustrated in Figure 8. This plot delivers as technique to graphically 

portray multi-dimensional data in a single plot. Having this visual representation makes it 

easier to appreciate the linkages that exist between the various factors, and it also makes it 

easier to identify valuable predictors that can effectively differentiate between the various 

classes. 

Training data and misclassified locations can both be shown in the parallel coordinates 

display. In the context of classification, dashed lines are used to depict points that were 

misclassified. There are more dashed lines in Figure 8(b) than in Figure 8(a). 
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Fig. 8 Parallel-Coordination plots (a) Ensemble-based RUSBoosted Decision Trees, 

(b) Ensemble-based Random Subspace Discriminant 

 

Fig. 9 Confusion matrix (a) Ensemble-based RUSBoosted Decision Trees, (b) Ensemble-

based Random Subspace Discriminant models 

When it came to forecasting fatigue states, Ensemble-based RUSBoosted Decision Trees 

model outperformed another model. Figure 9 represents the confusion matrix for both the 

applied models. There has been a small amount of trial misclassification in both instances. 

 

Fig. 10 ROC curve (a) Ensemble-based RUSBoosted Decision Trees, (b) Ensemble-

based Random Subspace Discriminant  
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The ROC curves, or Receiver Operating Characteristics is illustrated in Figure 10, for 

two different ensemble-based decision-making models. The ROC is one of the useful 

visual tools for showing the relationship between true-positive rate and false-positive rate 

at distinct classifying standards. This link is shown with sweeping variables that include 

various threshold ratios. A false-positive rate is the percentage of the negative occurrences 

which categorized wrongly as the positive, whereas true-positive rate is the percentage of 

positive occurrences which recognized accurately. When comparing the ROC curves of 

both models, the latter is more closely aligned with the top-left corner. An evaluation 

statistic that measures the classifier's effectiveness in differentiating between positive and 

negative examples is AUC. A classification model having an AUC of 1 achieves perfect 

discrimination, whereas another having an AUC of 0.5 shows performance at the chance 

level and makes random predictions. We get an AUC of 0.99 for the Ensemble-based 

RUSBoosted Decision Trees, and 0.90 for the Ensemble-based Random Subspace 

Discriminant. According to the results, when comparing the two methods, the Ensemble 

based RUSBoosted Decision Tree appears to be more capable of accurately distinguishing 

between positive and negative scenarios. Overall, the evaluations show that when it comes to 

detecting fatigue states from EEG signals, Ensemble-based RUSBoosted Decision Trees 

can work better than the Ensemble-based Random Subspace Discriminant. 

5. DISCUSSION 

The point of this study is to show how two new ensemble models can be used to find 

states of driver fatigue. In order to successfully achieve a classification accuracy of 

98.53%, the Ensemble-based RUSBoosted Decision Trees model is recommended to use 

related EEG studies. Additionally, this research proposes one model, in comparison to 

other studies conducted in this area. Using an electroencephalogram (EEG) signal, the 

proposed framework consists of the potentiality to offer a unique method for evaluating 

the degrees of normal or fatigue among the vehicle drivers. This might be accomplished 

through the utilization of the system. 

The effectiveness of the proposed model is examined in contrast to earlier research on 

the detection of fatigue, sleepiness, and tiredness. As shown in Table 2, a number of 

research pieces have been conducted in order to determine the levels of fatigue 

experienced by drivers through the utilization of EEG data. In conclusion, it is readily 

apparent that the framework that we have proposed demonstrates a greater level of 

Table 2 Comparison of relevant studies concentrated on identifying fatigue states  

References Class Features Classification Model Accuracy 
[48] 2 EN KNN  88.74% 
[49] 2 EN SVM  86% 
[50] 2 CN SVM  94.40% 
[51] 2 FD NN  88.20% 
[52] 3 FD SVM  81.60% 
[53] 2 EN SVM  97% 
[54] 2 FD and EN NN  98.30% 
[55] 2 FD SDBN  90.60% 

Our Proposed 
Method 

2 
FD  

(Fast Fourier Transformation) 
Ensemble-based  

RUSBoosted Decision Tree 
 98.53% 
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classification efficiency in comparison to currently existing conventional methods for 

identifying stages of fatigue among vehicle drivers. 

6. CONCLUSION 

As a result of the fact that driver’s fatigue is a crucial issue in crash prevention due to 

its significant contribution to a high number of accidents and fatalities each year. In addition to 

a wide variety of subjective and objective detection methods, it has been determined that the 

use of driver physiological measures, more especially electroencephalography (EEG), is a 

reliable method for determining the levels of alertness or weariness that drivers are 

experiencing. This study indicates that it is possible to discern between states of weariness and 

alertness by analyzing EEG signal whilst engaging throughout a virtual driving exercise. 

Following the execution of two ensemble-based classifiers, the feature collection procedure 

included the use of Fast Fourier Transform (FFT). An improved level of classification 

accuracy, precisely 98.53%, is shown by the final suggested method. The findings from 

experiments indicate that Ensemble-based RUSBoosted Decision Trees possess the ability 

to significantly enhance the identification of driver fatigue states using EEG signals. For 

our upcoming research, we plan to develop a real-time feedback system by utilizing 

ensemble based machine learning technique. 
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