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Abstract. This article explores machine learning techniques, specifically Artificial Neural 

Networks (ANN), Support Vector Machines (SVM), and Gaussian Process Regression (GPR), 

to predict the S11 parameter of a slotted square patch antenna optimized for Wireless Local 

Area Network (WLAN) operation between 5.6 GHz and 5.85 GHz. The antenna, measuring 

30x30x1.6 mm³ and centered at 5.725 GHz, features a coaxial probe feed design with a 

circular slot within the square patch to enhance bandwidth. These ML methods demonstrate 

superior efficiency compared to traditional simulation tools, enabling robust exploration of 

design configurations and accurate prediction of the antenna's electrical and physical 

characteristics. Notably, Gaussian Process Regression (GPR) consistently reveal lower Mean 

Squared Error (MSE) and higher R-squared (R²) values than ANN and SVM, suggesting 

superior accuracy in modeling the antenna's performance metrics. 
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1. INTRODUCTION 

Machine learning (ML) has achieved huge attention for its capability to automate tasks 

and provide deep insights across diverse scientific and engineering disciplines. While still 

developing, ML has notably impacted several industries, including antenna design and 

optimization. ML has brought forward innovative methods that enhance efficiency, 

adaptability, and performance in antenna systems. Traditionally, antenna design was heavily 
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reliant on complex mathematical models and precise parameter adjustments to achieve 

optimal performance. This traditional approach involved several steps, including defining 

the antenna shape and tuning parameters using simulation tools, which, although accurate, 

required considerable manual effort and iterations. On the other hand, ML techniques 

streamline the prediction and optimization of antenna parameters, making the process 

much faster and simpler compared to traditional simulation tools. These methods are 

remarkably favorable for handling complex antenna designs and high-dimensional parameter 

spaces. The effectiveness of ML methods [1-2] is affected by factors such as the complexity 

of the design, the optimization algorithm used, and the level of automation in the ML 

models. By integrating simulation tools with ML methods, a more comprehensive and 

efficient approach to antenna optimization can be achieved, improving the overall design 

evaluation process. This combined approach leverages the strengths of both methodologies, 

resulting in a more rapid and effective optimization workflow [3-4]. 

In [5], for analyzing the radiation pattern and estimating antenna’s resonant frequency 

of patch antenna, tunnel-built multi-slot and hole-coupled patch antenna was designed with 

implementation of Artificial Neural Network (ANN) followed by Genetic algorithm(GA). 

It predicted that results of GA-coupled a ANN matched with theoretical and experimental 

results. In [6], with the implementation of Support Vector Regression, a rectangular patch 

antenna was optimized and when compared to ANN showed high computational competence. 

In [7], array antenna was suggested and it was observed that by employing Support Vector 

Machines (SVMs) with a Gaussian Kernel was more proficient at designing antennas with 

exceptional precision. In [8], the accurate prediction of resonant frequencies for E-shaped 

compact microstrip antennas (ECMAs) was achieved using two robust techniques, namely 

the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). 

The antenna was designed to operate within the UHF band. In [9], a heuristic optimization 

algorithm called the Fruit Fly Optimization Algorithm (FOA) was proposed and applied in 

array factor synthesis and horn antenna design. While its utilization for optimizing antenna 

designs has been limited, it has shown promise in the synthesis of array factor analytical 

functions. In [10], a machine learning-based technique for optimizing antennas and estimating 

parameters efficiently was introduced. The Multi-Stage Collaborative Machine Learning 

model demonstrated exceptional results by combining minimal Normalized Root Mean 

Squared Error values with reduced computational time. In [11] Gaussian Process Regression 

(GPR) was employed to optimize various parameters for a multiband microstrip antenna. Slot 

loading was successfully incorporated to reduce the overall size of the antenna. In [12], a 

compact MSA with dimensions 33x33mm² using GPR covered a frequency range of 

0.48 GHz–7.84 GHz. The study explored dependencies related to the antenna's resonant 

frequency, including material properties, electrical characteristics, the presence of a slot, 

and patch dimensions. In [13], a miniaturized monopole antenna with a band-notched 

feature and coplanar feeding was designed and optimized using Machine Learning (ML) 

algorithms. The antenna exhibited stable radiation characteristics suitable for Ultra-

Wideband (UWB) applications, and among the ML algorithms used, K-Nearest Neighbor 

(KNN) stood out for its excellent prediction accuracy. In [14] a model for antenna 

classification using Fuzzy Inference Systems (FIS) was introduced with a classification 

model employing Decision Trees (DT) achieved an impressive accuracy rate of 99%. 

Furthermore, a geometric parameter estimation model using FIS delivered a Mean Absolute 

Percentage Error (MAPE) of under 5.8%. 
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This paper extensively explores machine learning techniques including SVM, ANN, and 
GPR to analyze the performance of a slotted square patch antenna by predicting the S11 
parameter. Operating within the 5.6 GHz to 5.85 GHz band, the antenna is particularly suitable 

for IEEE 802.11a (5.725 GHz ∼ 5.825 GHz) applications. For obtaining the dataset, the 
proposed antenna was designed by employing High Frequency Simulator Structure (HFSS 
vs.19) and later on the above dataset was used for training and testing the ML models. Section 
2 provides a theoretical background on SVM, ANN, and GPR. Section 3 presents both 
simulated and fabricated models of the suggested antenna, offering insights into simulated and 
measured results. In Section 4, the effectiveness of SVM, ANN, and GPR in predicting the S11 
plot is discussed, evaluated using R-squared scores (R2) and Mean Squared Error (MSE). 

2. BACKGROUND 

Machine learning techniques such as Artificial Neural Networks (ANN), Support Vector 

Machines (SVM), and Gaussian Process Regression (GPR) offer substantial benefits over 

traditional tools like High Frequency Simulator Structure (HFSS), computer simulation 

technology (CST) etc., especially in their predictive capabilities. These ML methods excel in 

quickly processing large datasets, detecting patterns, and providing accurate predictions of 

antenna performance metrics like S11. In contrast, traditional simulation tools typically require 

more time-consuming iterative processes to achieve similar results. 

2.1. Artificial Neural Networks (ANN) 

Artificial Neural Networks have demonstrated to be versatile tools with applications 

spanning across diverse domains. Their ability to learn from data, recognize complex 

patterns, and formulate predictions makes them a foundational technology in the domain 

of machine learning. An ANN comprises of interconnected neurons organized into layer, 

and by adjusting weights and biases in the connections between these neurons information 

is processed as depicted in Figure 1. In this structure, signals denoted as x1 to xn originate 

from signal sources or other neurons, where wi represents the weight for the ith connection, 

and θ serves as the threshold (commonly referred to as bias). The relation of input and 

output [15-17] is related as depicted by equation 1. 

𝑦 = 𝑓(∑(𝑤𝑖 ∗ 𝑥𝑖  ) - θ)    (1) 

Here, y is the neuron output, wi links to the weight connected to the ith linking in the neural 

network, xi is the ith point inside the input vector, f relates to activation function, and θ 

denote neuron threshold value.  

2.2. Support Vector Machines (SVM) 

Support Vector Machine (SVM) is a supervised machine learning algorithm designed 
for both classification and regression tasks. The key aim is to reach peak margin, indicating 
the distance joining the hyperplane and the nearby support vectors starting in each class. 
The relationships (linear and non-linear) in data are well managed by SVM [18-19], eased 
by the use of kernel functions. Recognized for robustness and excellent generalization to 
new, unseen data, SVMs have garnered widespread application across diverse domains 
such as image classification, text classification, and bioinformatics, solidifying their status 
as a versatile cornerstone in the realm of machine learning.  
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Consider an SVM model, with the input vector xi and the corresponding desired value 

yi from the training data set {(𝑥𝑖  , 𝑦𝑖  )}𝑖=1
𝑃 where P is the entire number of data patterns.  

Support Vector Regression (SVR), a variant of SVM for regression, defines the 

approximation function f (x) as in equation 2. 

f (x) = ⟨w, d(x) ⟩ + b    (2) 

f(x) is a non-linear mapping vector that transforms the input variable 𝑥i into a high-

dimensional space. The terms w and 𝑏 represent the weight vector and bias, respectively, 

with ⟨⋅,⋅⟩ denoting the inner product. 

To build a non-linear machine, a non-linear mapping vector is created to transform the 

data into a feature space. Then, a linear model is constructed in this high-dimensional space 

to perform regression. The weight vectors and biases are determined by minimizing the 

regression risk function [8] as illustrated in equation 3. 

Rreg =C∑ 𝐿𝑖
𝑃
𝑖=1 (𝑥𝑖𝑦𝑖 , 𝑓(𝑥𝑖)) +

1

2
 ‖𝑤‖2   (3) 

Where C represents the regularization parameter, determining the tradeoff between the 

empirical loss function and model complexity. Li(xi, yi, 𝑓(𝑥𝑖)) represents the epsilion 

sensitive loss function, and
1

  2
 ‖𝑤‖2characterizes the modeling complexity. 

2.3. Gaussian Process Regression (GPR) 

Gaussian Process Regression (GPR) serves as a probabilistic approach in machine 

learning tailored for regression tasks. Diverging from conventional regression models that 

yield a single predicted value, GPR distinguishes itself by furnishing a distribution of 

potential outcomes, thereby supplying valuable uncertainty estimates [20-21]. It is an effective 

method for performing dynamic inference, offering precise function approximation in high-

dimensional spaces based on given datasets, GPR leverages a non-parametric Bayesian 

approach to address regression problems, using Bayesian inference to portray complex 

relationships between inputs and outputs. The general formulation for GPR, rooted in 

Bayesian analysis, is expressed as depicted by equation 4. 

y=f(x)+ϵ     (4) 

Here, f represents the function value, 𝑦 is the observed target value, and ϵ denotes additive 

noise, which is normally distributed with a mean of zero and a variance of σ𝑛
2  

In matrix form, this can be written as shown below: 

Y = xTw + ϵ    (5) 

where xT is the input vector and w represents the vector of weights (parameters) of the 

linear model. The weight vector w follows a Gaussian prior with covariance matrix Σ p is 

given by equation 6. 

w∼N(0,Σ p )xT    (6) 

The Bayesian linear model makes inferences based on the posterior distribution over 

the weights, determined by Bayes' theorem which are predicted by equation 7 and 8. 

      Posterior = 
likelihood x prior

marginal likelihood
    (7) 

P(w׀y, X) = 
𝑝(𝑦׀𝑥,𝑤)𝑝(𝑤)

𝑝(𝑦׀𝑋)
    (8) 
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3. PROPOSED ANTENNA  

3.1. Antenna structure 

For this study a slotted square patch antenna is simulated using High Frequency Simulator 

Structure (HFSS vs.19) software with dimensions Lp and Wp is constructed on an FR4 substrate of 

height h and is excited using a coaxial probe having impedance of 50Ω. Figures 1(a)–1(c) show the 

top-view, bottom-view, and side-view of the proposed antenna, respectively. To enhance the 

performance parameters of the square patch antenna, a circular slot with a radius rc is incorporated 

into the radiating patch. The position of circular slot and coaxial probe is optimized to improve the 

functioning of the patch antenna by broadening its bandwidth and for achieving better impedance 

matching. Table 1 provides the various dimensions of the patch antenna, and Figure 2 displays the 

fabricated prototype model. 

Table 1 Parameters of the proposed antenna model 

Ls

Ws

Lp

Wp
rc

x

y

Substrate
Patch

Circular 
Slot with 
center at 
(xc,yc,zc)

x

yGround Plane

Lg

Wg

Coaxial 
Cable at 
(xf, yf)

 
(a)                                                                      (b)  

 
(c) 

Fig. 1 Proposed Antenna geometry. (a) Top-view (b) bottom-view (c) side-view 

Parameters Values (mm) 

Length of ground plane (Lg) 30 

Width of Ground plane (Wg) 30 

Length of substrate (Ls) 30 

Width of substrate (Ws) 30 

Patch length (Lp) 11.1 

Patch width (Wp) 11.1 

Circular Slot radius (rc) 2 

Position of coaxial probe in x-axis (xf) 0 

Position of coaxial probe in y-axis (yf) 

Position of circular slot on xy plane (xc, yc, zc) 

-2 

(2,2,1.6) 
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Figure 2 illustrate the fabricated prototype of the antenna, with the results of the antenna 

being measured with the help of vector network analyzer. 

   
(a)                                                                 (b) 

Fig. 2 Fabricated model of proposed Antenna (a) Top view (b) bottom view 

3.2. Analysis of simulated and measured results 

Figure 3 presents a detailed comparison of the simulated and measured S11 of the 

antenna across frequencies, showing that the proposed antenna achieves an impedance 

bandwidth from 5.6 GHz to 5.85 GHz. Figure 4 analyzes the gain versus frequency, 

indicating a peak gain of 4.2dBi. The strong agreement between measured and simulated 

results, with minor differences due to fabrication and connection losses, is noteworthy. 

Figure 5 illustrates the simulated radiation patterns of the proposed antenna in both the E-

plane and H-plane at 5.79 GHz. 
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Fig. 3 S11 versus frequency (simulated, measured) of Proposed Antenna 
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Fig. 4 Gain versus frequency (simulated and measured) of Proposed Antenna 
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Fig. 5 Radiation pattern (simulated and measured) at 5.79 GHz of the proposed antenna 
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4. IMPLEMENTAION AND DISCUSSION USING ML TECHNIQUES 

This section throws insights about machine learning algorithms being employed to 

predict S11 of slotted patch antenna. Initially, the dataset is loaded and then divided into a 

training set (80%) and a test set (20%), following standard practices. The training set is 

employed to train three ML models (ANN, SVM,GPR) with various parameters. Once the 

model is trained, predictions are made using the test set. Finally, the Mean Squared Error 

(MSE) and the R-squared (R²) score are calculated to assess the model's accuracy by 

comparing the predicted results with the actual data. 

4.1. Data set  

The dataset used for prediction was obtained by designing the proposed antenna using 

HFSS simulator in which the variation of S11 with frequency in the range of 4 GHz to 

10 GHz was observed. The performance parameters of the envisioned antenna are subject 

to analysis across various slot size (rc), patch length (Lp), feed position in y direction (yf) 

and ground plane length(Lg) and its width (Wg) and their effect on S11 is observed. In 

total 14700 records was collected which comprised of 2100 rows and 7 columns. The 

dataset include the independent features (f, Lp, Lg, Wg, rc, yf) and the corresponding S11 

values Each one of the 2,100 rows represents a distinct combination of the independent 

parameters along with the corresponding S11 values across the range of frequencies. The 

dataset comprised of six independent variables (f, Lp, Lg, Wg, rc, yf) forming the first six 

columns, with S11 as the dependent variable in the last column. The independent variables 

were sampled across the relevant range during simulations as depicted in Table 2 to capture 

the S11 behavior as the independent features (f, Lp, Lg, Wg, rc, yf) and the corresponding 

S11 values.are generated utilizing the High frequency structural simulator (HFSS vs.19).  

Table 2 Sampling strategies 

Parameters Range  Step size  Total data 

samples 

Length of patch (Lp) 11.0 mm≤ Lp≤11.2 mm 0.1 mm 2100 with 

80% on 

training and 

20% on testing 

Length of ground plane (Lg) 27.0 mm≤Lg≤32.0 mm 1.0 mm 

Width of ground plane (Wg) 27.0 mm≤Lg≤32.0 mm 1.0 mm 

Radius of circular slot (rc) 1.0 mm≤rs≤4.0 mm 1.0 mm 

Feed distance in y-axis direction (yf) -1≤rf≤-4 1.0 mm 

Frequency (f) 4 GHz≤f≤10 GHz 0.06 GHz 

4.2. Preprocessing and sampling of data 

The dataset generated from the High-Frequency Structure Simulator (HFSS) required 

initial preprocessing to ensure it was structured correctly for machine learning applications. 

This involved organizing the dataset so that each data sample occupied a row, with each 

feature represented in its own column. The dataset included six independent features—

frequency (f), Length of Patch(Lp), Length of Ground Plane (L)g, Width of Ground Plane 

(Wg), Radius of Circular Slot (𝑟𝑐)and Feed Distance in the y-axis y with the S11 parameter 

as the dependent variable in the seventh column. Following preprocessing, the data was 

split into training and testing sets. Specifically, 80% of the data was allocated for training 
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the model, while the remaining 20% was set aside for testing. This split is crucial for 

evaluating the model's performance, as testing helps determine how well the model can 

generalize to new, unseen data [22-23]. The testing phase also plays a significant role in 

identifying issues such as overfitting or underfitting, which may necessitate exploring 

alternative models to achieve better results. 

Figure 6 illustrates the steps taken during the preprocessing and sampling stages of the 

dataset. 

Training Dataset

Input Dataset

Test Dataset

Machine Learning 
Model

Evaluate

Best ModelNew Data Prediction

Training Dataset

20%80%

Apply trained 
model and predict

Apply machine 
learning model

Evaluate accuracy 
using test data

If accuracy is not 
good, apply 

another model

 

Fig. 6 Basic flowchart of implementation 

4.3. Training of SVM, ANN, and GPR algorithm 

Three machine learning algorithms -SVM, ANN, and GPR are trained on the dataset to 

find the relationship between antenna parameters and performance metrics. After being 

trained, these models can be deployed for predicting the performance of various antenna 

configurations. The architecture of above three techniques along with their S11 prediction 

are illustrated in this section. 

(a) ANN architecture  

Input 
Layer

Output 
Layer

Hidden 
Layer

Target

S11

Lp

Lg

Wg

rc

yf

f

 

Fig. 7 ANN architecture 
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Figure 7 highlights an Artificial Neural Network (ANN) model designed to predict S11 

values from a set of input features. This model features an input layer with 6 attributes: 

frequency, lp, ls, lw, yf, and r1. It includes one hidden layer, consisting of 128 neurons 

activated by the rectified linear Unit (ReLU) function. The output layer is a solitary neuron 

tailored for regression tasks, specifically predicting S11 values. The model’s performance 

was evaluated employing Mean Squared Error (MSE) and the R-squared score (R²). While 

no specific targets for MSE or R² were set, the objective was to achieve a low MSE and a 

high R², reflecting improved performance. Training utilized the Adam optimizer with a 

learning rate of 0.001, and the MSE was adopted as the loss function. The model underwent 

training for 500 epochs, using default batch size settings provided by Keras. The training 

process began with data loading and initial examination. Data was imported from a CSV file, 

with any extraneous whitespace removed from column names. The dataset was split into 

input features (X) and target values (y), and then divided into training (80%) and testing 

(20%) subsets. The Standard Scaler was applied to normalize both features and target values. 

The ANN was developed using the Keras Sequential API, configured with the Adam 

optimizer and MSE loss function, and trained on the normalized training data. Post-training, 

the model's effectiveness was assessed on the test set using MSE and R² metrics. Furthermore, 

the predicted S11 values were plotted against the frequency, as depicted in Figure 8. 

 

Fig. 8 S11 versus frequency (actual and predicted) using ANN model 

(b) SVM architecture  

Support Vector Machine (SVM) is basically deployed for classification issues, whereas 

the Support Vector Regression (SVR) is a type of SVM and it adapts the SVM concept to 

predict continuous values rather than discrete class labels. The SVM model's architecture 

as shown in figure 9 featured a SVR including a Radial Basis Function (RBF) kernel. The 

desired modeling accuracy was evaluated using Mean Squared Error (MSE) and R-squared 

score (R²) with aim on minimizing MSE while maximizing R². GridSearch CV was 

employed for hyperparameter tuning, searching across a specified range for parameters C, 

gamma, and epsilon. An 11-fold cross-validation ensured robust model evaluation and 

avoided overfitting. Data preprocessing involved loading data from a CSV file, extracting 
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features, and the S11 values as the target variable. The data was normalized using 

StandardScaler. The model's finest configuration was chosen based on the lowest MSE 

obtained during cross-validation. Post-training, the model's functioning was evaluated 

using MSE and R² metrics. These metrics were saved to a CSV file, and a plot comparing 

actual and predicted S11 values against frequency was generated as depicted in figure 10. 

The entire process leveraged Python libraries such as pandas, numpy, matplotlib, and scikit-

learn, with careful attention to reproducibility by setting a random seed. This comprehensive 

approach ensured a well-tuned and accurately evaluated SVR model. 

x1[Lp]

S11

x2[Lg]

x3 [Wg]

x4 [rc]

x5 [yf]

x6 [f]

K1(x1,x)

K2(x2,x)

K3(x3,x)

K4(x4,x)

K5(x5,x)

K6(x6,x)

 
y1α1

y2α2

y3α3
y4α4

y5α5

y6α6

Bias

 

 

Fig. 9 SVM architecture 

 

Fig.10 S11 versus frequency (actual and predicted) using SVM model 

(c) GPR architecture  

Gaussian Process Regression (GPR) model as illustrated in figure 11is employed to 

predict S11, which is a measure of reflection coefficient in antenna design, based on model 

input features such as frequency, lp, ls, lw, yf, and r1. After training, the model predicts 
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S11 values for given frequencies, allowing for accurate characterization and optimization 

of antenna performance. 

 

Fig. 11 GPR model 

The desired modeling accuracy was evaluated using MSE and R², with the goal of 

achieving a low MSE and a high R², indicating better performance. The GPR model utilized 

a combination of a Rational Quadratic kernel and a White kernel, with hyperparameters 

such as length scale set to 1.0, alpha to 0.5, and noise level to 0.1. The data preprocessing 

involved standardizing both the features and the target variable using Standard Scaler to 

ensure they have a mean of 0 and a standard deviation of 1, which helps in improving the 

model performance. From the dataset features were extracted along with the target variable. 

The training process included sorting the data by frequency, scaling the features and target 

variable, and fitting the GPR model on the scaled data. After training, MSE and R² of the 

the model was evaluated, and the predictions were inverse-transformed to obtain the actual 

predicted values. The results were visualized by plotting the authentic and predicted S11 

values against frequency as illustrated in figure 12.  

  

Fig. 12 S11 versus frequency (actual and predicted) using GPR model 

(d) Predicted results from ML models 

Table 3 displays the R-square score and the MSE value which are exploited to assess 

the performance of the machine learning model. R-square score gives the response of how 

good our model is in terms of accuracy. It is the amount of variation in the output dependent 
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attribute that can be predicted based on the input independent variable as depicted in 

equation 9.   

 R2 = 1 − 
∑(𝑦𝑖−�̂�)2

∑(𝑦𝑖−�̃�)2 (9) 

�̂� is the predicted output 

�̃� is the mean value of output 

Mean squared error is measured as the average squared variation among predictions 

and actual observations as shown in equation 10. 

 MSE= 
1

𝑁
∑ 𝑒𝑜

2𝑁
𝑖=1   (10) 

Where eo is output error given by difference in desired output and expected output 

Table 3 Different models R-square score and mean squared error 

S. No Model R-square score MSE 

1. ANN 0.92 0.05 

2. SVM 0.78 0.005 

3. GPR 0.99 0.00003 

Table 3 indicates that GPR has better performance metrics as its MSE is very low 

(0.00003) and the R square score being very high (0.99) in comparison to the other two 

model. This showcases that the prediction of GPR is the best. .Figure 13 shows the plot of 

S11 variation with frequency as predicted by the GPR model, alongside the simulated and 

measured results. It is observed that the prediction of S11 plot by GPR matches to the 

simulated results. 

The machine learning models used in this study greatly decrease computation time 

compared to HFSS simulations, as detailed in Table 4. The table presents the time required 

to predict the S11 parameter over the frequency range of 4 GHz to 10 GHz for the 

optimized antenna parameters. 
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Fig. 13 S11 versus frequency (simulated, machine learning, measured) of Proposed Antenna 
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The ML models outperform HFSS in terms of speed, with GPR being the quickest, 

followed by ANN and SVM. The computation times reported in the manuscript were 

achieved on a system with the following hardware specifications: Intel(R) Core(TM) i5-

8350U CPU, 4 cores, 7.8 GB RAM, running Windows version 11. 

Table 4 Comparison of Computational Time between HFSS and ML Models (ANN, SVM, 

GPR) 

S. No Parameter HFSS ANN SVM GPR 

1. Time 15mins 10 ms 100 ms 5ms 

5. CONCLUSION 

This paper introduces square patch antenna with a circular slot being designed using 

HFSS. The optimized antenna design is not only theorized but also fabricated and rigorously 

tested, confirming its operational frequency range spanning from 5.6 to 5.85 GHz making it 

suitable for applicable for 5.8 GHz WLAN band. The study also employs Artificial Neural 

Network, Support vector machine, and Gaussian Process Regression to predict parameters, 

specifically focusing on the prediction of the S11 parameter. Notably, Gaussian process 

regression emerges as the algorithm providing the most accurate predictions.  
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