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Abstract. This article uses an innovative approach to illustrate optimal distribution 

systems planning, incorporating DG systems. It intends to decrease energy losses while 

enhancing voltage profiles and the net profit, crucially influenced by reactive and 

active power injections. The recommended approach combines the Marine Predator 

Algorithm (MPrA) and Jellyfish Search Algorithm (JSA) into a hybrid meta-heuristic 

optimization technique named MPrJSA. The hybrid MPrA and JSA draws inspiration 

from the efficient hunting behavior of marine predators like sharks and the collective 

movement patterns of jellyfish. By combining these strategies, it aims to enhance 

optimization algorithms exploration, exploitation, adaptability, and robustness in 

solving complex problems. Motivated by the societal conduct of marine predators and 

jellyfish, this hybrid algorithm is employed to assess the consequences of installing DG 

in radial distribution systems, considering techno-economic benefits. Multiple DGs are 

evaluated to achieve optimization goals. The MPrJSA effectiveness is illustrated using 

the IEEE 33-bus system, showing significant reductions in energy and power losses and 

upgraded voltage profiles with total net profit. Comparative analysis with other nature-

inspired approaches highlights the excellence of the proposed method. 

Key words: Distributed Generation, Hybrid Optimization, Marine Predator Algorithm, 

Jellyfish Search, Radial Distribution System 

1. INTRODUCTION 

Today, there is widespread agreement that using distributed generators (DGs) made of 

renewable energy sources is essential for meeting the world growing electricity demand, 

the difficulty and cost of using conventional power sources, the eventual depletion of 
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those resources, environmental concerns and lowering its overall carbon footprint [1]. As 

demand rises, it is one of the most effective and practical planning techniques for boosting the 

network performance. 

1.1. Background 

The distribution and transmission system are two primary parts of the electricity 

system [2]. At the distribution level, the word DG refers to small, dispersed generation units 

that are installed close to load center to meet the local energy demand. The introduction of DG 

into distribution system (DS) involves multiple benefits like improved power quality, cost 

savings, decrement in losses, improvement in the bus voltages and lower environmental 

contamination in terms of greenhouse emissions and therefore promotes sustainability. 

Additionally, it aims to boost the security, stability, and dependability of the system. These 

days, decentralized microgrids, which include many kinds of DGs, are a hot issue because of 

their simplicity and efficacy [3]. Due to these socio-economic benefits, the proportion of DG 

resources in the DS has significantly expanded. DG might have negative consequences on the 

system's stability, overheating and excessive power losses if not allocated optimally. 

1.2. Literature Review 

The DGs are placed in the optimum configuration to minimize energy losses and 

maximize benefits. There have been some previous investigations that have allocated 

DGs. Surveys like those in [4] and [5] have brought attention to how important this issue 

is. Many researchers have been involved, employing a range of techniques that can be 

grouped into classical, analytical, metaheuristic, heuristic, and hybrid approaches. The 

most recent publications in each of these categories are discussed in this section to 

analyze the research undertaken and identify novel areas of further research. The Kalman 

Filter Algorithm [6] and the use of dynamic programming and bifurcation analysis in [7] 

are examples of traditional methods for tackling the DG Allocation Problem.  

An analytical technique, which is claimed to be faster and easier than conventional 

approaches, is provided in [8] and [9] by developing an analytical expression. A dual 

index technique, an improved interval arithmetic method, and an analytical expression are 

all suggested in [10-12]. Sensitivity approaches for resolving the DG allocation problem 

are included in other studies that make use of the analytical methodology [13] and [14]. 

The analytical method with optimal power flow methodology are used by authors [15] 

and [16]. The analytical approach is straightforward to use but it can only be used to 

consider one DG and one objective at a time.  

In [17], a non-linear Programming was used to arrange DG sources in the optimum 

locations. To minimize energy loss, the authors use a wind-based DG allocation strategy 

using a probabilistic approach [18]. The method suggested in [19] is modified to try to 

determine the loss sensitivity factors deficiency and to determine where the DGs will 

ultimately be placed. In order to improve microgrid flexibility and lower operating costs, 

[20], a unified two-stage stochastic optimisation framework, highlights the usage of 

flexibility resources like generators with quick starts and quick responses to needs. 

The study in [21-23] offers a solid mixed integer linear programming (MILP) model for 

various objectives in microgrid operation like uncertainty, reliability etc. that successfully 

integrates for various DG operations and models. 
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The next category of studies are those that used the meta-heuristics algorithms such as 

swarm intelligence, evolutionary, and physics-based algorithms [24]. Numerous evolutionary 

algorithms have been used to address DG integration challenges, including the ant lion 

optimization technique [25], improved moth algorithm [26] and genetic algorithm [27]. Ref 

[28] design a new voltage stability index for optimal DG allocation using particle swarm 

optimization (PSO). An optimisation strategy utilising a quadratic transfer function in a 

particular variation of PSO is suggested [29]. PSO is used because it can effectively tackle 

intricate, multi-dimensional optimisation issues. In [30] authors make use of bacterial 

foraging algorithm to identify the ideal sizes and placements for DGs to simultaneously 

improve voltage stability and minimize operating expenses. The ideal size and place for 

PV-DG is found using a weighted-sum approach and PSO algorithm, respectively in [31]. 

The other methods for optimal DG allocation include the curve-fitted technique [32], 

modified honeybee mating [33]. The grey wolf optimization (GWO) explained in [34] is 

used to compute power system parameters and for the analysis of the impact of the various 

factors. In reference [35], the authors elucidate on the GWO approach for determining 

optimal locations for DG installations. Modified metaheuristic approaches like modified 

whale optimization algorithm (MWOA) [36] show promise for real-world optimization 

problems, competing well with contemporary methods. The sensitivity-based approach [37] 

has shown to be effective in locating DGs optimally close to any load centers. 
Combining the operators of different metaheuristic algorithms is one type of hybridization 

and having superior performance in various terms like solution quality, convergence speed 

etc. [38,39]. In [40], authors provide a fuzzy-based multi-objective hybrid GA to identify the 

best location and DG sizes in the RDS for various load scenarios. Clone selection algorithm 

was used with Fuzzy set theory in two stages by the authors of [41] to determine the ideal 

placement for the DG and the size of the DG. For the effective DG planning of radial 

distribution systems, an enhanced wild horse optimization technique is available [42]. A new 

hybrid genetic PSO is put forth to discover the best distribution of DG with multi-objective 

system in [43]. A hybrid Teaching-Learning based GFO [44] is suggested for single and 

multi-objective functions. The study [45,46] implements mixed binary continuous PSO and 

IoT enabled hierarchical framework to manage fully competitive electricity market problems 

while integrating renewable energy sources effectively. In [47], compare DG allocation 

methods based on sensitivity approach. In [48] authors redevelop the MPrA and JFA 

individually and algorithms were then hybridized to get rid of their individual flaws. 

1.3. Research Contribution 

This article considers multiple DGs for the best siting and rated power values under a 

variety of operational conditions. Three case studies have been presented without and with 

DG. It has been found after a thorough analysis of the literature that the Marine Predator 

Algorithm (MPrA) and Jellyfish Search Algorithm (JSA) algorithms have not been applied 

yet in case of DG allocation. The MPrA and the JSA are lightened to shorten execution time 

while maintaining their advantages. The major highlights of this study are: 

a) A goal-oriented framework has been created by concurrently considering the three 

goals of reduce energy loss, enhance the voltage profile and save annual energy loss 

(AELS). 

b) Techno-economic benefits has been analysed on the best combination of DGs in RDS. 
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c) A novel optimization technique (hybridized MPr-JSA), has been developed to pick the 

optimal solution with regard to all objectives. 

d) On an IEEE-33 distribution feeder, the suggested methodology superiority over 

alternative approaches has been evaluated. 

2. MODELLING 

2.1. Line Modelling 

A one-line diagram of Fig. 1 is shown in Fig. 2. The complex power injection at the 

uth bus is given as, 

  (1) 

Where,  and is real and reactive power load at the uth bus, respectively. 

The current injected at the uth bus (Iu) is given by 

  (2) 

Where,  is the voltage at uth bus. 

The real power loss in a branch connecting node u and v is given by (3) 

  (3) 

2.2. Load modelling 

The load model chosen is constant complex power load.  

  (4) 

  (5) 

 

Fig. 1 Sample distribution network 

 

Fig. 2 Single-line diagram 
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2.3. DG modelling 

A DG of small rating is operated as constant negative PQ load. The load at a DG 

installed node is given by (6) and (7). 

  (6) 

  (7) 

  (8) 

Where  and  is real and reactive power load connected at uth node, respectively. 

is generated real and  is the reactive power of DG at uth node.  is the 

maximum power factor. 

3. PROBLEM FORMULATION 

3.1. Objective Function 

The presented work is mainly aimed to maximize the benefits of optimal planning of 

the integration of the DG in RDS. Hence, minimizing the total power loss (F1), voltage 

deviation (F2) and annual cost of energy loss (ACEL) and DG cost are formulated 

independently. 

3.1.1. Real power loss Minimization 

The objective function is defined as  

 F1 = minimize ( )=  (9) 

3.1.2 .Voltage deviation minimization 

For voltage profile improvement, the voltage deviation has to be minimised which is 

defined as 

  (10) 

3.1.3 Annual cost of energy loss and DG cost minimization 

The total net profit (TNP) is the difference between ACEL without DG and ACEL with 

DG. This can be maximised by minimizing the ACEL [28] due to introduction of DG 

  $  (11) 

where the energy rate  is 0.06$/kWh and annual time duration  is 8760 h (24 h 

throughout 365 days). 

DG's real power cost characteristics [47] is expressed as 

 /h  (12) 

Where cost coefficients are [27]:  
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3.2. Constraints 

The objective functions are subject to constraints. The power balance equations are 

given as: 

   (13) 

  (14) 

where  and are generated active and reactive powers at the uth bus, respectively. 

Similarly, the inequality constraints are required to be restricted within upper and lower 

bounds and are given as in [28]:  

 Bus voltage limit,  (15) 

 Thermal Constraint,   line current at node u  (16) 

 Reactive limit,   (17) 

 Real limit,    (18) 

 DG real power generation,  (19) 

 DG reactive power generation,  (20) 

4. MARINE PREDATORS-JELLYFISH SEARCH OPTIMIZATION ALGORITHM 

4.1. Marine Predators Algorithm 

A contemporary algorithm such as MPrA was inspired by the interactions between the 

ocean predators and their prey as well as the Levy and Brownian movement techniques [49]. 

4.1.1. Initialization 

MPrA derives its initial solutions at random using (21). 

  (21) 

Where  and rand (0,1) are the kth dimension of the jth prey’s position and a random 

number between (0,1), respectively. ubk and lbk are the upper and lower bounds on the kth 

dimension, respectively 

4.1.2. Optimization 

The algorithm is divided into three phases which simulate predator tactics use to 

capture a prey. Each of the three primary stages of the MPrA takes into account a 

different velocity ratio. A specified number of iterations are assigned for each phase. 

Phase 1 (Exploration stage): Prey is quicker (higher velocity) than the predator 

Phase 1 is selected while It < 1/3 Maxiter. The solutions are updated using (22). 

   (22) 
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 )  (23) 

 )  (24) 

Where  and R, a matrix of numbers generated by the Brownian movement and matrix of 

random numbers within (0,1), respectively and are of size 1 × dim. Coefficient P is 0.5,. Elite 

is the best solution found till date. 

Phase 2 (Exploration and Exploitation stage): In terms of unit velocity ratios, the prey 

and the predator travel almost simultaneously. 
The solutions are equally divided for exploitation and exploration. The Predator 

oversees exploring, and the prey is being exploited. The prey's displacement and the 

predator movement is dictated by the Levy function and the Brownian motion, 

respectively. The following equations are updated for the one-half of the population. 

 ) (25) 

 is a matrix of the same size that of R that contains random walk data generated by the 

Levy function which is given as 

   (26) 

where the  is the flight length and a is in the range (1, 2) that controls the scale, taken as 1.5. 

The following integral shows the probability distribution associated with Levy function: 

  (27) 

which reduces further for colossal value of : 

   (28) 

Where Γ is a Gamma function.  

The latter segment of the population involved in exploration is governed by equations 

(29-31).  

   (29) 

 )  (30) 

   (31) 

where CF controls the step size. 

Phase 3 (Exploitation stage): Relative to the prey, the predator has a higher velocity. 
Predators are kept up to date during this phase. Eq. (32-33) formulated this behavior 

mathematically. 

   (32) 

 )  (33) 
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Fig. 3 Pseudocode for MPrA 

4.1.3 Eddy formation 

This phase emulates Fish Aggregating Devices (FAD), leading to a behavioural shift 

in predators, mathematically formulated as follows: 

   (34) 

  (35) 

Where U is a binary vector, the FADs is 0.2, Xr1 and Xr2 are two random solutions 

selected among the population. 
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4.1.4 Predator memory 

Marine predators have an excellent memory for places where they have been successful in 

finding food and returns to those locations after successful foraging [49]. By preserving 

memories in MPrA, this capacity is emulated. The solutions in each iteration is compared with 

its previous solution to determine the better solution. The pseudo-code is shown below. 

4.2. Artificial Jellyfish Search Algorithm 

4.2.1. Inspiration 

The artificial JFSA [50] mimics the jellyfish movement in either swarm or on their 

route to the ocean current in search of food. 

4.2.2. Initialization 

Jellyfish population is initialized randomly. This might lead to slow convergence and 

a risk of getting stuck in local optima due to poor population diversity. Logistic chaotic 

map given in Eq. (36) offers a reduced probability of early convergence and more varied 

initial populations than random initialization. 

  (36) 

where, i is the logistic chaotic value;  is varied to generate initial jellyfish 

population, ∉ {0, .25, .5, .75, 1}, and 4 is the value for the parameter η. 

4.2.3. Ocean current 

The average of the vectors from every jellyfish to the one in the best location at any 

given time is used to determine the direction of the ocean current. and is provided with (37). 

  (37) 

where,  represents number of jellyfishes in swarm and  represents the best jellyfish 

while attraction govern factor is represented by . 

  (38) 

Where  shows the mean position of all the jellyfishes in an ocean  

  (39) 

Where is distribution coefficient whose value is taken as 3. 

The new jellyfish position is defined as: 

  (40) 

Substituting (38) and (39) in (40) gives 

 - (  (41) 
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4.2.4. Jellyfish swarm 

The majority of jellyfishes exhibit passive motion (type A) at first around their initial 

sites, as the jellyfish swarm is still forming. They start to move more actively (type B) as 

time progresses.   

  (42) 

Where  represents the motion coefficient and its value is taken as . 

The direction of the motion of the jellyfish in search of its food and its updated location 

in the search space are simulated by (43) and (44), respectively. 

  (43) 

Where,  represents the objective function and jellyfish location. 

  (44) 

where 

  (45) 

4.2.5. The control mechanism 

The time control function ( ) [0,1] helps in determining the type of jellyfish 

motion and its switch from one swarm to another over time. The jellyfish float with the 

ocean current if its value surpasses  and remain as part of the swarm when it is < . 

  (46) 

where, Maxiter represents maximum number of iterations. 

4.2.6. Boundary conditions 

A jellyfish that ventures outside the search area's bounds will eventually return back. 

This reintegration process is depicted by 

  (47) 

Where the ith jellyfish location in dth dimension is represented by  and its lower and 

upper bounds in food search space is given by  and,  respectively .  is the 

updated position of the ith jellyfish.  

The extended learning vector in Learning automata (LA) is given by the following 

equation: 

   (48) 

   (49) 
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The optimal motions are more likely to be chosen since they have more likely values. 

Non-optimal solution movements, on the other hand, have lower probability values and, 

thus, a lesser likelihood of being chosen. 

   (50) 

where find is a searching function and pi represents the probability of ith motion. The 

pseudocode for the proposed JSA is illustrated in Fig. 4. 

 

Fig. 4 Pseudocode for JSA 

4.3. LA-based Hybridization 

The limitations of the individual metaheuristic algorithms such as insufficient movements 

of jellyfish, scattering of jellyfishes in the search space and MPrA complexity, slow or 

premature convergence locking in local optima and sluggish search is overcome by the 

proposed hybridization of the LA-based MAJSA which will improve the reliability of the 

algorithms. Fig. 5 shows the MAJSA flowchart. 
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Fig. 5 Flow chart for hybrid MPrJSA 
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5. SIMULATION RESULTS AND ANALYSIS 

The IEEE 33 bus RDS [51] has (3.72+j2.3) MVA of power load demand. The base 

values are 12.66 kVA and 100 MVA. It is used to illustrate and evaluate the feasibility of 

the suggested technique in installation of DG units in using hybrid MPJSA. The DG size 

cannot exceed 2 MW. The three case studies considered are 

1. Base case scenario (no DG) 

2. Second scenario (2 DG units’ installation) 

3. Third scenario (3 DG units’ installation) 

The load flow calculations provide the bus voltages and power losses. The ACEL and 

energy loss reductions are calculated. The performance of hybrid MPJSA is compared to 

PSO, Differential Evolution (DE), JSA and MPrA algorithms available in the literature 

and is presented in Table 1. 

In all the scenarios, the performance from the hybrid MPJSA outweighs others in 

terms of losses and (min) voltage. Applying the suggested methodology yields the best 

DG integration for both the cases under consideration.  

Table 1 Performance evaluation of different algorithms for 33-bus RDS at unit power factor 

5.1. DG impact on Power Losses 

Table 1 makes it evident that the real power loss (RPL) and reactive power loss 

(REPL) without DG placement was found to be 210.0740 kW and 142.4372 kVAr. After 

the 2-DG and 3-DG unit installation the losses got reduced to 79.0077 kW and 48.195 

kVAr with a real power loss mitigation (RPLR) of 62.38% and 77.057%, respectively. 

This will result in the release of the 131.0627 kW in real power demand. 

No. of 

DG 

Algorithm DG 

location 

Vmin pu. @ bus  

(% improvement) 

RPL  

(kW) 

RPLR in 

kW (%) 

REPL 

(kVAr) 

C(PDG)  

($/h) 

ACEL ($) TNP/AELS 

($) 

Base 
Case 

_  -  0.9131@ 18 210.0704
  

-  142.4372  - 110,413.0 -  

Two 

DG 

PSO 14, 33 0.9595 

(5.08%) 

79.6471 130.4233 

(62.08) 

 52.3366   6.855  41,862.51  68,550.49 

DE 15, 33  0.9595 

(5.08%) 

 79.6172 130.4532 

(62.09) 

 52.3103  6.856  41,846.80  68,556.2 

JSA 15, 32  0.9619 

(5.35%) 

 79.2253 130.8451 

(62.28) 

 51.5741  6.877  41,640.81  68,772.19 

MPrA 15, 31  0.9620 

(5.36%) 

 79.0780 130.9924 

(62.35) 

 51.5115  6.885  41,563.39  68,849.61 

Proposed 

MPrJSA 

15, 32  0.9622 

(5.37%) 

 79.0077 131.0627 

(62.38) 

 51.4336  6.888  41,526.44  68,886.56 

Three 

DG 

PSO 15, 31, 33  0.9714 

(5.84%) 

 51.4309 158.6395 

(75.51) 

 35.2859  8.338  27,032.08  83,380.92 

DE 16, 30, 33  0.9715 
(5.84%) 

 49.0461 161.0243 
(76.65) 

 32.9086  8.463  25,778.63  84,634.92 

JSA 15, 30, 33  0.9748 

(6.75%) 

 48.7440  161.3264 

(76.79) 

 32.6901  8.479  25,619.84  84,793.16 

MPrA 13, 30, 33  0.9660 

(5.79%) 

 49.4146 160.6558 

(76.47) 

 33.5292  8.444  25,972.31  84,440.69 

Proposed 
MPrJSA 

15, 30, 32  0.9716 
(6.40%) 

 48.1950 161.8754 
(77.057) 

 31.8756  8.508  25,331.29  85,081.71 
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Fig. 6 Convergence curve with 2 DG units 

For scenario 2, the corresponding percentages of power loss reduction are 62.08, 62.09, 

62.28, 62.35 and 62.38 for techniques PSO, DE, JSA MPrA and hybrid MPrJSA 

respectively. For scenarios 3, the corresponding percentages of power loss reduction are 

75.51, 76.65, 76.79, 76.47 and 77.057 for techniques PSO, DE, JSA MPrA and hybrid 

MPrJSA respectively. This will result in the release of the 161.8754 kW in real power 

demand.  Comparing the convergence curves shown in Fig 6 and 7, it is observed that the 

suggested method achieved faster convergence than the other techniques. 

5.2. DG impact on Voltage Profile 

Table 1 shows that each scenario significantly improves the system's min voltage 

magnitude. In the base case, the min voltage is enhanced from 0.9131 pu to 0.9622 and 

0.9716 pu at 18th bus for case 2 and case 3 with a voltage improvement of 5.37% and 

6.40% respectively. Fig. 8 and 9 compare and display the voltage profiles for two 

scenarios which have greatly improved following integration of DG. 

5.3. DG impact on Annual Energy Loss Savings 

The strategic placement of the DG units improves net profit by mitigating the ACEL 

from 110,413.00$ to 41,526.44$ and 25,331.29$ for 2-DG and 3-DG units, respectively. 

The TNP for the two cases are 68,886.56$ and 85,081.71$, respectively from Table 1. 
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Fig. 7 Convergence curve with 3 DG units 

 

Fig. 8 Voltage Profile for 2 DG installation 
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Fig. 9 Voltage profile for 3 DG units installation 

In Table 2, the outcomes of MPrJSA are contrasted with a number of previously 

established techniques from the literature. When compared to other approaches, MPrJSA 

is observed to provide the best result. 

Table 2 Comparison of outcomes with alternative algorithms for 33-bus RDS 

6. CONCLUSION 

The hybrid MPJSA method has been effectively used in this study to address the DG 

integration in the distribution system. To demonstrate the superiority of the proposed 

approach in loss reduction and improved voltage magnitude due to 2 DG and 3 DG 

installation in IEEE 33 RDS is used to evaluate the suggested technique to provide 

notable performance in terms of appreciable rise in min voltage, reduction in ACEL and 

remarkable net profit savings. The percentage of RPLR and net savings are improved in 

the range of 62.08-77.057% with multiple DG penetration. The findings show that 

multiple DG installation is more efficient than single DG installation. The simulated 

outcomes are also compared with the other algorithms result reported in the literature.  

Method Power loss 

without DG, 
kW 

Two DGs Three DGs 

location Power loss, kW location Power loss, kW 

Fuzzy Clonal algorithm [40] 203.27 30, 32 117.3946 30, 31, 32 117.358 

Backtracking Search [19] 210.84 13, 31 89.34 13, 28, 31 89.05 

KHA [54] 210.98 29, 13 87.426 14, 24, 30 73.2968 
SKHA [54] 210.98 13, 30 87.1656 13, 24, 30 72.7853 

Proposed MPrJSA 210.0704 15, 32 79.0077 15, 30, 32 48.1950 
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According to the computational findings, the hybrid MPJSA performs more effectively 

than the others in most circumstances. The proposed solution methodology provides 

higher net savings.  

Power and energy systems have undergone a revolution in the previous several decades. 

One potential future goal is to manage distributed energy resources (DERs) deployment, and 

microgrids (an array of dispersed energy supplies and loads that is often linked to the grid 

upstream) have emerged as a critical component of smart grids [52].  Studying algorithms in 

larger power systems with more buses and VAR compensators presents promising research 

avenues. This includes scalability assessment, power flow optimization, VAR compensator 

integration, network resilience, renewable energy management, cybersecurity, and real-time 

challenges. Risk management during energy exchange, owing to load demand and DG 

uncertainty in RDS were also future issues [53]. Researchers aim to advance algorithmic 

solutions for better power grid efficiency, reliability, and resilience. 
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