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Abstract. This paper presents a defected Rectangular Microstrip Antenna (RMSA) 

with dimensions of 18x18x1.6 mm³, designed to operate at a center frequency of 7 GHz 

and within a range of 4.8 GHz to 10.37 GHz for wireless applications. The antenna's 

performance is evaluated using an Artificial Neural Network (ANN) model, which 

provides fast predictions of S11 values. The ANN model is trained on data from full-

wave electromagnetic simulations. Five ANN algorithms—Adaptive Moment Optimizer, 

Scaled Conjugate Gradient, Bayesian Black-Box Optimization, Levenberg-Marquardt 

Algorithm, and Resilient Backpropagation—were used to assess the model's accuracy 

in predicting S11. The results show that Resilient Backpropagation delivers the best 

prediction, closely matching both the electromagnetic simulations and experimental 

measurements, demonstrating strong agreement. 
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1. INTRODUCTION 

Global communication is rapidly evolving, with wireless technologies playing an 

increasingly dominant role. This shift is largely due to the continuous advancements in 

wireless systems, where antennas are pivotal in enabling wireless connectivity across various 

devices and platforms by emitting electromagnetic waves in targeted directions. Among 

various antenna types, Microstrip Patch Antennas (MPAs) are particularly valued for their 

distinctive characteristics, making them a preferred choice in modern communication systems. 

MPAs are known for their lightweight design, cost-efficiency, compactness, ease of 

manufacturing, and adaptability to both flat and curved surfaces. These features make them 

suitable for a wide range of applications, including radar systems, medical devices, aerospace 

technology, RFID systems, and automotive communication. The design of MPAs can vary, 

with common shapes such as rectangular, circular, square, and triangular, each offering unique 

performance benefits [1]. Their low profile and minimal radiation loss further contribute to 

their widespread use in various technological fields. As the need for microstrip antennas 

grows, researchers have developed several methods to enhance their performance, focusing on 

bandwidth, gain, and radiation pattern improvements. These methods include incorporating 

slots on the patch, using defected ground structures, stacking, and applying metamaterials, all 

of which have significantly contributed to meeting the demands of modern communication 

systems. Traditional electromagnetic simulators like Ansoft HFSS, CST Microwave Studio, 

and FEKO have been essential tools for designing and analyzing antennas. These simulators 

use numerical methods such as the Finite Element Method (FEM), Finite Difference Time 

Domain (FDTD), Finite Difference Frequency Domain (FDFD), and Method of Moments 

(MoM) [2-4]. However, these tools, despite their effective exploration, have limitations, 

including lengthy simulation times for complex structures, high software costs, and also these 

tools are resource hungry, ie, they need machines with superior computing power [5]. 

In response to these challenges, machine learning, especially Artificial Neural Networks 

(ANNs), presents a promising alternative to conventional electromagnetic simulation tools. 

ANNs are particularly effective in solving complex, non-linear problems, making them ideal 

for optimizing microwave circuits and antennas. However, the success of an ANN model 

depends on factors like the training algorithm, the quality and size of the dataset, and the 

architecture of the network, including the number of layers and neurons. Incorporating 

machine learning into the antenna design process can greatly reduce simulation times and 

costs, while also improving the accuracy and reliability of designs. The application of ANNs 

to electromagnetic problems has the potential to transform the field, offering a more cost-

effective and efficient solution compared to traditional methods [6]. 

Recently, Artificial Neural Networks (ANNs) have gained significant prominence in 

the design of patch antennas [7-9]. These networks are crucial for accurately determining 

key parameters such as input impedance and radiation characteristics in patch antennas 

[10-11]. An innovative approach utilizing neuro-fuzzy networks has been proposed for 

the rapid evaluation of resonant frequencies in patch antennas [12]. Additionally, ANNs 

have been implemented to predict the resonant frequency of circular patch antennas [13]. 

For antennas with thick substrates, tunnel-based ANNs are employed to identify resonant 

frequencies, with results validated against experimental and simulation data obtained from 

software like IE3D [14]. The reliability of ANN models in estimating the performance of 

microstrip antennas with thick substrates is demonstrated by the excellent agreement between 

predicted and experimental data. A novel method known as "Neurospectral" analysis has 
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been introduced, combining neural techniques with spectral analysis in the wave number 

domain. Initially developed for the analysis of square patch antennas, this method can 

also be adapted for antenna synthesis [15]. A hybrid approach combining ANN and a fuzzy 

inference system (FIS) has been used in designing microstrip antennas (MSAs) of various 

shapes. In this method, the ANN is trained using the Bayesian regularization algorithm, while 

FIS parameters are determined through a combination of the least squares method followed by 

the backpropagation algorithm. The resonant frequency results obtained from this method for 

different MSA shapes demonstrate excellent alignment with experimental data [16]. For 

broadband performance optimization, a Genetic Algorithm (GA) has been used to tailor 

antenna designs. The GA utilizes input impedance predictions made by ANN across a wide 

frequency spectrum by varying antenna geometries, with the performance of the ANN being 

evaluated for accuracy and computational efficiency [17]. A slotted microstrip antenna with a 

substrate thickness of 1.588 mm has been proposed to achieve wideband characteristics using 

ANN techniques. Various training algorithms, including Multilayer Perceptron feed-forward 

backpropagation, ANN, and Radial Basis Function Neural Networks, have been applied for 

modeling, with the Radial Basis Function network demonstrating superior accuracy and 

speed compared to other backpropagation algorithms [18]. 

An ANN approach has also been proposed for the analysis of fractal antennas using 

Multilayer Perceptron Neural Networks (MLPNN), Radial Basis Function Neural Networks 

(RBFNN), and General Regression Neural Networks (GRNN), with the RBFNN identified as 

the most effective based on performance metrics [19]. An ANN model and Support 

Vector Machine (SVM) were used to analyze a Fabry-Perot resonator antenna, with all 

antenna parameters being analyzed using both models [20]. In another study, ANN techniques 

with Backpropagation Network (BPN) algorithms were applied to optimize a reconfigurable 

antenna with a hexagonal shape, operating in the 2.36-3.92 GHz frequency bands. The 

proposed structure reduced the complexity of the biasing circuit but lacked compactness and 

had low gain [21]. The optimization of Defected Ground Structure (DGS) parameters was 

presented using Feed-Forward Backpropagation Network (FFBPN) and ELMAN 

Backpropagation Network (EBPN) of ANN for a wearable hybrid fractal antenna operating in 

the S-band, C-band, and X-band, with FFBPN showing greater accuracy [22]. Using an ANN 

algorithm, a dual-band patch antenna with an H-slot DGS was designed for 5G applications, 

adopting a hybrid algorithm based on both feed-forward backpropagation and Levenberg-

Marquardt (LM) learning to optimize the DGS dimensions for operation at 3.76 GHz (from 

3.23 GHz to 4.27 GHz) and 6.1 GHz (from 5.6 GHz to 6.5 GHz) [23]. In another study, 

metamaterials based on Complementary Split-Ring Resonators (CSRRs) were designed for 

antenna miniaturization. The process involved utilizing Particle Swarm Optimization (PSO) to 

determine the dimensions of the planar CSRR structure, significantly reducing design time by 

integrating two machine learning (ML)-trained neural networks (NNs) [24]. A trained neural 

network efficiently mapped a planar multiband antenna’s frequency to the ideal normalized 

geometry of the antenna patch. The chosen geometry was then duplicated, modeled in HFSS, 

and further fine-tuned using the Newton algorithm [25]. In [26], a patch antenna suitable for 

RF energy harvesting circuits at 2.4 GHz was proposed, with optimization performed more 

effectively using ANN compared to traditional simulation software. 

Based on a survey of ANN-based patch antennas, which focuses on predicting parameters 

like resonant frequency, gain, and S11 using various algorithms, it is evident that adopting 

ANN significantly reduces analysis time and simplifies the prediction process. To streamline 

the process and avoid the complexity of traditional EM simulation, ANN is utilized to analyse 
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a compact DGS-based rectangular patch antenna. Section 2 provides an introduction to the 

basic concepts of ANN. Section 3 presents the model of the RMS antenna, excited by a 

lumped port. Section 4 details how the datasets are obtained through simulation and 

subsequently used in the training and testing processes. In Section 5, five ANN algorithms 

are employed to analyse the antenna's performance in terms of S11. Finally, Section 6 offers 

conclusions and suggests possible topics for future research. 

2. BRIEF CONCEPT OF ANN 

An Artificial Neural Network (ANN) consists of interconnected neurons arranged into 

layers, and information is processed by modifying weights and biases in the connections 

between these neurons, as illustrated in Figure 1. Within this structure, signals labelled as 

xi and xn emanate from signal sources or other neurons [27-28] Here, wi represents the 

weight for the ith connection, and θ acts as the threshold, commonly referred to as bias. 

The inputs and outputs have some relationship which can be illustrated as follows: 

           ( )( )i iy f w x =  −             (1) 

 

Fig.1 ANN basic model 

The ANN training process involves providing the network with input data and 

corresponding target data (desired output data), collectively referred to as learning data. 

Prior to training, the network is given this information to learn and the network arrange 

the weights of each unit to reduce the error among desired and actual output. This error is 

quantified as the mean square error (MSE) [29]. The MSE signifies the growing error 

among the network's output and the target output, serving as the performance index [30]. 

Mathematically, the MSE is expressed as: 

        ( )2
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Where n indicates the number of samples and yi is desired output, ANN(xi) signifies 

the ANN output, and the summation is performed over all samples in the dataset. 

The accuracy in an Artificial Neural Network (ANN) refers to the percentage of 

correct predictions made by the model on a given dataset. It is a metric used to evaluate 

how well the model performs in terms of correctly classifying or predicting outcomes. 

  
| ANN( ) | ANN((x ) ) ||

Accuracy (%) 100
ANN( )

i i i

i

x y

x

− −
=             (3) 

3. DESIGN SPECIFICATIONS OF PROPOSED ANTENNA 

3.1. Design of Proposed Antenna  

Initially a rectangular patch antenna with dimensions L1 as length and W1 as its width 

is placed at height ‘h’ on FR4 substrate with ground plane of dimension 18x18mm2. The 

design equations are illustrated in equations 4-7. 
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In the ground plane of the RMSA antenna, rectangular slots are embedded which 

results in defected ground as shown in Figure 2(c). Figure 2 (a), (b) and (c) depict top, 

side and bottom view respectively of the proposed antenna which is a rectangular patch 

constructed on an FR4 substrate having defected ground. The table 1 is illustrating its 

dimensions in mm.  
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(a) 

 

(b) 

 

(c) 

Fig. 2 (a) Top view (b) bottom view (c) side view: Antenna structure 
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Table 1 Dimensions in mm of suggested Antenna 

Parameter Value 

Ls as substrate length 18.0 

Ws as substrate width 18.0 

H as substrate height 1.6 

L1 as patch length 9.0 

W1 as patch width 7.0 

Lg as ground plane length 18.0 

Wg as ground plane width 18.0 

Rsl as slot length 3.0 

Rsw as slot width 5.0 

Slot height in the ground plane, Rsh 8.0 

The incorporation of the DGS structure alters the effective inductance and capacitance, 

leading to changes in the surface current distribution and input impedance. By optimizing 

impedance matching, the antenna reduces the amount of power reflected back to the 

source, leading to improved return loss performance. Moreover, by optimizing impedance 

matching, the antenna reduces the amount of power reflected back to the source, leading 

to improved return loss performance, eventually enhancing the gain by improving radiation 

efficiency and suppressing the surface waves. Figure 3 shows that on incorporating slots in 

ground plane, the resonant frequency shifts to lower side of frequency. Figure 4 (a) and 

(b) depict the current distribution on top and bottom surface of the proposed antenna 

respectively. It has been observed that slots in the ground plane disrupt the surface current, 

causing a high current density to concentrate along the edges of the slots and at the boundary 

of the central region of the ground plane. 
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Fig. 3 S11 variation with frequency (with and without DGS) 
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(a) 

 

(b) 

Fig. 4 Current density (a) Top view (b) bottom view 
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4. ANN MODEL AND VARIOUS ALGORITHMS ADOPTED  

FOR ANALYSIS OF PROPOSED ANTENNA 

To generate a dataset, the proposed antenna design is implemented using the HFSS 

EM simulator. This dataset will serve as the basis for making predictions. After the 

simulations conducted on HFSS, the resulting data is gathered and stored. The dataset, 

obtained from the antenna simulations, comprises 1300 records and is structured variables five 

and one as independent and dependent variables respectively. The dataset is collected by 

varying the length of patch, width of patch, slot length, width of slot, frequency and 

thickness of substrate. Figure 5 depicts the ANN model comprising 6 inputs having output 

and hidden layer as one with 80% data consumed for training,10% data for validation and 

testing each. The proposed ANN model can be used to predict the S11 for new antennas 

as long as they belong to the same design space or family. 

4.1. Data set generation 

For data set generation purpose, Patch length of rectangular patch was varied from 9.4 

to 9.5 mm keeping a step size of 0.1 mm, which provides two different values of this 

parameter. Similarly, patch width of rectangular patch was varied from 2.6 to 2.8 mm 

with a step size of 0.1 mm, which provides us three different values. Slot length varied 

from 4 to 6 mm with a difference of 1mm, which provides us three different values. Slot 

width varied from 2 to 4 mm with a difference of 1 mm, which provides us three different 

values. Substrate height varied from 1.5 to 1.6 mm with a difference of 0.1 mm, which 

provides two different values and frequency varied from 4 to 11 GHz with a difference of 

0.07 GHz, which provides 1300 different values. 

4.2. Training models 

Figure 5 shows the ANN model designed for our proposed antenna. The model is 

trained using the dataset derived from the HFSS. The ANN architecture includes one 

hidden layer with 64 neurons, utilizing the ReLU activation function, and an output layer 

with a single neuron for regression tasks. In this paper five algorithms are used namely 

Adaptive Moment Optimizer (Adam), Scaled Conjugate Gradient (SCG), Bayesian 

Black-Box Optimization (BBO), Levenberg-Marquardt (LM) algorithm and Resilient 

Backpropagation (Rprop). The Adam optimizer, with a learning rate of 0.001, SCD 

Optimizer with Nesterov Momentum (0.01 Learning Rate) is employed to optimize the 

model. The learning rate in BBO, LM and Rprop.is optimized within a range from 0.0001 

to 0.01 with the specific value selected based on the model's performance during the 

tuning process. This design aims to achieve a balance between complexity and efficiency, 

enabling the network to capture non-linear patterns in the data while reducing the 

potential for overfitting. The optimal model is determined based on accuracy and lowest 

Mean Squared Error (MSE) value. During training, features and target values are 

standardized to maintain consistent scaling, improving the model's stability and 

performance. The data set thus prepared is divided into 80% for training, 10% for 

validation, and 10% for testing to facilitate effective training and unbiased evaluation. 

For evaluating the Model performance, Mean Squared Error (MSE), with percentage 

accuracy offering further insights into prediction quality is estimated. To prevent 

overfitting, the model's performance is closely monitored through the validation set, and 
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although regularization techniques are not applied in this version, they could be considered 

to further address overfitting if necessary. 

(a) Adaptive Moment Optimizer Algorithm: 

Adam, short for Adaptive Moment Optimizer, represents a very effective and often 

used optimizer for training ANN models. Specifically crafted for minimizing unconstrained, 

smooth functions, Adam proves well-suited for training neural networks. Acknowledged 

for its speed, the performance of Adam may be influenced by the unique architecture of 

the neural network and the random initialization of neuron weights [24]. 

(b) Scaled Conjugate Gradient Algorithm: 

SCG, or Scaled Conjugate Gradient, serves as an optimization algorithm extensively 

applied in ANN training. By integrating the conjugate gradient method with a scaled 

approach, SCG excels in efficiently optimizing both time and accuracy. This makes it a 

highly favoured choice for training neural networks [23]. 

(c) Bayesian Black-Box Optimization: 

This is a method designed for optimizing functions that are difficult or costly to assess 

directly. It employs probabilistic models, like Gaussian Processes, to forecast function 

values and gauge uncertainty. By utilizing an acquisition function, this technique strategically 

chooses where to evaluate next, aiming to balance exploration with exploitation. This strategy 

reduces the total number of function evaluations required to identify the optimal solution. 

It's often applied in areas such as tuning hyperparameters and handling other expensive 

function evaluations. 

(d) Levenberg-Marquardt algorithm: 

The Levenberg-Marquardt (LM) algorithm is an iterative method designed for 

optimizing non-linear least squares problems. It merges elements of gradient descent and 

the Gauss-Newton approach to effectively locate local minima. The algorithm adjusts its 

step size dynamically, allowing it to leverage the rapid convergence of the Gauss-Newton 

method while maintaining the stability of gradient descent. This versatility makes it well-

suited for tackling complex or ill-conditioned functions. The LM algorithm is commonly 

applied in machine learning and data fitting to fine-tune model parameters. 

(e) Resilient Backpropagation: 

The Resilient Backpropagation (Rprop) optimizer is designed to enhance the training 

process of neural networks by focusing on the direction of gradients rather than their 

magnitude. This approach helps manage varying gradient scales, improving stability. Rprop 

adjusts the learning rate for each weight individually, which speeds up convergence and 

mitigates issues like vanishing or exploding gradients. It is especially useful in environments 

with noisy gradients or complex loss functions. Although not as prevalent in current libraries, 

Rprop's principles are akin to those of other optimizers like RMSprop available in 

TensorFlow/Kera 
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Fig. 5 ANN model 

5. RESULTS 

Figure 6 illustrates the prototype model of the proposed antenna, displaying its 

physical design and construction. The performance of this antenna was assessed using a 

Network Analyzer. The S11 parameter plots shown in Figures 7(a), (b), (c), (d) and (e) were 

generated after applying and testing five distinct training algorithms with an Artificial Neural 

Network (ANN). These algorithms include Adam, Scaled Conjugate Gradient (SCG), 

Bayesian Black-Box Optimization (BBO), Levenberg-Marquardt (LM), and Resilient 

Backpropagation (Rprop). The figures highlight the return loss characteristics of the antenna 

and how they vary depending on the chosen algorithm. Table 2 provides a summary of the 

Mean Squared Error (MSE) values for each algorithm. This table offers a comparative 

analysis of the error rates associated with the different training methods. 

The BBO algorithm emerges as the most effective, achieving a prediction accuracy 

exceeding 95.8 %. It also features a remarkable convergence time of only 2 milliseconds. 

This performance underscores BBO’s efficiency and accuracy, making it an excellent 

choice for optimizing ANN training across various network configurations. 

         

 (a)  (b) 

Fig. 6 (a) Top view (b) Bottom view: Fabricated model 
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(a) (b) 

 
(b)  (d) 

 

(e) 

Fig. 7 S11 plot of proposed antenna by using (a) Adam (b) SCG (c) BBO (d) LM (e) Rprop 

Table 2 Performance metrics of ANN 

S No Algorithm MSE % Accuracy 

1 Adam 0.14 88 
2 Scaled Conjugate Gradient 0.08 92 
3 Bayesian Black-Box Optimization 0.05 95.8 
4 Levenberg-Marquardt algorithm 0.087 92.7 
5 Resilient Backpropagation  0.03 88.8 
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Figure 8 displays a detailed S11 plot, showcasing the performance of the proposed 

antenna across various datasets. The plot includes simulation data within a frequency range 

of 5 GHz to 10.2 GHz, offering theoretical predictions of the antenna's behaviour. This is 

complemented by experimental measurements, which span from 4.8 GHz to 10.37 GHz, 

and closely match the simulation results. This alignment suggests that the theoretical 

models provide an accurate representation of the antenna's real-world performance. 
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Fig. 8 Proposed antenna variation of (a) S11 plot (b) Gain plot 

The plot also features S11 values predicted by Artificial Neural Network (ANN) 
algorithms. S11, is an important metric in antenna design that measures the proportion of 
power reflected back from the antenna compared to the power that is transmitted. The close 
agreement between simulated, measured, and ANN-predicted S11 values highlights the 
accuracy of the ANN predictions and the efficacy of the antenna design. 
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Further, the proposed antenna is anticipated to achieve a peak gain of 3.4 dBi. This gain 
measurement reflects the antenna's capacity to focus energy efficiently within the specified 
frequency range, suggesting its potential for effective use in various applications. The high 
predicted gain underscores the antenna's well-engineered design and its suitability for practical 

deployment. 
Figure 9 shows that at xz and xy plane, proposed antenna with centre frequency of 

7 GHz has stable radiation characteristics. The radiation pattern shown in figure 7, 
demonstrates a non-omnidirectional characteristic, marked by clear lobes and nulls. This 
indicates that the antenna radiates more intensely in certain directions, creating petal-
shaped lobes. The simulated and measured patterns are largely consistent, confirming the 
antenna’s intended performance, with slight differences possibly due to real-world factors 
like manufacturing variations or environmental influences. Such radiation behaviour is 
common in antennas with slots or asymmetric structures, where the radiation is enhanced 
or diminished in specific directions due to wave interference effects 
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Fig. 9 Radiation pattern: (a) xz plane (b) xy plane 
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The table 3 shows the proposed antenna is compact and with improved bandwidth in 

comparison to other ANN based antenna. From table 3, it is clear and evident that the 

proposed antenna is more compact than the work cited in the table. 

Table 3 Comparison table of our proposed antenna with other cited ANN based Antenna  

Ref. No. Antenna 

Type 

Dimension in 

mm3 

Number of 

Frequency 

Bands 

Impedance 

Bandwidth 

in GHz (%) 

ML model 

Employed 

Error 

[16] Rectangular 

MSA 

 

50x50x1.6 1 1.5-3.0  

(66.6%) 

ANN+ANFIS Absolute 

error 

322 MHz 

[18] Slotted MSA 

 

15.5x18.48x1.58 1 9.75-10.5 

(4.9%) 

ANN with 

RBF 

MSE 

7.2334 

e-029 

[20] Fabry Perot 

Resonator 

Antenna 

 

72 × 72x1.6 1 8-12.0  

(40%) 

ANN Average 

MAPE 

0.605% 

[21] Hexagonal 

slotted MSA 

 

50 x 50x 1.6 1 2.36-3.92 

(71.4%) 

ANN with 

BPN 

algorithm 

-MSE 

9.0e 6. 

[22] Wearable 

hybrid fractal 

antenna 

59x51x1 3 2.5,4.9,&7.6 

<10% 

ANN using 

FFBPN 

Average 

Absolute 

error 

0.01881 

[23] H slotted 

DGS patch 

antenna 

34x20x1 2 3.23-4.27 

5.6-6.5 

ANN using 

LM 

MSE in 

two bands 

0.143 and 

0.201 

[25] Multi-Band 

Planar 

Antennas 

 

34.1 x 34.1 x1.0 3 2.4,3.6 & 4.9 

<10% 

 

ANN using 

newton 

algorithm 

ANN with 

FBPN & LM 

MSE for 

FBPN 

2.03e20 

 

MSE for 

LM 0.27 

[26] MSA 40x40x1.5 1 2.4GHz ANN RME 4% 

Proposed 

Work 

Rectangular 

Microstrip 

Antenna 

18x18x1.6 1 4.8-10.37 

(73.4%) 

 

ANN using 

BBO 

0.05 

6. CONCLUSION 

The paper explores well the designing and optimization of a compact lumped-fed 

rectangular patch antenna. The design was finalized after exploring all the features, the 

model was then fabricated and tested. The model operated in a frequency range from 

4.8 GHz to 10.37 GHz. The antenna maintained stable radiation characteristics throughout its 

operational band, making it well-suited for various wireless communication applications. Five 

Artificial Neural Network (ANN) namely Adaptive Moment Optimizer, Scaled Conjugate 

Gradient, Bayesian Black-Box Optimization, Levenberg-Marquardt algorithm and Resilient 
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Backpropagation, were utilized to forecast optimal S11 values for the antenna design 

parameters. The findings reveal that these ANN approaches deliver substantial advantages 

over traditional electromagnetic (EM) simulators in terms of both efficiency and accuracy. It 

is also concluded that the Bayesian Black-Box Optimization provides the highest accuracy in 

comparison to rest of the algorithms. The application of ANN methods facilitated a more 

streamlined design process and enabled precise antenna performance predictions with 

reduced computational effort. 
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