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Abstract. Nonrigorous symmetric second-order absorbing boundary condition (ABC) is 

presented as a feasible local mesh truncation in the higher-order large-domain finite 

element method (FEM) for electromagnetic analysis of scatterers in the frequency domain. 

The ABC is implemented on large generalized curvilinear hexahedral finite elements 

without imposing normal field continuity and without introducing new variables. As the 

extension of our previous work, the method is comprehensively evaluated by analyzing 

several benchmark targets, i.e., a metallic sphere, a dielectric cube, and NASA almond. 

Numerical examples show that radar cross section (RCS) of analyzed scatterers can be 

accurately predicted when the divergence term is included in computations nonrigorously. 

An influence of specific terms in the second-order ABC, which absorb transverse electric 

(TE) and transverse magnetic (TM) spherical modes, is also investigated. Examples show 

significant improvements in accuracy of the nonrigorous second-order ABC over the first-

order ABC. 

Key words: absorbing boundary condition, electromagnetic scattering, finite element 

method, numerical methods 

1. INTRODUCTION 

The finite element method (FEM) is a widely used computational tool in the 

frequency-domain analysis of electromagnetic (EM) problems [1-4]. To preserve the 

sparsity of the FEM system when analyzing open-region (radiating and scattering) 

problems, the necessary artificial truncation of the computational domain is often done by 

applying approximate local absorbing boundary conditions (ABCs) [4]. The symmetric 

second-order vector absorbing boundary condition (ABC) is a very popular choice among 

ABCs because it preserves the symmetry of the FEM system while maintaining 
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satisfactory accuracy of the solution [5, 6]. However, this formulation requires computation 

of the divergence term on the faces of finite elements (FEs) belonging to the absorbing 

boundary surface (ABS). This, in turn, is a problem on its own because the required normal 

continuity of the fields is generally not enforced across the edges of adjacent elements in a 

standard weak-form FEM discretization where edge-based curl-conforming vector basis 

functions are employed. In addition, a divergence calculation of the nonconforming basis 

functions in such formulations cannot be done analytically for the generalized curved FEs, 

even across the faces of elements at the ABS (excluding the troublesome edges) where these 

functions are continuous and differentiable. 

This problem has been addressed before, however all reported conclusions pertain to 

evaluation of the second-order ABC in small-domain spatial discretization frameworks 

[7-9], where the FEM volume elements are electrically small (e.g., their edges are on the 

order of /10,  being the wavelength at the operating frequency of the implied time-

harmonic excitation). This spatial discretization results in a rather fine mesh throughout 

the computational domain and at the ABS as well. It appears that in such meshes omitting 

the divergence term in the second-order ABC, or computing it nonrigorously without 

enforcing the normal continuity of the fields yields approximately the same error [8]. On 

the other hand, the method which rigorously implements the second-order ABC on small 

curved tetrahedra, while preserving the symmetry of the system, has been recently 

proposed in [9]. However, this method employs auxiliary variables thus mandating 

significant changes in the existing FEM code. 

Conversely however, in the open literature there appear to be no analyses of the 

second-order ABC performance in coarse large-domain FEM meshes, although fine 

meshes and small elements are really not required at the ABS, which is typically moved 

away from the analyzed structure and resides in a homogeneous free space. The EM field 

is usually not changing rapidly at the ABS, hence the advantages of large-domain 

modeling can be fully exploited. With the above in mind, we proposed that large-domain 

discretization utilizing curved elements whose edges are up to 2  long, coupled with 

truly higher order (e.g., up to the 10
th

 order) polynomial field expansion, can be 

efficiently used in the ABS tessellation. The number of edges shared by faces of adjacent 

finite elements at the ABS is thus reduced, which can, in turn, significantly reduce the 

error introduced by direct computation of required derivatives, because these edges are 

the sole locations where discontinuities of the normal field components actually arise 

when the second-order ABC is implemented nonrigorously. Preliminary results of the 

proposed method applied to a simple metallic spherical scatterer can be found in [10]. 

In this work we present the implementation details of the nonrigorous symmetric 

second-order ABC applied on large curvilinear hexahedra in higher-order FEM and 

evaluate its performance on a comprehensive set of benchmark targets which include: a 

metallic sphere, a dielectric cube (as an example of penetrable structure with sharp edges 

and vertices), and a metallic NASA almond as a standard nontrivial benchmark target of 

the Electromagnetic Code Consortium (EMCC). 
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2. THEORY AND IMPLEMENTATION 

2.1. Higher-order large-domain FEM formulation 

When solving three-dimensional (3-D) linear steady-state EM problems by the FEM, 

we first geometrically discretize the domain of interest using Lagrange-type generalized 

curved hexahedra of arbitrary orders, Ku, Kv, and Kw (Ku, Kv, Kw  1). These hexahedra are 

geometrically flexible and can be used for large-domain modeling of arbitrary shapes 

[11]. They are analytically described by position vector [11] 
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where ),,( kjiijk wvurr   are position vectors of interpolation nodes and uK

iL  represent 

Lagrange interpolation polynomials in the u coordinate, of the local parametric u-v-w 

coordinate system, with lu  being the uniformly spaced interpolating nodes defined as 
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k . We then solve 

the electric field vector wave equation within each of the finite elements [1, 3]. In every 

hexahedron we expand the electric field vector as 
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where f are curl-conforming (and generally div-nonconforming) hierarchical polynomial 

vector basis functions defined as 
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Nu, Nv, and Nw are the adopted degrees of the polynomial approximation, which are 

entirely independent of the element geometrical orders, Ku, Kv, and Kw, and ijku, , ijkv,  

and ijkw,  are unknown field-distribution coefficients (to be determined by the FEM). 

The reciprocal unitary vectors r

ua , r

va  and r

wa  in (3) are defined as Jwv

r

u /)( aaa  , 

Juw

r

v /)( aaa   and Jvu

r

w /)( aaa  , where wvuJ aaa  )(  is the Jacobian of the 

covariant transformation and ua , va  and wa  are unitary vectors defined as uu  ra , 

vv  ra  and ww  ra . By adopting higher-order polynomial field expansion [Nu, 

Nv, and Nw in (2) can be up to 10
th

 order], through the process of p-refinement, FEs could 

be up to 2  long in each direction [11]. Applying the standard Galerkin-type 

discretization yields the disconnected system of linear equations for each of the finite 

elements [1] 
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where k0 represents the free-space wave number and {} is the column vector of electric 

field distribution coefficients from (2). Disconnected system of linear equations does not 

take into account boundary conditions which fields must satisfy on the interfaces between 

two adjacent FEs, but considers each finite element (FE) separately. In order to facilitate 

implementation (and coding), matrices [A] and [B] can be represented using submatrices 

as in [11] 
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The entries in the submatrices [UVA] and [UVB] are given as 
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where V stands for the volume of the FE and r  and r  are relative permittivity and 

permeability tensors [12, 13], respectively. The electric field expansion orders Nu, Nv, and 

Nw in (2) are selected in accordance with reduced-gradient criterion [14, 15] and by 

following the recipes in [16] which facilitate optimal higher-order computation. The 

remaining entries of matrices [A] and [B] are calculated in a similar manner. 

Analogously, column vector {GS} can be represented as 

 

{ }

{ } { }

{ }

S

s S

S

UG

G VG

WG

 
 

  
 
 

, (7) 

and the entries in the column vector {UGS} are given as 
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where S stands for the boundary surface of an element, E is the electric field vector at S 

(generally not known in advance) and n is the unit normal on S pointing outwards of the 

element. The remaining entries of the column vector {Gs} are calculated in a similar manner. 

Connected system of linear equations [1] is then assembled from (4) and the surface 

integrals in {Gs} [as in (8)] are calculated only at the outer boundary of the FEM domain, 

and not at the boundary of each element [3]. Connected system of linear equations takes 

into account natural boundary conditions, i.e., tangential continuity of electric fields 

(explicitly) and magnetic fields (implicitly) which must be satisfied at the interfaces 
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between finite elements. Consequently, {Gs} is calculated only at the outer FEM domain 

boundary, thus it represents a natural connection (interface) between the FEM domain and 

the surrounding space. 

Finally, to obtain a well-defined numerical problem, appropriate EM field boundary 

conditions must be imposed at the outer FEM boundary. These boundary conditions can 

be (i) exact and nonlocal, as in the hybrid finite element method-method of moments 

(FEM-MoM) [17], (ii) exact and local, when the FEM domain is surrounded by a perfect 

electric conductor (PEC) or a perfect magnetic conductor (PMC), or (iii) approximate and 

local, e.g., when EM field propagation through free space, far from EM sources and 

media discontinuities, is approximated by an ABC placed relatively close to the scatterer. 

The local boundary conditions do not reduce sparsity in the final system of linear 

equations, which is a highly desirable property [18, 19] and one of the strongest benefits 

of the FEM compared to MoM. 

2.2. Symmetric second-order absorbing boundary condition 

Consider an EM scatterer (or generally EM field sources) occupying a finite volume, 

surrounded by free space and illuminated by an incident EM field (E
inc

 and H
inc

), as 

shown in Fig. 1. In most cases the incident EM field is a uniform plane wave, but the 

theory presented here applies to a general case as well. Let SABC be a fictitious spherical 

surface of radius rABC, centered at the origin and surrounding the scatterer. We truncate 

the FEM computational domain by applying ABC at SABC. Symmetric (resulting in 

symmetric system of linear equations) second-order ABC, obtained by approximation of 

the term sc( )r  i E  utilizing the Wilcox expansion [20], given as [6] 
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will be applied at SABC, where incsc
EEE   represents the scattered electric field, ri  is 

spherical coordinate system radial unit vector, t in subscripts represents the tangential (to 

SABC) part of a vector or gradient operator and j  is the imaginary unit. 

 

Fig. 1 With the analysis of open EM problems using ABC. 



680 S. SAVIĆ, M. ILIĆ 

Note that for the connected system of linear equations, the surface integrals in {Gs} 

are calculated (only) at the entire outer FEM domain boundary SABC, and that they are 

zero at two finite elements junction. On the other hand, the basis and testing functions 

appearing in the integrals are taken locally, from a specific element, as the integration 

progresses. Terms in surface integrals in {Gs} [as in (8)] can be rearranged for easier 

implementation of the second-order ABC (9) as 
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imposing the second-order ABC (9), the system of linear equations (4) becomes 
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Matrix [S] in (11) is the sum of three parts: the part corresponding to the first-order ABC, 

the part corresponding to the second-order ABC, which absorbs transverse electric (TE) 

spherical modes, and the part corresponding to the second-order ABC, which absorbs 

transverse magnetic (TM) spherical modes [6, 10]. In the matrix notation this can be 
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where the corresponding terms are self explanatory. Analogously as in (5), matrix [S] can 

be represented using submatrices, namely 
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where the entries in the submatrix [UVS], for example, are given [in accordance with 

(12)] as 
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and analogously for all other submatrices in (13). The entries corresponding to the first-

order ABC, the TE part corresponding to the second-order ABC, and the TM part 

corresponding to the second-order ABC, respectively, are calculated as 
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The column vector ABC{ }sG  in (11) can be written in the form shown in (7), with the 

addition of the superscript “ABC” to distinguish the column vectors in (4) and (11). 

Hence, similarly as in (12), the column vector ABC{ }sG can be represented as the sum of 

part corresponding to the first-order ABC, the TE part corresponding to the second-order 

ABC, and the TM part corresponding to the second-order ABC, respectively, as 
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and analogously for the remaining entries in ABC{ }sG . 

2.3. Computation of the surface integrals appearing in the symmetric  

second-order absorbing boundary condition applied to curvilinear elements 

Consider the surface integrals appearing in (11) when computing entries in [S] and 
ABC{ }sG . The utilized basis and testing functions are curl-conforming and generally div-

nonconforming, hence the divergences in the TM parts of (15) and (17), and all similar 

terms, cannot be expressed in the closed form. Moreover, as already discussed, these 

surface integrals are calculated over the entire SABC surface; in other words, they are 

calculated not only over the finite element surfaces belonging to SABC, but across the 

junctions (edges between the elements) as well. Since the basis and testing functions 

possess only tangential continuity, this results in appearance of squares of delta-functions 

(
2
) in the kernels of the surface-integral terms at all edges enveloping the surfaces of the 

finite elements belonging to ABCS  [9]. In order to rigorously treat the divergence of the 

basis and testing functions at the edges of elements over SABC, the basis and testing 

functions must be adopted to enforce the normal continuity of the EM field over SABC [8] 

or additional auxiliary (scalar) variables need to be introduced as in [9]. 

Nevertheless, since the utilized higher-order polynomial basis and testing functions are 

continuous and differentiable over FEs faces, their divergence can be readily calculated 

numerically. For example, from (3) it follows that the divergence of fu,ijk is given as 
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Partial derivatives in (18) are calculated numerically utilizing the symmetric finite difference. 

For example, 
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where vd  is a numerical-differentiation step. Since these divergences are computed only 

at the FEM domain-truncation boundary SABC, numerical differentiation represents 

minimal addition to the complexity of the overall algorithm, and computation time for the 

surface integrals ABC{ }sG  is almost negligible compared to the computation time for the 

FEM volume integrals appearing in matrices [A] and [B]. The procedure is similar when 

divergence is calculated for the functions ijkv,f  and ijkw,f . 

3. NUMERICAL RESULTS AND DISCUSSION 

3.1. PEC spherical scatterer 

As the first numerical example, consider a PEC spherical scatterer of radius a = 1 m. The 

scatterer is situated in free space, with permittivity 0  and permeability 0 , and illuminated by 

a time-harmonic plane-wave of a free space wavelength m10   (f = 299.792 MHz), as 

shown in Fig. Error! Reference source not found. (a). When constructing numerical model, 

infinite free space surrounding the scatterer is truncated at the artificial spherical boundary 

SABC, of radius m5.1b , where the nonrigorous symmetric second-order ABC is imposed. 

The normalized thickness of the free space layer between the scatterer and SABC is 

5.0)( 0 ab  and it is meshed by only six cushion-like triquadratic curved hexahedral FEs. 
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Fig. 2 (a) Large-domain FEM-ABC model of a PEC spherical scatterer. (b) Normalized 

L
2
 error norm of the computed bistatic RCS for the PEC spherical scatterer and the 

number of unknowns. 
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First, we will consider far field results. A bistatic radar cross section (RCS) of the 

scatterer is computed by the proposed FEM-ABC technique. The order of the polynomial 

expansion of the electric field for all FEs and in all directions is Nu = Nv = Nw = N. 

Numerical integration is performed by means of the 13
th

 order Gauss-Legendre 

quadrature. The bistatic RCS is computed in all directions uniformly (from  0start  to 
 180stop  with the resolution of  5 , and from  0start  to  360stop  with the 

resolution of  5 ), and its error (with respect to the analytical Mie’s series solution) 

is calculated as a normalized 2L  norm 

 

180 360
MieBiRCS 2

MoMBiRCS2
0 0

2 MieRCS 180 360
MieBiRCS 2MoMRCS
MoMBiRCS

0 0

(FEMBiRCS( , ) ( , ))
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 

 
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 

 

 

 









, (20) 

where FEMBiRCS stands for the numerical solution for the bistatic RCS obtained by the 

proposed FEM-ABC technique and MieBiRCS stands for the analytical (reference) results in 

the form of Mie’s series. In the following subsection, when analytical MieBiRCS solution is 

not available, the results obtained by MoM, denoted as MoMBiRCS, will be used as a 

reference, as indicated in (20). In Fig. Error! Reference source not found. (b) numerical 

results are compared for the first- and nonrigorous second-order ABC, along with results for 

the first-order ABC with only one term included from the nonrigorous second-order 

ABC [ ,
TEABC2

sG  
TEABC2S  and ,

TMABC2

sG  
TMABC2S  from (12) and (16)]. To validate the 

convergence of the method with p-refinement, the solutions are obtained for various orders 

N, ranging from N = 1 to N = 9. From Fig. Error! Reference source not found. (b) it can 

be concluded that, although not being implemented rigorously and not contributing 

independently to the accuracy of the solution, the TM part of the symmetric second-order 

ABC together with the TE part synergistically contributes to the overall solution accuracy. In 

addition, due to very rough mesh in this example, the FEM solution becomes sufficiently 

accurate for 97  N  with N = 8  yielding the lowest error, which is consistent with the 

results reported in [16]. Moreover, the lowest errors obtained with the proposed large-domain 

FEM with the nonrigorous second-order ABC are of the same order of magnitude as those 

reported in the first example in [9], where the same scatterer was analyzed utilizing the 

rigorously implemented second-order ABC. In this example the nonrigorous second-order 

ABC performs significantly better in far field compared to the first-order ABC, and for N = 8 

the solution error is 2.7 times lower compared to results obtained utilizing the first-order ABC. 

Note that this error difference is even greater (8.8 times in favor of the nonrigorous second-

order ABC) when the ABC is set closer to the scatterer, i.e., when 1.0)( 0 ab , as 

reported in [10]. 

Noting that far fields, and related derived parameters, are less sensitive to 

computational errors than near fields, in order to obtain and demonstrate an even more 

rigorous and complete validation of the proposed FEM-ABC technique, we next analyze 

the accuracy of the computed near field of the presented PCE spherical scatterer. Using 

the mesh from Fig. Error! Reference source not found. (a) and setting N = 8 (for all 

elements in all direction) we compute the near electric field numerically and analytically 
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and show the comparison of obtained results in Fig. 3. Shown in Fig. 3 is the magnitude 

of the x-component of the total electric field, in the 0x  plane, obtained (a) analytically 

(Mie’s series solution) and numerically using (b) the first-order ABC and (c) the proposed 

second-order ABC. The incident electric field is ]m/V[1inc
xiE   ( xi  being the 

Cartesian unit vector in the x-direction) traveling in the z-direction, as shown in Fig. 3 (d). 

In Figs. 3 (e) and (f) the error of the electric field computed by the FEM (relative to the 

reference Mie’s series solution) for the first-order and second-order ABC models are 

plotted, respectively. The error is calculated as 2Im
Mie,

Im
FEM,

2Re
Mie,

Re
FEM, )()( xxxxx EEEEE  , 

where Ex,FEM and Mie,xE  Ex,Mie are x-components of the electric fields obtained numerically 

and analytically, respectively, and Re and Im stand for the real and imaginary part of the 

complex quantities, respectively. 

 

(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
(e) 

 
(f) 

Fig. 3 Near field results for the PEC spherical scatterer from Fig. Error! Reference source 

not found. obtained (a) analytically and numerically using (b) the first-order and 

(d) the proposed second-order ABC. (d) Large-domain FEM-ABC model of a PEC 

spherical scatterer with illustrated incident field. Electric field error (relative to the 

reference Mie’s series solution) for (e) the first-order and (f) the proposed second-

order ABC. 

From Fig. 3, it can be concluded that the proposed second-order ABC significantly 

outperforms the first-order ABC. The results obtained using nonrigorous second-order 

ABC are more accurate than those using the first-order ABC in the complete x = 0 plane, 

and especially for z > 0. Note that, due to symmetry, the remaining two Cartesian 

components of the electric field vanish in the 0x  plane (Ey = 0, Ez = 0), hence they are 

not shown. Also, note that other field components in different planes exhibit similar 
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errors, hence they are not shown here for brevity. In addition, the errors in the near field 

can be further reduced employing p-refinement. 

3.2. Dielectric cubical scatterer 

As the second numerical example, consider a dielectric cubical scatterer with relative 

permittivity 25.2r   and relative permeability 1r  , of edge length m2a . The 

scatterer is situated in free space and illuminated by a time-harmonic plane-wave of a free 

space wavelength m20   (f =149.896 MHz), as shown in Fig. 4 (a). When constructing 

the numerical model, infinite free space surrounding the scatterer is truncated at the artificial 

spherical boundary SABC, of radius m2b , where the nonrigorous symmetric second-order 

ABC is imposed. Free space between the scatterer and the ABCS  is again meshed by only six 

cushion-like triquadratic curved hexahedral FEs and the dielectric scatterer is meshed by 

only one trilinear FE. Minimal normalized distance between the scatterer and ABCS  is 

13.0)35.0( 0  ab  and this maximal distance is (b  0.5a)/0 = 0.5. 
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Fig. 4 (a) Large-domain FEM-ABC model of a dielectric cubical scatterer. 

(b) Normalized L
2
 error norm of the computed bistatic RCS for the dielectric 

cubical scatterer and the number of unknowns. 

Normalized L
2
 error norm of the computed bistatic RCS for the cubical scatterer is 

calculated as discussed in subsection 0 and shown in Fig. 4 (b). The error is calculated 

with respect to the fully converged MoM solutions obtained by WIPL-D software [21]. 

Numerical parameters regarding the field expansion and integration in the FEM model are 

kept the same as in the previous example. It can be concluded based on Fig. 4 (b) that the 

nonrigorously implemented TM part of the second-order ABC independently contributes 

to the quality of solutions and that, together with TE part of the second-order ABC, both 

parts synergistically contribute to the overall solution accuracy. In this example, the 

nonrigorous second-order ABC performs significantly better compared to the first-order 
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ABC, and for 7N  the error obtained using the second-order ABC is 5.6 times smaller 

than that for the first-order ABC. 

3.3. PEC NASA almond scatterer 

As the last example, consider a PEC NASA almond scatterer, which is one of the 

standard benchmarks of the EMCC. The NASA almond is geometrically described by the 

parametric equations given above Fig. 2 in [22]. The almond of length mm37.252d  

(parameter d  from equations in [22]), situated in free space, and illuminated by horizontally 

and vertically (in  90  plane) polarized incident EM field at the operating frequency 

GHz19.1f  ( mm2520  ) will be considered, as shown in Fig. 5. 

 

Fig. 5 PEC NASA almond scatterer. 

Higher-order FEM-ABC model of the PEC NASA almond scatterer consists of 

96 triquadratic large-domain Lagrange-type FEs. These FEs model the free space between the 

almond and the spherical surface ABCS , where nonrigorous symmetric second-order ABC is 

applied. The radius of ABCS  is mm220b . Minimum and maximum distances from the 

almond to ABCS  are 0373.0   and 0801.0  , respectively, and the field expansion orders are 

set to 6N  (for all finite elements and in all directions), which results in 62220 unknown field 

distribution coefficients. Using the proposed nonrigorous second-order ABC coupled with the 
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Fig. 6 Computed monostatic RCS of the PEC NASA almond from Fig. 5 for the 

(a) horizontal and (b) vertical incident field polarization; comparison of proposed 

FEM-ABC and two MoM results obtained by WIPL-D [21] and FEKO [23] software. 
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large-domain higher-order FEM technique, the monostatic RCS in the horizontal plane 

(  90 , )1800   is computed. The results are compared with results obtained by MoM 

technique [21, 23] for both horizontal and vertical incident field polarizations, and shown in 

Fig. 6. From Fig. 6 it can be concluded that a very good matching between the FEM-ABC and 

MoM results is achieved in all directions, and that scatterers of relatively complex shapes can 

also be accurately analyzed by the proposed FEM-ABC method. 

4. CONCLUSIONS 

We have presented, implemented, and validated by representative numerical 

experiments, a nonrigorous symmetric second-order ABC in combination with large-

domain higher-order FEM technique for frequency domain EM scattering analysis. In the 

proposed method, the ABC is implemented nonrigorously, without imposing the normal 

field continuity and without introducing additional variables. The required divergence of 

the nonconformal field components is computed numerically on the faces of elements 

belonging to the ABS, using simple finite differences. Numerical experiments have shown 

that the nonrigorous second-order ABC performs significantly better compared to the 

first-order ABC and that the proposed method results mach very good with referent 

numerical solution of high accuracy. Moreover, the examples have shown that the errors 

in computation of the RCS can be significantly lower if the divergence term is included in 

the ABC, as described, than if it is omitted. This conclusion is in contrast with results 

reported thus far in the literature, where examples with small-domain FEM meshes have 

been utilized exclusively. Finally, examples with a dielectric cubical scatterer and the 

NASA almond have shown that the proposed method can be successfully applied in 

analysis of scatterers with sharp edges and tips. 
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