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Abstract. Among input-output (IO) mode asynchronous circuits, indicating circuits are 

more popular and robust. However, they may not be efficient in design metrics such as 

cycle time, area, and power dissipation. In contrast, monotonic circuits, which are also 

IO mode asynchronous circuits but less explored, can potentially optimize the design 

metrics better than indicating circuits. Recent studies have demonstrated that 

monotonic circuits outperform indicating circuits in arithmetic operations like addition 

and multiplication. While monotonic circuits may be labeled theoretically less robust 

than indicating circuits, their operation is similar in practice. This article presents a novel, 

compact monotonic IO mode asynchronous multiplexer. The multiplexer is significant in 

digital circuits as it has applications across various domains including communication 

systems, digital signal processing, memory addressing, etc. We considered dual-rail 

encoding for the multiplexer and employed four-phase handshaking. Two four-phase 

handshaking schemes are available namely, return-to-zero (RtZ) handshaking and return-

to-one (RtO) handshaking, and we considered both for this work. Compared to an optimized 

early output quasi-delay-insensitive multiplexer, which is derived by modifying a strong-

indication multiplexer and represents the best among the existing designs, the proposed 

monotonic multiplexer achieves a 67% (69%) reduction in latency, an 84% (84%) 

reduction in area, and a 66% (67%) reduction in power for RtZ (RtO) handshaking. 

Since the multiplexer is a small component, its effectiveness should be evaluated by 

integrating it into a circuit setup. In this context, we used existing multiplexers and the 

proposed multiplexer to realize IO mode asynchronous 32-bit carry select adders 

(CSLAs) while keeping the compute element, namely the full adder consistent. We 

estimated the design metrics of CSLAs incorporating different multiplexers, 

implemented using a 28-nm bulk CMOS process technology. The CSLA utilizing the 

proposed monotonic multiplexer achieved a 43% (44%) reduction in cycle time and a 
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28% (28%) reduction in area compared to the CSLA utilizing an early output quasi-

delay-insensitive multiplexer for RtZ (RtO) handshaking with no power penalty. 

Key words: asynchronous circuits, digital logic design, low power, high-speed, CMOS 

1. INTRODUCTION 

The multiplexer is a basic and important component that has practical applications across 

various domains in electronics, telecommunications, and digital systems. In communication 

systems, multiplexers combine multiple data streams into a single stream for transmission 

over a shared medium like a cable or a wireless channel. This is known as multiplexing, and it 

allows for more efficient use of a communication channel. In analog-to-digital conversion, 

where analog signals should be converted into digital format for processing by digital systems, 

multiplexers are used to select one of many analog input signals for conversion by an analog-

to-digital converter. In digital signal processing, multiplexers are used to select different data 

streams or inputs for processing by digital signal processing algorithms or hardware. In 

memory systems, multiplexers are used for memory address decoding where they are used to 

select an appropriate memory location based on the address provided by a central processing 

unit. In control systems, multiplexers are used to select different control signals or inputs to 

control various processes or devices. Multiplexers are also used in testing and measurement 

equipment to select different input signals for measurement by a single instrument. In digital 

video broadcasting systems, multiplexers are used to combine multiple digital video streams, 

audio streams, and other data into one transport stream for transmission. In telecommunication 

networks, multiplexers play a crucial role in combining multiple voice or data channels into 

higher-order transmission links, optimizing bandwidth usage. In sensor networks, multiplexers 

can be used to aggregate data from multiple sensors before transmitting the data over to a 

communication network. In industrial automation systems, multiplexers select different 

sensors, actuators, or control signals in manufacturing processes or automated systems.  

This paper introduces a multiplexer that falls within the monotonic category of input-

output (IO) mode asynchronous circuits. These circuits typically encode data using delay-

insensitive codes and follow a four-phase handshake protocol for data exchange. In 

contrast to synchronous circuits that depend on a clock signal, IO mode asynchronous 

circuits function based on events, which enhances their robustness. The event-driven 

approach makes IO mode asynchronous circuits more resilient to variations in process, 

voltage, and temperature, thus improving their adaptability [1,2]. Furthermore, IO mode 

asynchronous circuits are modular [3,4], self-checking [5], less affected by electromagnetic 

interference than synchronous designs [6], and naturally resistant to side-channel attacks 

[7], making them particularly suitable for security-sensitive applications [8].  

Asynchronous circuits used in IO systems are commonly classified into quasi-delay-

insensitive (QDI) and non-QDI categories. QDI circuits rely on a concept called isochronic 

forks [9], which refers to electrical nodes with multiple outgoing wires, functioning under 

the premise that signals on these wires transition at the same time. This assumption 

generally applies to both microelectronics and nanoelectronics [10]. QDI circuits ensure 

that outputs are generated only after all inputs have been received and processed, and 

internal computations are completed. While this feature improves the reliability of QDI 

circuits, it also results in greater implementation costs, as these circuits tend to require more 

area, have higher latency and cycle times, and dissipate more power than non-QDI circuits.    
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QDI circuits are categorized into several types: strong indication [11], weak indication 

[11], and early output QDI (EOQDI) [12]. In strong indication circuits, outputs are not 

generated until all primary inputs have been received and processed. Weak indication 

circuits, on the other hand, allow some outputs to be produced once certain inputs have 

been processed, though the final output will appear only after all inputs have been 

processed. EOQDI circuits are designed to generate outputs as soon as some inputs are 

processed, especially when a spacer is introduced. In EOQDI circuits, isochronic forks 

assumed for the primary inputs ensure that any delayed inputs are duly acknowledged.  

Non-QDI IO mode asynchronous circuits consist of relative-timed circuits [13] and 

monotonic circuits [14,15]. Relative-timed circuits rely on certain timing constraints to 

properly sequence input signals for output generation. Monotonic circuits, however, 

maintain consistent signal transitions throughout the circuit. In a monotonically rising 

circuit, a rising transition (e.g., binary 0 to 1) at the primary inputs triggers corresponding 

rising transitions at both intermediate and primary outputs. Conversely, in a monotonically 

falling circuit, a falling transition (e.g., binary 1 to 0) at the inputs results in falling 

transitions at the outputs. A circuit may exhibit monotonic behavior with rising, falling, 

both, or neither transition. While synchronous circuits typically do not show monotonicity, 

IO mode asynchronous circuits are generally monotonic. In this discussion, “monotonic 

circuits” specifically refer to IO mode asynchronous circuits that support both rising and 

falling behaviors. Although monotonic circuits often produce early outputs, they are not 

deemed QDI because they do not require the completion of all internal computations before 

generating outputs. Non-QDI circuits, which impose fewer constraints than QDI circuits, 

provide greater flexibility and contribute to reduced circuit complexity, thereby achieving 

more efficient designs. Recent studies have shown that monotonic circuits outperform QDI 

circuits in computer arithmetic tasks such as addition [16] and multiplication [17].   

The organization of this article is as follows: Section 2 describes the foundational 

concepts of IO mode asynchronous circuit design. Section 3 reviews traditional indicating 

multiplexers along with an EOQDI multiplexer. Section 4 presents the design of the 

proposed monotonic multiplexer. Section 5 compares the design metrics of various 

multiplexers and 32-bit asynchronous carry select adders implemented using these 

multiplexers. Finally, Section 6 concludes this article with a summary.   

2. FUNDAMENTALS OF IO MODE ASYNCHRONOUS CIRCUIT DESIGN 

Fig. 1a presents a block diagram of an IO mode asynchronous circuit pipeline [1]. 

Each stage in this pipeline consists of an asynchronous circuit placed between sets of 

input and output registers. The input registers may function as output registers for the 

previous stage, while the output registers can serve as input registers for the following 

stage. The input registers supply inputs to the asynchronous circuit for processing. A 

completion detector on the input side indicates the reception of all inputs, and on the 

output side, it indicates the completion of all outputs. Figs. 1b and 1c show examples of 

completion detectors for Return-to-Zero (RtZ) and Return-to-One (RtO) handshaking 

schemes respectively, which will be discussed further in this section. The completion 

detector associated with the output registers sends an output acknowledgment signal 

(Ack_O), which, after a Boolean inversion, becomes the input acknowledgment signal 

(Ack_I). Ack_I allows the input registers to supply new inputs to the asynchronous 
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circuit. In an IO mode asynchronous circuit, “handshaking” refers to the communication 

protocol followed between input and output registers.  

 

Fig. 1 (a) Block diagram of a single pipeline stage in an IO mode asynchronous circuit. 

Sample completion detector design for (b) RtZ handshaking and (c) RtO 

handshaking. (d) Logic symbol and static CMOS transistor-level design for a 2-

input C-element, created by adding feedback to an AO222 complex gate 

In an IO mode asynchronous circuit, the Muller C-element [18] functions as a 

register. When all inputs to the C-element are either 0 or 1, the output will match this 

value, producing a 0 or 1 accordingly; if the inputs are mixed, the output retains its 

current state. Fig. 1d shows inputs X and Y feeding into the C-element, with Z as the 

output. This figure provides the logic symbol, transistor-level structure, and output 

equation for the C-element. A 2-input C-element can be realized at the transistor level by 
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adding feedback to a static CMOS AO222 complex gate [19]. Multiple custom designs 

for the C-element have been developed and evaluated in [20,21]; however, this study 

employs a semi-custom design based on the approach followed in [19]. In the input 

registers of Fig. 1a, each C-element connects one input to Ack_I and the other to an 

encoded input signal rail.   

In IO mode asynchronous circuits, delay-insensitive codes [22], such as dual-rail (also 

known as two-rail, double-rail, or 1-of-2 code), are frequently used for encoding inputs and 

outputs. We will now explain how dual-rail encoding is applied to inputs and outputs within 

the context of RtZ and RtO handshaking, followed by an overview of each handshaking 

scheme. For dual-rail encoding under the RtZ handshaking scheme [1], an input signal, 

denoted by I, is represented with two wires say, I1 and I0. When I = 1, the encoding is set to 

I1 = 1 and I0 = 0; when I = 0, it is encoded as I1 = 0 and I0 = 1. These configurations 

represent ‘data’ according to the RtZ handshake scheme. The combination I1 = I0 = 0 acts 

as the ‘zero spacer’ that separates successive data in RtZ handshaking. The encoding I1 = I0 

= 1 is considered invalid in RtZ handshaking, as the encoding is designed to remain 

unordered [23]. For RtO handshaking [24], the dual-rail encoding uses two wires say, I1 

and I0, to represent the input signal I. Here, when I = 1, the encoding is I1 = 0 and I0 = 1; 

when I = 0, the encoding is I1 = 1 and I0 = 0. These two configurations indicate ‘data’ 

according to the RtO handshake scheme. The combination I1 = I0 = 1 serves as the ‘one 

spacer’ that separates successive data in RtO handshaking. The combination I1 = I0 = 0 is 

invalid for RtO handshaking, as unordered encoding is required [23].      

Figs. 1b and 1c depict examples of dual-rail encoded inputs, denoted as (P1, P0) and 

(Q1, Q0). In Fig. 1b, a completion detector for RtZ handshaking is shown, consisting of 

OR gates at the initial logic level. Each two-input OR gate combines the two rails of a 

particular encoded input. The outputs from these OR gates are then routed to a C-element, 

or a chain of C-elements, to produce the output acknowledgment signal (Ack_O). In 

contrast, Fig. 1c illustrates a completion detector for RtO handshaking, which utilizes AND 

gates at the first logic level. Each two-input AND gate combines the two rails of the 

encoded inputs, and the resulting outputs are subsequently directed to a C-element or a 

series of C-elements to generate Ack_O.    

We shall now describe RtZ and RtO handshaking protocols. In RtZ handshaking, the 

process begins with the first phase, where Ack_I is set to 1 and Ack_O is at 0. This 

signals the input registers to send data to the asynchronous circuit. During this phase, one 

of the two rails of each encoded input is set to 1, indicating that the data is ready for 

processing. In the second phase, the output registers receive the processed data from the 

asynchronous circuit, and the completion detector sets Ack_O to 1. In the third phase, the 

input registers wait for Ack_I to return to 0 before sending the spacer to the asynchronous 

circuit for processing. In the final phase, the output registers receive the spacer, and the 

completion detector sets Ack_O back to 0. This concludes one data transaction and 

signals that the asynchronous circuit is ready for the next data transaction when Ack_I is 

set to 1 again. As a result, in RtZ handshaking, the input sequence follows the pattern of 

‘data–spacer–data–spacer’, and so on.     

In RtO handshaking, the process starts with the first phase, where Ack_I is set to 1 

and Ack_O is at 0. This signals the input registers to send the spacer to the asynchronous 

circuit for processing. During this phase, all rails of the encoded inputs are set to 1, 

indicating that the spacer is ready to be processed by the asynchronous circuit. In the 

second phase, the asynchronous circuit generates the spacer, which is then received by 
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the output registers. The completion detector for the output registers sets Ack_O to 1. In 

the third phase, the input registers wait for Ack_I to return to 0 before sending the data to 

the asynchronous circuit, with one of the two rails of each encoded input set to 0. In the 

fourth phase, the asynchronous circuit processes the data and produces the output, which is 

then received by the output registers. The completion detector sets Ack_O back to 0. This 

marks the end of a data transaction and indicates that the asynchronous circuit is ready for 

the next data transaction when Ack_I is set to 1 again. Thus, in RtO handshaking, the input 

sequence follows the pattern of ‘spacer–data–spacer–data’ and so forth.   

To maintain delay insensitivity in IO mode asynchronous circuits, a spacer is placed 

between successive input data. In a monotonic circuit, this spacer ensures that data and 

spacer do not conflict, thus preserving external delay insensitivity throughout the handshaking 

process. In the IO mode asynchronous pipeline depicted in Fig. 1a, the key timing metric is 

the ‘cycle time’, which represents the total duration required to complete a single data 

transaction. The maximum time taken to process data is known as forward latency, while 

the maximum time to process the spacer is referred to as reverse latency. Forward and 

reverse latency may vary based on the circuit’s design and underlying logic. The overall 

cycle time of an IO mode asynchronous circuit is the sum of the forward and reverse 

latencies. The critical path that determines the latency of the circuit, which includes the 

input register bank and the asynchronous circuit, is shown by the red dashed line in Fig. 1a.  

3. CONVENTIONAL ASYNCHRONOUS MULTIPLEXER DESIGNS 

Existing IO mode multiplexer designs follow the strong indication, as the multiplexer 

features a single primary output that is dual-rail encoded. Hence, multiplexers cannot be 

designed as weak indication circuits since weak indication circuits require a minimum of 

two encoded primary outputs – one generated after processing a subset of the primary 

inputs, and the other produced after processing the remaining or all the inputs. This 

section will discuss strong indication and EOQDI multiplexers.  

3.1. DIMS multiplexer 

The delay-insensitive minterm synthesis, also called DIMS [25], requires listing a 

function's distinct product terms that include all the support variables. Let us consider (A1, 

A0) and (B1, B0) as the dual-rail encoded inputs, (S1, S0) as the dual-rail encoded select 

signal, and (M1, M0) as the dual-rail encoded output of a 2-to-1 multiplexer. In this case, 

the output expressions for the multiplexer are given by (1) and (2), which conform to RtZ 

handshaking. Equations (1) and (2) imply that when the select signal is binary 0 (i.e., S1 = 

0, S0 = 1), input A is selected and forwarded as the output. Conversely, input B is selected 

and forwarded as the output when the select signal is binary 1 (i.e., S1 = 1, S0 = 0). 

 M1 = A0B1S1 + A1B0S0 + A1B1S0 + A1B1S1 (1) 

 M0 = A0B0S0 + A0B0S1 + A0B1S0 + A1B0S1 (2) 

Equations (1) and (2) are represented as sums of disjoint products, where each product 

term is independent or orthogonal to the others [26]. In the case of RtZ handshaking, only 

one product term in (1) or (2) evaluates to 1 when data is input. Conversely, for RtO 

handshaking, only one product term evaluates to 0 under the same conditions. These 
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conditions, in which only a single product term evaluates to either 1 or 0 for RtZ or RtO 

handshaking, are known as the monotonic cover constraint [1]. From the perspective of 

physical implementation, this constraint guarantees that one signal path is activated from 

the primary input to the primary output, thereby avoiding unnecessary transitions on the 

intermediate gate outputs within the circuit. The monotonic cover constraint is commonly 

incorporated in IO mode asynchronous circuits.  

Fig. 2 shows the logic implementation of a strongly indicating 2-to-1 multiplexer 

using the DIMS method, which utilizes C-elements and OR gates and is designed for RtZ 

handshaking. If the OR gates in this design were replaced with AND gates, the resulting 

logic would be suitable for RtO handshaking. In general, by replacing all gates (except 

the C-elements) in an IO mode asynchronous circuit with their Boolean duals, a circuit 

can be transformed from one that corresponds to RtZ handshaking to one that 

corresponds to RtO handshaking and vice versa. This principle has been proved through 

logical induction in [27].   

 

Fig. 2 Logic realization of a 2-to-1 multiplexer based on the DIMS method (corresponding to 

RtZ handshaking) 

3.2. Toms’ multiplexer 

Toms’ method for strongly indicating logic synthesis of combinational functions 

(post-encoding) [28,29] employs standard multi-level logic synthesis techniques [30]. 

These techniques involve extracting one or more product terms (a sum of multiple 

products) by solving the rectangle covering problem, which is efficiently tackled using a 

sparse-matrix approach developed by Rudell [31]. Once the product terms are identified, 

they are substituted as intermediate variables into the original logic expressions. The 

extraction phase involves finding and creating common sub-functions and variables, 

while the substitution phase inserts an intermediate function X into a larger function Y, 

where Y is expressed in terms of its original inputs and X. These processes are similar to 

Boolean division and multiplication, respectively.   
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Fig. 3 displays the logical implementation of a strongly indicating Toms 2-to-1 

multiplexer for RtZ handshaking, which is composed of C-elements and OR gates. To 

obtain the corresponding multiplexer circuit for RtO handshaking, the OR gates should 

be replaced with AND gates.  

 

Fig. 3 2-to-1 multiplexer based on Toms’ method (corresponding to RtZ handshaking) 

3.3. Early output QDI multiplexer 

Equations (1) and (2) given for the DIMS multiplexer can be simplified to remove 

logical redundancy. In (1), the sum of products A1B1S1+A1B1S0 simplifies to A1B1, 

and similarly, in (2), A0B0S1+A0B0S0 simplifies to A0B0. As a result, the strong 

indication multiplexer based on the DIMS method can be modified to create an EOQDI 

multiplexer that synthesizes (3) and (4). Fig. 4, derived based on (3) and (4), represents 

the circuit for RtZ handshaking. To convert this to an equivalent circuit for RtO 

handshaking, the OR gates in Fig. 4 should be replaced with AND gates. 

 M1 = A0B1S1 + A1B0S0 + A1B1 (3) 

 M0 = A0B1S0 + A1B0S1 + A0B0 (4) 

 

Fig. 4 Early output QDI multiplexer (corresponding to RtZ handshaking) 
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3.4. SIDCO and SIDCAO multiplexers 

In [32], two strongly indicating multiplexer designs were proposed: SIDCO, which 

uses C-elements and OR gates, and SIDCAO, which incorporates C-elements, AND 

gates, and OR gates. These designs are illustrated in Figs. 5a and 5b, both of which are 

intended for RtZ handshaking. To adapt them for RtO handshaking, the OR gates in Figs. 

5a and 5b should be swapped with AND gates and the AND gates should be replaced by 

OR gates. The SIDCO and SIDCAO multiplexers implement (5) and (6), given below. 

 M1 = A1S0 + B1S1 (5) 

 M0 = A0S0 + B0S1 (6) 

 

Fig. 5 (a) SIDCO multiplexer and (b) SIDCAO multiplexer, corresponding to RtZ handshaking. 

In Fig. 5a, the intermediate output (NM1, NM0) is functionally the same as the 

primary output (M1, M0) of the multiplexer. However, to ensure a strong indication, an 

internal completion detector is used to verify the arrival of the multiplexer inputs (A1, 

A0) and (B1, B0). This internal completion detector, highlighted within the blue dotted 

box in Fig. 5a, generates an output labeled NCD. NCD is synchronized separately with 

NM1 and NM0 to yield the final primary output (M1, M0).    

In Fig. 5b, the C-elements that generate the products A1S0, B1S1, A0S0, and B0S1 in 

Fig. 5a are replaced with AND gates. To ensure a strong indication, an internal 

completion detector is introduced to verify the arrival of both the multiplexer inputs and 

the select signal. This completion detector, highlighted within the red dotted box in Fig. 

5b, produces an output labeled ICD. The intermediate output (IM1, IM0) behaves 

identically to the primary output (M1, M0). However, IM1 and IM0 are synchronized 

individually with ICD to produce the final primary output (M1, M0).     
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4. PROPOSED ASYNCHRONOUS MONOTONIC MULTIPLEXER 

The multiplexers discussed till now are either strongly indicating or EOQDI. In 

contrast, the multiplexer introduced here is a monotonic circuit. The circuit diagrams of 

the proposed multiplexer are presented in Figs. 6a and 6b for RtZ and RtO handshaking.   

 

Fig. 6 Proposed multiplexer corresponding to handshake schemes: (a) RtZ and (b) RtO 

The proposed multiplexer, designed for RtZ handshaking, uses two AO22 complex 

gates, which implement (5) and (6). The dual of the AO22 complex gate is the OA22 

complex gate, so for RtO handshaking, two OA22 gates are used. In comparison to Figs. 

2 through 5, Fig. 6 shows that the proposed multiplexer does not incorporate any C-

elements, unlike the other designs. Additionally, this proposed design represents an 

optimized gate-level realization of a 2-to-1 multiplexer in IO mode asynchronous circuit 

type, requiring only ten transistors for a static CMOS implementation. As mentioned in 

Section 1, monotonic circuits are more flexible than QDI circuits and only need to ensure 

the monotonicity of signal transitions for data and spacer.   

We shall explain the monotonic and early output operation of the proposed multiplexer 

based on RtZ and RtO handshake schemes by considering example scenarios. Typically, for 

RtZ handshaking, when data is applied, the signal transitions will rise monotonically (from 

0 to 1) through the primary inputs and any intermediate outputs to the primary outputs. For 

the spacer, the signal transitions will fall monotonically (from 1 to 0) from the primary 

inputs through the intermediate outputs to the primary outputs. In Fig. 6a, when data is 

input, if A1 = S0 = 1 or B1 = S1 = 1, the output M1 could assume 1 early without waiting 

for B1/B0 to assume 1 in the former case and A1/A0 to assume 1 in the latter case. Given 

this, any late transition of B1/B0 to 1 (in the former case) and A1/A0 to 1 (in the latter case) 

will be acknowledged by the completion detector. Since the isochronic fork assumption is 

applied to the primary inputs, the acknowledgment provided by the completion detector 

applies to the multiplexer as well. When the spacer is applied, M1 can transition to 0 early, 

even if A1 or S0 (if they were 1 previously), or B1 or S1 (if they were 1 previously), change 

to 0 without waiting for all inputs to reach 0. However, the next data will only be supplied 

to the monotonic multiplexer after all primary inputs have been reset to 0, after indication 

by the completion detector. Since the isochronic fork assumption applies to all primary 

inputs, the RtZ condition of all inputs, as confirmed by the completion detector, is also 

applicable to the multiplexer. These example scenarios considered show that both 

monotonic and early output operation manifests in the proposed multiplexer for the 

application of data and spacer with respect to RtZ handshaking.   
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Typically, for RtO handshaking, when the spacer is applied, the signal transitions rise 

monotonically (from 0 to 1) through the primary inputs and any intermediate outputs to 

the primary outputs. In contrast, when data is applied, the signal transitions fall 

monotonically (from 1 to 0) from the primary inputs through any intermediate outputs to 

the primary outputs. Referring to Fig. 6b, when the spacer is provided, all inputs (A1, A0, 

B1, B0, S1, and S0) will be set to 1, which causes M1 and M0 to assume 1. Due to the 

properties of OR logic, if A1, B1, A0, and B0 are all 1, M1 and M0 can be set to 1 early, 

without waiting for S1 and S0 to change to 1. However, if S1 and S0 take longer to reach 

1, this will be confirmed by the completion detector before the data is supplied to the 

multiplexer. As the isochronic fork assumption holds for the primary inputs, the 

multiplexer is said to acknowledge that S1 and S0 have reached 1 once the completion 

detector confirms this. Now, let us consider an example scenario when data is supplied 

after the application of the spacer. If A1 and S0 assume 0 or if B1 and S1 assume 0, M1 

could switch to 0 early, without waiting for B1/B0 to assume 0 in the former case and 

A1/A0 to assume 0 in the latter case. Given this, any late transition of B1/B0 to 0 (in the 

former case) or A1/A0 to 0 (in the latter case) will be acknowledged by the completion 

detector. Since the isochronic fork assumption applies to all primary inputs, the 

acknowledgment provided by the completion detector is said to apply to the multiplexer 

as well. Thus, the example scenarios considered imply that both monotonic and early 

output operation manifests in the proposed multiplexer for the application of both data 

and spacer with respect to RtO handshaking.  

Fig. 7 shows a screenshot of the input-output simulation waveforms of the proposed 

multiplexer based on RtZ handshaking. Simulations were performed using Synopsys VCS by 

supplying all distinct inputs at a latency of 1ns. The (zero) spacer was inserted between two 

data inputs. In Fig. 7, (A1, A0) and (B1, B0) represent the multiplexer inputs, (S1, S0) 

represents the multiplexer select input, and (Z1, Z0) represents the multiplexer output. 

 

Fig. 7 A screenshot of simulation waveforms of the proposed multiplexer corresponding 

to RtZ handshaking 
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Three sample markers, namely M1, M2, and M3 are shown in Fig. 7 which highlight 

specific instances of input-output and they are mentioned below: 

▪ Marker M1: A1 = B0 = S0 = 1, and Z1 = 1 

▪ Marker M2: A1 = B0 = S1 = 1, and Z0 = 1  

▪ Marker M3: A1 = B1 = S1 = 1, and Z1 = 1 

Fig. 8 shows a screenshot of the input-output simulation waveforms corresponding to 

the proposed multiplexer based on RtO handshaking. Again, simulations were performed 

using Synopsys VCS by supplying all distinct inputs at a latency of 1ns. The (one) spacer 

was inserted between two data inputs. The multiplexer input and output naming 

convention was maintained the same in Fig. 8 as in Fig. 7. Three sample markers viz. 

M1, M2, and M3 are shown in Fig. 8 which highlights specific instances of input-output 

and they are mentioned below: 

▪ Marker M1: A1 = B0 = S0 = 0, and Z1 = 0 

▪ Marker M2: A1 = B0 = S1 = 0, and Z0 = 0 

▪ Marker M3: A1 = B1 = S0 = 0, and Z1 = 0 

 

Fig. 8 A screenshot of simulation waveforms of the proposed multiplexer corresponding 

to RtO handshaking  

5. DESIGN METRICS 

This section will first present the design metrics of various multiplexers for RtZ and 

RtO handshaking. After that, the design metrics of 32-bit carry-select adders (CSLAs) 

implemented with conventional and proposed multiplexers will be presented. The CSLA 

is used as a case study to illustrate how various multiplexers affect the cycle time, which 

in turn influences the throughput in an IO mode asynchronous design.  

The IO mode asynchronous multiplexers were designed using gates from a 28-nm 

bulk CMOS standard digital cell library [33], with separate implementations for RtZ and 

RtO handshaking. The strong indication and EOQDI multiplexers discussed in Section 3 

utilize the C-element in their logic design. Further, the completion detectors require C-
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elements for their implementation. Since the C-element is not typically available in 

standard cell libraries, it was manually implemented in static CMOS, as illustrated in Fig. 

1d. A low-leakage typical case cell library was used that operates at a supply voltage of 

1.05 V and a junction temperature of 25°C. Functional simulations and design metric 

evaluations, including latency, area, and total (average) power dissipation, were carried 

out using Synopsys EDA tools viz. VCS, PrimeTime and PrimePower. The default wire 

load model was applied, and all output ports (i.e., multiplexer outputs) were assigned a 

fanout-of-4 drive strength. A virtual clock was specified just to constrain the inputs and 

outputs of the adder, though it was not included in the physical design. Functional 

simulations for the multiplexers were conducted using separate test benches for RtZ and 

RtO handshaking, with inputs provided at a latency of 1 ns. Nevertheless, the test 

benches corresponding to RtZ and RtO handshaking are logically equivalent. The design 

metrics estimated for the multiplexers are given in Table 1. 

Table 1 Design metrics of multiplexers realized using a 28-nm bulk CMOS process. 

Multiplexer Latency (ns) Area (µm2) Power Dissipation (µW) 

Corresponding to RtZ handshaking 

DIMS 0.49 46.76 14.37 

Toms 0.51 39.65 13.61 

EOQDI 0.45 31.01 10.15 

SIDCO 0.44 31.26 20.40 

SIDCAO 0.57 31.51 24.89 

Proposed (monotonic) 0.15   5.08   3.43 

Corresponding to RtO handshaking 

DIMS 0.47 44.73 13.15 

Toms 0.50 39.65 13.79 

EOQDI 0.45 31.01 10.39 

SIDCO 0.38 31.26 19.55 

SIDCAO 0.57 31.51 24.91 

Proposed (monotonic) 0.14   5.08   3.40 

In contrast to the proposed multiplexer depicted in Fig. 6, the other multiplexers shown 

in Figs. 2 to 5 require more gates and additional logic levels. As a result, the conventional 

multiplexers consume more area, have higher power dissipation, and exhibit greater 

latency, as evident from Table 1. Among the conventional designs, the EOQDI multiplexer, 

which has been derived from the DIMS strong indication multiplexer, is more efficient. Its 

latency is close to the latency of the SIDCO multiplexer while occupying slightly less area 

and dissipating approximately half the power. The EOQDI multiplexer’s lower power 

dissipation compared to the SIDCO multiplexer can be attributed to the absence of an 

internal completion detector in the former compared to the latter. Generally, an internal 

completion detector in an IO mode asynchronous circuit experiences significant switching 

activity, as all gates within the detector transition during both data and spacer application. 

When compared to the EOQDI multiplexer, the proposed monotonic multiplexer delivers a 

66.7% (68.9%) reduction in latency, occupies 83.6% (83.6%) less area, and dissipates 

66.2% (67.3%) less power for RtZ (RtO) handshaking. 
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To assess the performance of the proposed multiplexer, a 32-bit carry-select adder 

(CSLA) was considered as a demonstration platform, where multiplexers are employed to 

determine the correct sum output in the final stage. The CSLA [34] typically involves 

two parallel adders: one operates with the assumption of a zero carry input, and the other 

assumes a carry input of one. This method accelerates the addition process by evaluating 

both addition possibilities simultaneously and then selecting the appropriate result. Once 

both adders have finished their calculations, multiplexers are used to select the correct 

sum based on the actual carry input. 

 

Fig. 9 32-bit IO mode dual-rail encoded asynchronous CSLA featuring an 8-8-8-8 input 

partition 

In Fig. 9, a 32-bit IO mode asynchronous CSLA featuring an 8-8-8-8 input partition is 

shown [35]. The primary inputs and outputs, and intermediate outputs of the CSLA are 

dual-rail encoded. X and Y represent the inputs of the CSLA while Sum represents its 

output. Given an 8-8-8-8 input partition, a least significant 8-bit ripple carry adder (RCA) 

viz. RCA_1 is used to add input bits X7 to X0 with corresponding input bits Y7 to Y0. 8-

bit RCA_2 and RCA_3 are used to add input bits X15 to X8 with corresponding input bits 

Y15 to Y8 separately assuming carry inputs of 0 and 1 respectively. The two sets of sum 

and carry outputs produced corresponding to these additions are forwarded as inputs to a 

multiplexer logic labeled MX1 which consists of nine 2-bit multiplexers to issue the 

correct sum bits Sum15 up to Sum8 and the carry output signal C2 using a common select 

signal, which is the carry output C1 produced by RCA_1. Likewise, RCA_4 and RCA_5 

are used to add input bits X23 to X16 with corresponding input bits Y23 to Y16 separately 

assuming carry inputs of 0 and 1 respectively. The two sets of sum and carry outputs 

produced corresponding to these additions are forwarded as inputs to a multiplexer logic 

labeled MX2 which consists of nine 2-bit multiplexers to issue the correct sum bits Sum23 

up to Sum16 and the carry output signal C3 using a common select signal, which is the 

carry output C2 from MX1. Similarly, RCA_6 and RCA_7 are used to add input bits X31 

to X24 with corresponding input bits Y31 to Y24 separately assuming carry inputs of 0 and 

1 respectively. The two sets of sum and carry outputs produced corresponding to these 
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additions are forwarded as inputs to a multiplexer logic labeled MX3 which consists of 

nine 2-bit multiplexers to issue the correct sum bits Sum32 up to Sum24 using a common 

select signal, which is the carry output C3 from MX2. 

 

Fig. 10 Asynchronous monotonic full adder (corresponding to RtZ handshaking) 

As illustrated in Fig. 9, by maintaining the same RCAs, different multiplexers discussed 

in Sections 3 and 4 can be used individually to implement 32-bit CSLAs, allowing for their 

performance evaluation. The RCAs are efficiently implemented using a monotonic full 

adder described in [16], shown in Fig. 10, which has been designed for RtZ handshaking. In 

Fig. 10, (P1, P0) and (Q1, Q0) represent the full adder’s inputs, while (C1, C0) denotes the 

carry input. The sum output is denoted as (FS1, FS0), and the carry output is represented by 

(FC1, FC0). This monotonic full adder is characterized by its early output property. To 

obtain the logical equivalent of Fig. 10 pertaining to RtO handshaking, the AO22 complex 

gates should be replaced by their Boolean duals viz. the OA22 complex gates. In [35], an 

EOQDI full adder was used. Compared to this, the full adder of [16] occupies 44.4% less 

area for both handshake schemes, and hence it was considered for this work.   

We designed several 32-bit IO mode asynchronous CSLAs utilizing traditional and 

newly proposed multiplexers individually based on dual-rail encoding, and adhering to 

RtZ and RtO handshaking. Specifically, one stage of the IO mode asynchronous circuit, 

as shown in Fig. 1a, was constructed, including a register set for the adder inputs, a 

completion detector, and the 32-bit CSLA functioning as the IO mode asynchronous 

circuit. The design metrics for the 32-bit CSLAs, incorporating various multiplexers, 

were evaluated for both RtZ and RtO handshaking, and they are presented in Table 2. 

The design parameters were determined using Synopsys EDA tools mentioned earlier, 

following the same low-leakage 28-nm CMOS cell library PVT specification and the 

methodology followed for the multiplexers. A test bench with over 1000 random inputs 

was supplied to the CSLAs at a latency of 10 ns for performing functional simulations 

and tracking the switching activity. The test benches used for RtZ and RtO handshaking 

are logically equivalent. The design metrics estimated for the CSLAs include forward 

latency, reverse latency, cycle time (which is the sum of forward and reverse latencies), 

area, and total power dissipation. 
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Table 1 presented the forward latency (since multiplexers were implemented 

independently) alone and not the cycle time. This was because the completion detector's 

latency was found to exceed that of certain multiplexers when the multiplexers were 

implemented as a single IO mode asynchronous circuit stage, complicating the performance 

comparison. However, when the 32-bit CSLA was implemented as an IO mode asynchronous 

stage, its latency exceeded the completion detector’s latency, enabling accurate performance 

comparisons of various multiplexers. Table 2 presents all three timing parameters (forward 

latency, reverse latency, and cycle time) highlighting that the latencies in the forward and 

reverse directions for some IO mode asynchronous CSLAs may be different. This issue has 

been discussed in previous research [37]. Furthermore, different multiplexers impact the 

CSLA’s timing in distinct ways. The forward latency of the CSLAs was directly measured, 

while the reverse latency was computed based on the respective gate and net delays 

specified in the timing reports. The cycle time, representing the duration of a single data 

transaction, was obtained by summing the forward and reverse latencies. 

Table 2 Design parameters of asynchronous 32-bit CSLAs with different multiplexers 

realized using a 28-nm bulk CMOS process. In the table, FL denotes forward 

latency, RL denotes reverse latency, and CT denotes cycle time.   

Multiplexer used in CSLA FL (ns) RL (ns) CT (ns) Area (µm2) Power (µW) 

Corresponding to RtZ handshaking 

DIMS 2.51 1.80 4.31 2893.94 2279 

Toms 2.71 2.07 4.78 2701.81 2269 

Early output QDI 2.14 1.58 3.72 2468.50 2251 

SIDCO 2.53 1.89 4.42 2475.36 2284 

SIDCAO 2.56 2.00 4.56 2482.23 2297 

Proposed (monotonic) 1.51 0.61 2.12 1768.59 2218 

Corresponding to RtO handshaking 

DIMS 2.50 1.78 4.28 2839.04 2264 

Toms 2.70 2.05 4.75 2701.81 2264 

Early output QDI 2.12 1.55 3.67 2468.50 2239 

SIDCO 2.52 1.87 4.39 2475.36 2273 

SIDCAO 2.54 1.97 4.51 2482.23 2286 

Proposed (monotonic) 1.48 0.59 2.07 1768.59 2205 

As shown in Fig. 9, the forward latency of the CSLAs is determined by the total 

propagation delays of RCA_1, MX1, MX2, and MX3. Within MX1, a delay is introduced 

by a 2-to-1 multiplexer that is responsible for passing the carry signal to MX2. Similarly, 

in MX2, another 2-to-1 multiplexer introduces a delay as it forwards the carry signal to 

MX3. In MX3, a final 2-to-1 multiplexer delay occurs, which generates the sum bit. 

Therefore, the forward latency of the CSLA in Fig. 9 can be represented by (7), where 

DReg stands for the propagation delay of an input register, DRCA_1 is the delay of the 8-bit 

RCA_1, DFA denotes the propagation delay of a full adder, and DMUX21 is the delay of a 2-

to-1 multiplexer. In (7), the first two terms on the right-hand side are constants, as the 

same full adder (depicted in Fig. 10) was used in all CSLAs. However, the third term 

may vary depending on the specific multiplexer employed. 

 FLCSLA = DReg + DRCA_1 + (3×DMUX21) = DReg + (8×DFA) + (3×DMUX21) (7) 
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To examine how different multiplexers affect the forward and reverse latencies of CSLAs, 

let us focus on RtZ handshaking as a test case here. A similar analysis can be conducted for 

RtO handshaking, which we leave to an interested reader. However, we will present the 

results of the theoretical delay modeling for both RtZ and RtO handshaking. 

By substituting the appropriate multiplexer delays into (7), the forward latency of 

CSLAs using DIMS, Toms, EOQDI, SIDCO, SIDCAO, and the proposed (monotonic) 

multiplexers are represented by (8), (9), (10), (11), (12), and (13) respectively. These 

equations serve as approximate latency models, as they omit the delays associated with 

interconnects and parasitics for simplifying the theoretical analysis. In the equations, DCE2 

and DAO22 represent the typical propagation delays of a 2-input C-element and an AO22 

complex gate, while DOR2, DOR3, and DOR4 represent the propagation delays of 2-input, 3-

input, and 4-input OR gates, respectively.  

 FLCSLA
DIMS = DReg + (8×DFA) + 3×(DCE2 + DOR4) (8) 

 FLCSLA
Toms = DReg + (8×DFA) + 3×(2×DCE2 + DOR2 + DOR3) (9) 

 FLCSLA
EOQDI = DReg + (8×DFA) + 3×(DCE2 + DOR3) (10) 

 FLCSLA
SIDCO = DReg + (8×DFA) + 3×(2×DCE2 + DOR2) (11) 

 FLCSLA
SIDCAO = DReg + (8×DFA) + (7×DCE2 + 3×DOR2) (12) 

 FLCSLA
Proposed = DReg + (8×DFA) + 3×DAO22 (13) 

The reverse latency can also be theoretically modeled to point out the delay variations 

across CSLAs that use different multiplexers. With the inclusion of a monotonic full 

adder (as shown in Fig. 10), the reverse latency of the CSLA (depicted in Fig. 9) using 

strong indication or EOQDI multiplexers is generally represented by (14). However, the 

reverse latency expression for the CSLA utilizing the proposed multiplexer will differ 

and this will be addressed later in this section. 

 RLCSLA = DReg + DRCA_1 + (3×DMUX21) = DReg + DFA + (3×DMUX21) (14) 

By comparing (14) and (7), it becomes evident that the reverse latency is smaller than 

the forward latency, primarily because only the delay of a single full adder is considered 

in (14), whereas (7) accounts for the combined delays of eight full adders. This difference 

arises due to the monotonic full adder, which can be reset early based on the adder inputs, 

regardless of the carry input. For RtZ handshaking, as seen in Fig. 10, once the signals 

P1/P0 and Q1/Q0, whichever were 1 earlier, transition to the spacer, both the sum 

(FS1/FS0) and the carry output (FC1/FC0) of the full adder can also assume the spacer 

state, regardless of whether C1/C0 assumes the spacer. This means that all the full adders 

in RCA_1 through RCA_7 can transition to the spacer state at the same time. As a result, 

when the spacer is applied, the delay of the RCA effectively reduces to the delay of just 

one full adder, as indicated by the second term in (14). Since conventional multiplexers 

contain C-elements in their design, the third term in (14) remains identical to that in (7). 

Therefore, the reverse latency of CSLAs using DIMS, Toms, EOQDI, SIDCO, and 

SIDCAO multiplexers are given by (15), (16), (17), (18), and (19), respectively. These 

equations are also approximate models of latency, as they omit the delays associated with 

interconnects and parasitics for simplicity. 
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 RLCSLA
DIMS = DReg + DFA + 3×(DCE2 + DOR4) (15) 

 RLCSLA
Toms = DReg + DFA + 3×(2×DCE2 + DOR2 + DOR3) (16) 

 RLCSLA
EOQDI = DReg + DFA + 3×(DCE2 + DOR3) (17) 

 RLCSLA
SIDCO = DReg + DFA + 3×(2×DCE2 + DOR2) (18) 

 RLCSLA
SIDCAO = DReg + DFA + (7×DCE2 + 3×DOR2) (19) 

The reverse latency of the CSLA incorporating the proposed multiplexer is theoretically 

given by (20). Similar to (15) through (19), the second term on the right-hand side of (20) 

represents the delay of a full adder corresponding to RCA_1. Referring to Fig. 6a, since the 

proposed multiplexer is monotonic, once A1/B1 (whichever was 1 earlier) or A0/B0 

(whichever was 1 earlier) transitions to the spacer state, M1/M0 (whichever was 1 earlier) 

will also transition to the spacer state, regardless of the state of the select signal (S1/S0). It 

is important to note that (A1, A0) and (B1, B0), which represent the multiplexer inputs, 

combine the corresponding output pairs of the full adders in RCA_2 through RCA_7. 

Consequently, all the multiplexers in MX1, MX2, and MX3 can simultaneously transition 

to the spacer state based on the outputs from RCA_2 to RCA_7, resulting in a delay that is 

equivalent to a single multiplexer, as indicated by the third term in (20). 

 RLCSLA
Proposed = DReg + DFA + DAO22 (20) 

Equations (8) to (13) and (14) to (20) provide insights into the variations in cycle time 

of CSLAs that incorporate different multiplexers. By substituting the average propagation 

delays of the gates from the cell library [33] into these equations, we calculated the 

theoretical cycle time for CSLAs utilizing various multiplexers, specifically for RtZ 

handshaking. For CSLAs corresponding to RtO handshaking, we calculated the cycle 

time after considering the dual versions of the gates described in (8) to (13) and (15) to 

(20), excluding the C-element. To normalize the theoretical cycle time, we divided the 

cycle time of each CSLA by the maximum cycle time within the group, doing so 

separately for both RtZ and RtO handshaking. A similar normalization procedure was 

applied to the practical cycle times of CSLAs, using the estimates provided in Table 2 for 

RtZ and RtO handshaking. Figs. 11a and 11b portray a comparison between the 

theoretical and practical (normalized) cycle times of CSLAs incorporating different 

multiplexers based on RtZ and RtO handshaking, respectively.   

Figs. 11a and b demonstrate that while there are noticeable variations between the 

theoretical and practical cycle times for certain CSLAs, primarily due to the simplified 

theoretical delay models, a strong correlation is seen between the theoretical and practical 

delays. This validates the accuracy of our theoretical delay modeling. Additionally, Figs. 

11a and b show that the CSLA utilizing the proposed monotonic multiplexer achieves a 

substantial reduction in cycle time when compared to those using strong indication or 

EOQDI multiplexers. As shown in Table 2, while the CSLA with the EOQDI multiplexer 

has a lower cycle time than the one comprising the strong indication multiplexer, the CSLA 

employing the monotonic multiplexer achieves a 43% (43.6%) reduction in cycle time 

relative to the CSLA incorporating the EOQDI multiplexer for RtZ (RtO) handshaking.   
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Fig. 11 Comparison of the theoretical and practical (normalized) cycle time of CSLAs 

incorporating different multiplexers corresponding to the handshake schemes: 

(a) RtZ and (b) RtO 

Because the same full adder (shown in Fig. 10) was utilized in constructing the 

CSLAs, and both the input registers and the completion detector external to the CSLA 

remain unchanged, the area variations between the CSLAs listed in Table 2 are solely due 

to the differences in the areas of the multiplexers present in the CSLAs. Fig. 12 depicts 

the areas of various multiplexers for RtZ and RtO handshaking protocols.   

The area occupied by several multiplexers is observed to be identical for both RtZ and 

RtO handshaking. This similarity arises from the fact that certain gate pairs in the digital 

cell library [33] have equivalent areas – such as 2-input and 3-input OR gates having the 

same area as 2-input and 2-input AND gates for a normal drive strength. Additionally, 

AO22 and OA22 complex gates with normal drive strength have identical areas. This 

explains why, in Table 2, many CSLAs have the same areas for both handshaking types.  
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Fig. 12 Area (in µm2) of different multiplexers corresponding to the handshake schemes: 

(a) RtZ and (b) RtO 

Compared to strong indication and EOQDI multiplexers illustrated in Figs. 2 through 5, 

the proposed monotonic multiplexer in Fig. 6 requires significantly fewer gates and logic 

components, resulting in a much smaller area, as seen in Fig. 12. Specifically, the proposed 

multiplexer occupies 83.6% less area than the EOQDI multiplexer, and the CSLA with the 

proposed multiplexer occupies 28.4% less area compared to the CSLA with the EOQDI 

multiplexer. However, despite this reduction in area, the power dissipation difference between 

the two CSLAs is rather minimal, with only a 1.5% decrease for RtZ and RtO handshaking. 

The reason for this shall be explained next. As observed in Table 2, the variation in power 

dissipation across various CSLAs is not much. This is due to the design of the multiplexers 

and full adders within the CSLAs, which adhere to the monotonic cover constraint. As 

explained in Section 3.1, the monotonic cover constraint activates a single, unique signal path 

from a primary input to a primary output, reducing unnecessary switching and signal 

transitions in IO mode asynchronous circuits, thus minimizing power variation between 

logically similar but structurally distinct CSLAs. Minor differences in power do exist, and this 

is due to the differences in multiplexers' logic. The power dissipation of input registers, the 

completion detector, and full adders remain almost the same since they are shared across all 

CSLAs. These elements contain more logic than the multiplexers in the CSLA, which causes 

them to dominate the total power dissipation. Consequently, the variation in power dissipation 

among different CSLAs in Table 2 is rather minor.  

In contrast, Table 1 revealed a noticeable variation in power dissipation, as it focused 

specifically on the design metrics of individual multiplexers. The overall conclusion from 

Table 2 is that the CSLA with the proposed multiplexer significantly reduced both cycle time 

and area compared to traditional multiplexers, without an increase in power dissipation. This 

implies the proposed multiplexer enables more optimization when considering all the design 

metrics together. Furthermore, Table 2 shows that the proposed multiplexer when used for 

RtO handshaking enables a slight decrease in both cycle time and power when used for RtZ 

handshaking, and this is due to differences in the gate types corresponding to the handshake 

schemes. 

In synchronous design, the power and delay product commonly serves as a figure of 

merit for low-power or low-energy evaluation [38]. The equivalent metric in IO mode 

asynchronous design is the power and cycle time product (PCTP). Hence, we computed 
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the PCTP for each CSLA, using the design metrics listed in Table 2 for both RtZ and RtO 

handshaking. The calculated PCTPs were then normalized by dividing them by the 

highest PCTP for RtZ and RtO handshaking separately. The normalized PCTPs 

corresponding to RtZ and RtO handshake schemes are presented in Figs. 13a and 13b, 

respectively. As seen in Fig. 13, the CSLA with the proposed multiplexer has a 

substantially lower PCTP compared to CSLAs using other multiplexers. Specifically, the 

CSLA with the proposed multiplexer achieves a 43.9% (44.5%) reduction in PCTP for 

RtZ (RtO) handshaking compared to the CSLA featuring the EOQDI multiplexer.  

 

Fig. 13 Normalized PCTP of CSLAs incorporating different multiplexers corresponding 

to the handshake schemes: (a) RtZ and (b) RtO 

An optimized IO mode asynchronous CSLA was presented in [35], which utilized the 

EOQDI full adder of [36] and the SIDCO multiplexer of [32]. We implemented this CSLA as 

well and estimated its design metrics for the two handshake schemes, given below. These 

metrics were estimated by following the same design methodology discussed previously.  

▪ RtZ handshaking: Forward latency = Reverse latency = 2.54 ns, and Cycle time = 

5.08 ns; Area = 3158.50 µm2; Power = 2444 µW 

▪ RtO handshaking: Forward latency = Reverse latency = 2.50 ns, and Cycle time = 

5 ns; Area = 3158.50 µm2; Power = 2438 µW  
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Compared to these design parameters, the CSLA realized using the monotonic full 

adder of [16] and the proposed monotonic multiplexer achieved the following reductions 

in design metrics: (i) 58.3% less cycle time, 44% less area, 9.2% less power, and 62.1% 

less PCTP for RtZ handshaking, and (ii) 58.6% less cycle time, 44% less area, 9.6% less 

power, and 62.6% less PCTP for RtO handshaking.   

6. CONCLUSION 

This article introduced a new IO mode multiplexer design that falls under the monotonic 

class. The proposed multiplexer is notable for its gate-level efficiency, requiring only ten 

transistors for a static CMOS implementation. Compared to an existing optimized EOQDI 

multiplexer, the proposed monotonic multiplexer demonstrates a latency reduction of 67% 

(69%), an area reduction of 84% (84%), and a power reduction of 66% (67%) for RtZ 

(RtO) handshaking, based on implementation a 28-nm CMOS technology. Since the 

multiplexer is a relatively small component, its performance is best evaluated in a broader 

circuit context. To do this, we incorporated conventional multiplexers and the proposed 

multiplexer individually into IO mode asynchronous 32-bit CSLAs, keeping the compute 

element (the full adder) consistent. The performance evaluation revealed that the CSLA 

utilizing the proposed multiplexer achieves a 43% (44%) reduction in cycle time, a 28% 

(28%) reduction in area, and a 44% (45%) reduction in PCTP compared to the CSLA with 

an EOQDI multiplexer for RtZ (RtO) handshaking. 
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