
FACTA UNIVERSITATIS

Series: Electronics and Energetics Vol. 38, No 2, June 2025, pp. 239 - 261

https://doi.org/10.2298/FUEE2502239B

© 2025 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

Original scientific paper

ASYNCHRONOUS MONOTONIC MULTIPLEXER

Padmanabhan Balasubramanian1, Nikos E. Mastorakis2

1College of Computing and Data Science, Nanyang Technological University, Singapore
2Technical University of Sofia, English Language Faculty of Engineering (ELFE),

Department of Industrial Engineering, Sofia, Bulgaria

ORCID iDs: Padmanabhan Balasubramanian https://orcid.org/0000-0001-9412-4773

 Nikos E. Mastorakis N/A

Abstract. Among input-output (IO) mode asynchronous circuits, indicating circuits are

more popular and robust. However, they may not be efficient in design metrics such as

cycle time, area, and power dissipation. In contrast, monotonic circuits, which are also

IO mode asynchronous circuits but less explored, can potentially optimize the design

metrics better than indicating circuits. Recent studies have demonstrated that

monotonic circuits outperform indicating circuits in arithmetic operations like addition

and multiplication. While monotonic circuits may be labeled theoretically less robust

than indicating circuits, their operation is similar in practice. This article presents a novel,

compact monotonic IO mode asynchronous multiplexer. The multiplexer is significant in

digital circuits as it has applications across various domains including communication

systems, digital signal processing, memory addressing, etc. We considered dual-rail

encoding for the multiplexer and employed four-phase handshaking. Two four-phase

handshaking schemes are available namely, return-to-zero (RtZ) handshaking and return-

to-one (RtO) handshaking, and we considered both for this work. Compared to an optimized

early output quasi-delay-insensitive multiplexer, which is derived by modifying a strong-

indication multiplexer and represents the best among the existing designs, the proposed

monotonic multiplexer achieves a 67% (69%) reduction in latency, an 84% (84%)

reduction in area, and a 66% (67%) reduction in power for RtZ (RtO) handshaking.

Since the multiplexer is a small component, its effectiveness should be evaluated by

integrating it into a circuit setup. In this context, we used existing multiplexers and the

proposed multiplexer to realize IO mode asynchronous 32-bit carry select adders

(CSLAs) while keeping the compute element, namely the full adder consistent. We

estimated the design metrics of CSLAs incorporating different multiplexers,

implemented using a 28-nm bulk CMOS process technology. The CSLA utilizing the

proposed monotonic multiplexer achieved a 43% (44%) reduction in cycle time and a

Received September 17, 2024; revised November 16, 2024 and January 07, 2025; accepted January 14, 2025

Corresponding author: Padmanabhan Balasubramanian

College of Computing and Data Science, Nanyang Technological University, Singapore

E-mail: balasubramanian@ntu.edu.sg

https://orcid.org/0000-0001-9412-4773

240 P. BALASUBRAMANIAN, N.E. MASTORAKIS

28% (28%) reduction in area compared to the CSLA utilizing an early output quasi-

delay-insensitive multiplexer for RtZ (RtO) handshaking with no power penalty.

Key words: asynchronous circuits, digital logic design, low power, high-speed, CMOS

1. INTRODUCTION

The multiplexer is a basic and important component that has practical applications across

various domains in electronics, telecommunications, and digital systems. In communication

systems, multiplexers combine multiple data streams into a single stream for transmission

over a shared medium like a cable or a wireless channel. This is known as multiplexing, and it

allows for more efficient use of a communication channel. In analog-to-digital conversion,

where analog signals should be converted into digital format for processing by digital systems,

multiplexers are used to select one of many analog input signals for conversion by an analog-

to-digital converter. In digital signal processing, multiplexers are used to select different data

streams or inputs for processing by digital signal processing algorithms or hardware. In

memory systems, multiplexers are used for memory address decoding where they are used to

select an appropriate memory location based on the address provided by a central processing

unit. In control systems, multiplexers are used to select different control signals or inputs to

control various processes or devices. Multiplexers are also used in testing and measurement

equipment to select different input signals for measurement by a single instrument. In digital

video broadcasting systems, multiplexers are used to combine multiple digital video streams,

audio streams, and other data into one transport stream for transmission. In telecommunication

networks, multiplexers play a crucial role in combining multiple voice or data channels into

higher-order transmission links, optimizing bandwidth usage. In sensor networks, multiplexers

can be used to aggregate data from multiple sensors before transmitting the data over to a

communication network. In industrial automation systems, multiplexers select different

sensors, actuators, or control signals in manufacturing processes or automated systems.

This paper introduces a multiplexer that falls within the monotonic category of input-

output (IO) mode asynchronous circuits. These circuits typically encode data using delay-

insensitive codes and follow a four-phase handshake protocol for data exchange. In

contrast to synchronous circuits that depend on a clock signal, IO mode asynchronous

circuits function based on events, which enhances their robustness. The event-driven

approach makes IO mode asynchronous circuits more resilient to variations in process,

voltage, and temperature, thus improving their adaptability [1,2]. Furthermore, IO mode

asynchronous circuits are modular [3,4], self-checking [5], less affected by electromagnetic

interference than synchronous designs [6], and naturally resistant to side-channel attacks

[7], making them particularly suitable for security-sensitive applications [8].

Asynchronous circuits used in IO systems are commonly classified into quasi-delay-

insensitive (QDI) and non-QDI categories. QDI circuits rely on a concept called isochronic

forks [9], which refers to electrical nodes with multiple outgoing wires, functioning under

the premise that signals on these wires transition at the same time. This assumption

generally applies to both microelectronics and nanoelectronics [10]. QDI circuits ensure

that outputs are generated only after all inputs have been received and processed, and

internal computations are completed. While this feature improves the reliability of QDI

circuits, it also results in greater implementation costs, as these circuits tend to require more

area, have higher latency and cycle times, and dissipate more power than non-QDI circuits.

 Asynchronous Monotonic Multiplexer 241

QDI circuits are categorized into several types: strong indication [11], weak indication

[11], and early output QDI (EOQDI) [12]. In strong indication circuits, outputs are not

generated until all primary inputs have been received and processed. Weak indication

circuits, on the other hand, allow some outputs to be produced once certain inputs have

been processed, though the final output will appear only after all inputs have been

processed. EOQDI circuits are designed to generate outputs as soon as some inputs are

processed, especially when a spacer is introduced. In EOQDI circuits, isochronic forks

assumed for the primary inputs ensure that any delayed inputs are duly acknowledged.

Non-QDI IO mode asynchronous circuits consist of relative-timed circuits [13] and

monotonic circuits [14,15]. Relative-timed circuits rely on certain timing constraints to

properly sequence input signals for output generation. Monotonic circuits, however,

maintain consistent signal transitions throughout the circuit. In a monotonically rising

circuit, a rising transition (e.g., binary 0 to 1) at the primary inputs triggers corresponding

rising transitions at both intermediate and primary outputs. Conversely, in a monotonically

falling circuit, a falling transition (e.g., binary 1 to 0) at the inputs results in falling

transitions at the outputs. A circuit may exhibit monotonic behavior with rising, falling,

both, or neither transition. While synchronous circuits typically do not show monotonicity,

IO mode asynchronous circuits are generally monotonic. In this discussion, “monotonic

circuits” specifically refer to IO mode asynchronous circuits that support both rising and

falling behaviors. Although monotonic circuits often produce early outputs, they are not

deemed QDI because they do not require the completion of all internal computations before

generating outputs. Non-QDI circuits, which impose fewer constraints than QDI circuits,

provide greater flexibility and contribute to reduced circuit complexity, thereby achieving

more efficient designs. Recent studies have shown that monotonic circuits outperform QDI

circuits in computer arithmetic tasks such as addition [16] and multiplication [17].

The organization of this article is as follows: Section 2 describes the foundational

concepts of IO mode asynchronous circuit design. Section 3 reviews traditional indicating

multiplexers along with an EOQDI multiplexer. Section 4 presents the design of the

proposed monotonic multiplexer. Section 5 compares the design metrics of various

multiplexers and 32-bit asynchronous carry select adders implemented using these

multiplexers. Finally, Section 6 concludes this article with a summary.

2. FUNDAMENTALS OF IO MODE ASYNCHRONOUS CIRCUIT DESIGN

Fig. 1a presents a block diagram of an IO mode asynchronous circuit pipeline [1].

Each stage in this pipeline consists of an asynchronous circuit placed between sets of

input and output registers. The input registers may function as output registers for the

previous stage, while the output registers can serve as input registers for the following

stage. The input registers supply inputs to the asynchronous circuit for processing. A

completion detector on the input side indicates the reception of all inputs, and on the

output side, it indicates the completion of all outputs. Figs. 1b and 1c show examples of

completion detectors for Return-to-Zero (RtZ) and Return-to-One (RtO) handshaking

schemes respectively, which will be discussed further in this section. The completion

detector associated with the output registers sends an output acknowledgment signal

(Ack_O), which, after a Boolean inversion, becomes the input acknowledgment signal

(Ack_I). Ack_I allows the input registers to supply new inputs to the asynchronous

242 P. BALASUBRAMANIAN, N.E. MASTORAKIS

circuit. In an IO mode asynchronous circuit, “handshaking” refers to the communication

protocol followed between input and output registers.

Fig. 1 (a) Block diagram of a single pipeline stage in an IO mode asynchronous circuit.

Sample completion detector design for (b) RtZ handshaking and (c) RtO

handshaking. (d) Logic symbol and static CMOS transistor-level design for a 2-

input C-element, created by adding feedback to an AO222 complex gate

In an IO mode asynchronous circuit, the Muller C-element [18] functions as a

register. When all inputs to the C-element are either 0 or 1, the output will match this

value, producing a 0 or 1 accordingly; if the inputs are mixed, the output retains its

current state. Fig. 1d shows inputs X and Y feeding into the C-element, with Z as the

output. This figure provides the logic symbol, transistor-level structure, and output

equation for the C-element. A 2-input C-element can be realized at the transistor level by

 Asynchronous Monotonic Multiplexer 243

adding feedback to a static CMOS AO222 complex gate [19]. Multiple custom designs

for the C-element have been developed and evaluated in [20,21]; however, this study

employs a semi-custom design based on the approach followed in [19]. In the input

registers of Fig. 1a, each C-element connects one input to Ack_I and the other to an

encoded input signal rail.

In IO mode asynchronous circuits, delay-insensitive codes [22], such as dual-rail (also

known as two-rail, double-rail, or 1-of-2 code), are frequently used for encoding inputs and

outputs. We will now explain how dual-rail encoding is applied to inputs and outputs within

the context of RtZ and RtO handshaking, followed by an overview of each handshaking

scheme. For dual-rail encoding under the RtZ handshaking scheme [1], an input signal,

denoted by I, is represented with two wires say, I1 and I0. When I = 1, the encoding is set to

I1 = 1 and I0 = 0; when I = 0, it is encoded as I1 = 0 and I0 = 1. These configurations

represent ‘data’ according to the RtZ handshake scheme. The combination I1 = I0 = 0 acts

as the ‘zero spacer’ that separates successive data in RtZ handshaking. The encoding I1 = I0

= 1 is considered invalid in RtZ handshaking, as the encoding is designed to remain

unordered [23]. For RtO handshaking [24], the dual-rail encoding uses two wires say, I1

and I0, to represent the input signal I. Here, when I = 1, the encoding is I1 = 0 and I0 = 1;

when I = 0, the encoding is I1 = 1 and I0 = 0. These two configurations indicate ‘data’

according to the RtO handshake scheme. The combination I1 = I0 = 1 serves as the ‘one

spacer’ that separates successive data in RtO handshaking. The combination I1 = I0 = 0 is

invalid for RtO handshaking, as unordered encoding is required [23].

Figs. 1b and 1c depict examples of dual-rail encoded inputs, denoted as (P1, P0) and

(Q1, Q0). In Fig. 1b, a completion detector for RtZ handshaking is shown, consisting of

OR gates at the initial logic level. Each two-input OR gate combines the two rails of a

particular encoded input. The outputs from these OR gates are then routed to a C-element,

or a chain of C-elements, to produce the output acknowledgment signal (Ack_O). In

contrast, Fig. 1c illustrates a completion detector for RtO handshaking, which utilizes AND

gates at the first logic level. Each two-input AND gate combines the two rails of the

encoded inputs, and the resulting outputs are subsequently directed to a C-element or a

series of C-elements to generate Ack_O.

We shall now describe RtZ and RtO handshaking protocols. In RtZ handshaking, the

process begins with the first phase, where Ack_I is set to 1 and Ack_O is at 0. This

signals the input registers to send data to the asynchronous circuit. During this phase, one

of the two rails of each encoded input is set to 1, indicating that the data is ready for

processing. In the second phase, the output registers receive the processed data from the

asynchronous circuit, and the completion detector sets Ack_O to 1. In the third phase, the

input registers wait for Ack_I to return to 0 before sending the spacer to the asynchronous

circuit for processing. In the final phase, the output registers receive the spacer, and the

completion detector sets Ack_O back to 0. This concludes one data transaction and

signals that the asynchronous circuit is ready for the next data transaction when Ack_I is

set to 1 again. As a result, in RtZ handshaking, the input sequence follows the pattern of

‘data–spacer–data–spacer’, and so on.

In RtO handshaking, the process starts with the first phase, where Ack_I is set to 1

and Ack_O is at 0. This signals the input registers to send the spacer to the asynchronous

circuit for processing. During this phase, all rails of the encoded inputs are set to 1,

indicating that the spacer is ready to be processed by the asynchronous circuit. In the

second phase, the asynchronous circuit generates the spacer, which is then received by

244 P. BALASUBRAMANIAN, N.E. MASTORAKIS

the output registers. The completion detector for the output registers sets Ack_O to 1. In

the third phase, the input registers wait for Ack_I to return to 0 before sending the data to

the asynchronous circuit, with one of the two rails of each encoded input set to 0. In the

fourth phase, the asynchronous circuit processes the data and produces the output, which is

then received by the output registers. The completion detector sets Ack_O back to 0. This

marks the end of a data transaction and indicates that the asynchronous circuit is ready for

the next data transaction when Ack_I is set to 1 again. Thus, in RtO handshaking, the input

sequence follows the pattern of ‘spacer–data–spacer–data’ and so forth.

To maintain delay insensitivity in IO mode asynchronous circuits, a spacer is placed

between successive input data. In a monotonic circuit, this spacer ensures that data and

spacer do not conflict, thus preserving external delay insensitivity throughout the handshaking

process. In the IO mode asynchronous pipeline depicted in Fig. 1a, the key timing metric is

the ‘cycle time’, which represents the total duration required to complete a single data

transaction. The maximum time taken to process data is known as forward latency, while

the maximum time to process the spacer is referred to as reverse latency. Forward and

reverse latency may vary based on the circuit’s design and underlying logic. The overall

cycle time of an IO mode asynchronous circuit is the sum of the forward and reverse

latencies. The critical path that determines the latency of the circuit, which includes the

input register bank and the asynchronous circuit, is shown by the red dashed line in Fig. 1a.

3. CONVENTIONAL ASYNCHRONOUS MULTIPLEXER DESIGNS

Existing IO mode multiplexer designs follow the strong indication, as the multiplexer

features a single primary output that is dual-rail encoded. Hence, multiplexers cannot be

designed as weak indication circuits since weak indication circuits require a minimum of

two encoded primary outputs – one generated after processing a subset of the primary

inputs, and the other produced after processing the remaining or all the inputs. This

section will discuss strong indication and EOQDI multiplexers.

3.1. DIMS multiplexer

The delay-insensitive minterm synthesis, also called DIMS [25], requires listing a

function's distinct product terms that include all the support variables. Let us consider (A1,

A0) and (B1, B0) as the dual-rail encoded inputs, (S1, S0) as the dual-rail encoded select

signal, and (M1, M0) as the dual-rail encoded output of a 2-to-1 multiplexer. In this case,

the output expressions for the multiplexer are given by (1) and (2), which conform to RtZ

handshaking. Equations (1) and (2) imply that when the select signal is binary 0 (i.e., S1 =

0, S0 = 1), input A is selected and forwarded as the output. Conversely, input B is selected

and forwarded as the output when the select signal is binary 1 (i.e., S1 = 1, S0 = 0).

 M1 = A0B1S1 + A1B0S0 + A1B1S0 + A1B1S1 (1)

 M0 = A0B0S0 + A0B0S1 + A0B1S0 + A1B0S1 (2)

Equations (1) and (2) are represented as sums of disjoint products, where each product

term is independent or orthogonal to the others [26]. In the case of RtZ handshaking, only

one product term in (1) or (2) evaluates to 1 when data is input. Conversely, for RtO

handshaking, only one product term evaluates to 0 under the same conditions. These

 Asynchronous Monotonic Multiplexer 245

conditions, in which only a single product term evaluates to either 1 or 0 for RtZ or RtO

handshaking, are known as the monotonic cover constraint [1]. From the perspective of

physical implementation, this constraint guarantees that one signal path is activated from

the primary input to the primary output, thereby avoiding unnecessary transitions on the

intermediate gate outputs within the circuit. The monotonic cover constraint is commonly

incorporated in IO mode asynchronous circuits.

Fig. 2 shows the logic implementation of a strongly indicating 2-to-1 multiplexer

using the DIMS method, which utilizes C-elements and OR gates and is designed for RtZ

handshaking. If the OR gates in this design were replaced with AND gates, the resulting

logic would be suitable for RtO handshaking. In general, by replacing all gates (except

the C-elements) in an IO mode asynchronous circuit with their Boolean duals, a circuit

can be transformed from one that corresponds to RtZ handshaking to one that

corresponds to RtO handshaking and vice versa. This principle has been proved through

logical induction in [27].

Fig. 2 Logic realization of a 2-to-1 multiplexer based on the DIMS method (corresponding to

RtZ handshaking)

3.2. Toms’ multiplexer

Toms’ method for strongly indicating logic synthesis of combinational functions

(post-encoding) [28,29] employs standard multi-level logic synthesis techniques [30].

These techniques involve extracting one or more product terms (a sum of multiple

products) by solving the rectangle covering problem, which is efficiently tackled using a

sparse-matrix approach developed by Rudell [31]. Once the product terms are identified,

they are substituted as intermediate variables into the original logic expressions. The

extraction phase involves finding and creating common sub-functions and variables,

while the substitution phase inserts an intermediate function X into a larger function Y,

where Y is expressed in terms of its original inputs and X. These processes are similar to

Boolean division and multiplication, respectively.

246 P. BALASUBRAMANIAN, N.E. MASTORAKIS

Fig. 3 displays the logical implementation of a strongly indicating Toms 2-to-1

multiplexer for RtZ handshaking, which is composed of C-elements and OR gates. To

obtain the corresponding multiplexer circuit for RtO handshaking, the OR gates should

be replaced with AND gates.

Fig. 3 2-to-1 multiplexer based on Toms’ method (corresponding to RtZ handshaking)

3.3. Early output QDI multiplexer

Equations (1) and (2) given for the DIMS multiplexer can be simplified to remove

logical redundancy. In (1), the sum of products A1B1S1+A1B1S0 simplifies to A1B1,

and similarly, in (2), A0B0S1+A0B0S0 simplifies to A0B0. As a result, the strong

indication multiplexer based on the DIMS method can be modified to create an EOQDI

multiplexer that synthesizes (3) and (4). Fig. 4, derived based on (3) and (4), represents

the circuit for RtZ handshaking. To convert this to an equivalent circuit for RtO

handshaking, the OR gates in Fig. 4 should be replaced with AND gates.

 M1 = A0B1S1 + A1B0S0 + A1B1 (3)

 M0 = A0B1S0 + A1B0S1 + A0B0 (4)

Fig. 4 Early output QDI multiplexer (corresponding to RtZ handshaking)

 Asynchronous Monotonic Multiplexer 247

3.4. SIDCO and SIDCAO multiplexers

In [32], two strongly indicating multiplexer designs were proposed: SIDCO, which

uses C-elements and OR gates, and SIDCAO, which incorporates C-elements, AND

gates, and OR gates. These designs are illustrated in Figs. 5a and 5b, both of which are

intended for RtZ handshaking. To adapt them for RtO handshaking, the OR gates in Figs.

5a and 5b should be swapped with AND gates and the AND gates should be replaced by

OR gates. The SIDCO and SIDCAO multiplexers implement (5) and (6), given below.

 M1 = A1S0 + B1S1 (5)

 M0 = A0S0 + B0S1 (6)

Fig. 5 (a) SIDCO multiplexer and (b) SIDCAO multiplexer, corresponding to RtZ handshaking.

In Fig. 5a, the intermediate output (NM1, NM0) is functionally the same as the

primary output (M1, M0) of the multiplexer. However, to ensure a strong indication, an

internal completion detector is used to verify the arrival of the multiplexer inputs (A1,

A0) and (B1, B0). This internal completion detector, highlighted within the blue dotted

box in Fig. 5a, generates an output labeled NCD. NCD is synchronized separately with

NM1 and NM0 to yield the final primary output (M1, M0).

In Fig. 5b, the C-elements that generate the products A1S0, B1S1, A0S0, and B0S1 in

Fig. 5a are replaced with AND gates. To ensure a strong indication, an internal

completion detector is introduced to verify the arrival of both the multiplexer inputs and

the select signal. This completion detector, highlighted within the red dotted box in Fig.

5b, produces an output labeled ICD. The intermediate output (IM1, IM0) behaves

identically to the primary output (M1, M0). However, IM1 and IM0 are synchronized

individually with ICD to produce the final primary output (M1, M0).

248 P. BALASUBRAMANIAN, N.E. MASTORAKIS

4. PROPOSED ASYNCHRONOUS MONOTONIC MULTIPLEXER

The multiplexers discussed till now are either strongly indicating or EOQDI. In

contrast, the multiplexer introduced here is a monotonic circuit. The circuit diagrams of

the proposed multiplexer are presented in Figs. 6a and 6b for RtZ and RtO handshaking.

Fig. 6 Proposed multiplexer corresponding to handshake schemes: (a) RtZ and (b) RtO

The proposed multiplexer, designed for RtZ handshaking, uses two AO22 complex

gates, which implement (5) and (6). The dual of the AO22 complex gate is the OA22

complex gate, so for RtO handshaking, two OA22 gates are used. In comparison to Figs.

2 through 5, Fig. 6 shows that the proposed multiplexer does not incorporate any C-

elements, unlike the other designs. Additionally, this proposed design represents an

optimized gate-level realization of a 2-to-1 multiplexer in IO mode asynchronous circuit

type, requiring only ten transistors for a static CMOS implementation. As mentioned in

Section 1, monotonic circuits are more flexible than QDI circuits and only need to ensure

the monotonicity of signal transitions for data and spacer.

We shall explain the monotonic and early output operation of the proposed multiplexer

based on RtZ and RtO handshake schemes by considering example scenarios. Typically, for

RtZ handshaking, when data is applied, the signal transitions will rise monotonically (from

0 to 1) through the primary inputs and any intermediate outputs to the primary outputs. For

the spacer, the signal transitions will fall monotonically (from 1 to 0) from the primary

inputs through the intermediate outputs to the primary outputs. In Fig. 6a, when data is

input, if A1 = S0 = 1 or B1 = S1 = 1, the output M1 could assume 1 early without waiting

for B1/B0 to assume 1 in the former case and A1/A0 to assume 1 in the latter case. Given

this, any late transition of B1/B0 to 1 (in the former case) and A1/A0 to 1 (in the latter case)

will be acknowledged by the completion detector. Since the isochronic fork assumption is

applied to the primary inputs, the acknowledgment provided by the completion detector

applies to the multiplexer as well. When the spacer is applied, M1 can transition to 0 early,

even if A1 or S0 (if they were 1 previously), or B1 or S1 (if they were 1 previously), change

to 0 without waiting for all inputs to reach 0. However, the next data will only be supplied

to the monotonic multiplexer after all primary inputs have been reset to 0, after indication

by the completion detector. Since the isochronic fork assumption applies to all primary

inputs, the RtZ condition of all inputs, as confirmed by the completion detector, is also

applicable to the multiplexer. These example scenarios considered show that both

monotonic and early output operation manifests in the proposed multiplexer for the

application of data and spacer with respect to RtZ handshaking.

 Asynchronous Monotonic Multiplexer 249

Typically, for RtO handshaking, when the spacer is applied, the signal transitions rise

monotonically (from 0 to 1) through the primary inputs and any intermediate outputs to

the primary outputs. In contrast, when data is applied, the signal transitions fall

monotonically (from 1 to 0) from the primary inputs through any intermediate outputs to

the primary outputs. Referring to Fig. 6b, when the spacer is provided, all inputs (A1, A0,

B1, B0, S1, and S0) will be set to 1, which causes M1 and M0 to assume 1. Due to the

properties of OR logic, if A1, B1, A0, and B0 are all 1, M1 and M0 can be set to 1 early,

without waiting for S1 and S0 to change to 1. However, if S1 and S0 take longer to reach

1, this will be confirmed by the completion detector before the data is supplied to the

multiplexer. As the isochronic fork assumption holds for the primary inputs, the

multiplexer is said to acknowledge that S1 and S0 have reached 1 once the completion

detector confirms this. Now, let us consider an example scenario when data is supplied

after the application of the spacer. If A1 and S0 assume 0 or if B1 and S1 assume 0, M1

could switch to 0 early, without waiting for B1/B0 to assume 0 in the former case and

A1/A0 to assume 0 in the latter case. Given this, any late transition of B1/B0 to 0 (in the

former case) or A1/A0 to 0 (in the latter case) will be acknowledged by the completion

detector. Since the isochronic fork assumption applies to all primary inputs, the

acknowledgment provided by the completion detector is said to apply to the multiplexer

as well. Thus, the example scenarios considered imply that both monotonic and early

output operation manifests in the proposed multiplexer for the application of both data

and spacer with respect to RtO handshaking.

Fig. 7 shows a screenshot of the input-output simulation waveforms of the proposed

multiplexer based on RtZ handshaking. Simulations were performed using Synopsys VCS by

supplying all distinct inputs at a latency of 1ns. The (zero) spacer was inserted between two

data inputs. In Fig. 7, (A1, A0) and (B1, B0) represent the multiplexer inputs, (S1, S0)

represents the multiplexer select input, and (Z1, Z0) represents the multiplexer output.

Fig. 7 A screenshot of simulation waveforms of the proposed multiplexer corresponding

to RtZ handshaking

250 P. BALASUBRAMANIAN, N.E. MASTORAKIS

Three sample markers, namely M1, M2, and M3 are shown in Fig. 7 which highlight

specific instances of input-output and they are mentioned below:

▪ Marker M1: A1 = B0 = S0 = 1, and Z1 = 1

▪ Marker M2: A1 = B0 = S1 = 1, and Z0 = 1

▪ Marker M3: A1 = B1 = S1 = 1, and Z1 = 1

Fig. 8 shows a screenshot of the input-output simulation waveforms corresponding to

the proposed multiplexer based on RtO handshaking. Again, simulations were performed

using Synopsys VCS by supplying all distinct inputs at a latency of 1ns. The (one) spacer

was inserted between two data inputs. The multiplexer input and output naming

convention was maintained the same in Fig. 8 as in Fig. 7. Three sample markers viz.

M1, M2, and M3 are shown in Fig. 8 which highlights specific instances of input-output

and they are mentioned below:

▪ Marker M1: A1 = B0 = S0 = 0, and Z1 = 0

▪ Marker M2: A1 = B0 = S1 = 0, and Z0 = 0

▪ Marker M3: A1 = B1 = S0 = 0, and Z1 = 0

Fig. 8 A screenshot of simulation waveforms of the proposed multiplexer corresponding

to RtO handshaking

5. DESIGN METRICS

This section will first present the design metrics of various multiplexers for RtZ and

RtO handshaking. After that, the design metrics of 32-bit carry-select adders (CSLAs)

implemented with conventional and proposed multiplexers will be presented. The CSLA

is used as a case study to illustrate how various multiplexers affect the cycle time, which

in turn influences the throughput in an IO mode asynchronous design.

The IO mode asynchronous multiplexers were designed using gates from a 28-nm

bulk CMOS standard digital cell library [33], with separate implementations for RtZ and

RtO handshaking. The strong indication and EOQDI multiplexers discussed in Section 3

utilize the C-element in their logic design. Further, the completion detectors require C-

 Asynchronous Monotonic Multiplexer 251

elements for their implementation. Since the C-element is not typically available in

standard cell libraries, it was manually implemented in static CMOS, as illustrated in Fig.

1d. A low-leakage typical case cell library was used that operates at a supply voltage of

1.05 V and a junction temperature of 25°C. Functional simulations and design metric

evaluations, including latency, area, and total (average) power dissipation, were carried

out using Synopsys EDA tools viz. VCS, PrimeTime and PrimePower. The default wire

load model was applied, and all output ports (i.e., multiplexer outputs) were assigned a

fanout-of-4 drive strength. A virtual clock was specified just to constrain the inputs and

outputs of the adder, though it was not included in the physical design. Functional

simulations for the multiplexers were conducted using separate test benches for RtZ and

RtO handshaking, with inputs provided at a latency of 1 ns. Nevertheless, the test

benches corresponding to RtZ and RtO handshaking are logically equivalent. The design

metrics estimated for the multiplexers are given in Table 1.

Table 1 Design metrics of multiplexers realized using a 28-nm bulk CMOS process.

Multiplexer Latency (ns) Area (µm2) Power Dissipation (µW)

Corresponding to RtZ handshaking

DIMS 0.49 46.76 14.37

Toms 0.51 39.65 13.61

EOQDI 0.45 31.01 10.15

SIDCO 0.44 31.26 20.40

SIDCAO 0.57 31.51 24.89

Proposed (monotonic) 0.15 5.08 3.43

Corresponding to RtO handshaking

DIMS 0.47 44.73 13.15

Toms 0.50 39.65 13.79

EOQDI 0.45 31.01 10.39

SIDCO 0.38 31.26 19.55

SIDCAO 0.57 31.51 24.91

Proposed (monotonic) 0.14 5.08 3.40

In contrast to the proposed multiplexer depicted in Fig. 6, the other multiplexers shown

in Figs. 2 to 5 require more gates and additional logic levels. As a result, the conventional

multiplexers consume more area, have higher power dissipation, and exhibit greater

latency, as evident from Table 1. Among the conventional designs, the EOQDI multiplexer,

which has been derived from the DIMS strong indication multiplexer, is more efficient. Its

latency is close to the latency of the SIDCO multiplexer while occupying slightly less area

and dissipating approximately half the power. The EOQDI multiplexer’s lower power

dissipation compared to the SIDCO multiplexer can be attributed to the absence of an

internal completion detector in the former compared to the latter. Generally, an internal

completion detector in an IO mode asynchronous circuit experiences significant switching

activity, as all gates within the detector transition during both data and spacer application.

When compared to the EOQDI multiplexer, the proposed monotonic multiplexer delivers a

66.7% (68.9%) reduction in latency, occupies 83.6% (83.6%) less area, and dissipates

66.2% (67.3%) less power for RtZ (RtO) handshaking.

252 P. BALASUBRAMANIAN, N.E. MASTORAKIS

To assess the performance of the proposed multiplexer, a 32-bit carry-select adder

(CSLA) was considered as a demonstration platform, where multiplexers are employed to

determine the correct sum output in the final stage. The CSLA [34] typically involves

two parallel adders: one operates with the assumption of a zero carry input, and the other

assumes a carry input of one. This method accelerates the addition process by evaluating

both addition possibilities simultaneously and then selecting the appropriate result. Once

both adders have finished their calculations, multiplexers are used to select the correct

sum based on the actual carry input.

Fig. 9 32-bit IO mode dual-rail encoded asynchronous CSLA featuring an 8-8-8-8 input

partition

In Fig. 9, a 32-bit IO mode asynchronous CSLA featuring an 8-8-8-8 input partition is

shown [35]. The primary inputs and outputs, and intermediate outputs of the CSLA are

dual-rail encoded. X and Y represent the inputs of the CSLA while Sum represents its

output. Given an 8-8-8-8 input partition, a least significant 8-bit ripple carry adder (RCA)

viz. RCA_1 is used to add input bits X7 to X0 with corresponding input bits Y7 to Y0. 8-

bit RCA_2 and RCA_3 are used to add input bits X15 to X8 with corresponding input bits

Y15 to Y8 separately assuming carry inputs of 0 and 1 respectively. The two sets of sum

and carry outputs produced corresponding to these additions are forwarded as inputs to a

multiplexer logic labeled MX1 which consists of nine 2-bit multiplexers to issue the

correct sum bits Sum15 up to Sum8 and the carry output signal C2 using a common select

signal, which is the carry output C1 produced by RCA_1. Likewise, RCA_4 and RCA_5

are used to add input bits X23 to X16 with corresponding input bits Y23 to Y16 separately

assuming carry inputs of 0 and 1 respectively. The two sets of sum and carry outputs

produced corresponding to these additions are forwarded as inputs to a multiplexer logic

labeled MX2 which consists of nine 2-bit multiplexers to issue the correct sum bits Sum23

up to Sum16 and the carry output signal C3 using a common select signal, which is the

carry output C2 from MX1. Similarly, RCA_6 and RCA_7 are used to add input bits X31

to X24 with corresponding input bits Y31 to Y24 separately assuming carry inputs of 0 and

1 respectively. The two sets of sum and carry outputs produced corresponding to these

 Asynchronous Monotonic Multiplexer 253

additions are forwarded as inputs to a multiplexer logic labeled MX3 which consists of

nine 2-bit multiplexers to issue the correct sum bits Sum32 up to Sum24 using a common

select signal, which is the carry output C3 from MX2.

Fig. 10 Asynchronous monotonic full adder (corresponding to RtZ handshaking)

As illustrated in Fig. 9, by maintaining the same RCAs, different multiplexers discussed

in Sections 3 and 4 can be used individually to implement 32-bit CSLAs, allowing for their

performance evaluation. The RCAs are efficiently implemented using a monotonic full

adder described in [16], shown in Fig. 10, which has been designed for RtZ handshaking. In

Fig. 10, (P1, P0) and (Q1, Q0) represent the full adder’s inputs, while (C1, C0) denotes the

carry input. The sum output is denoted as (FS1, FS0), and the carry output is represented by

(FC1, FC0). This monotonic full adder is characterized by its early output property. To

obtain the logical equivalent of Fig. 10 pertaining to RtO handshaking, the AO22 complex

gates should be replaced by their Boolean duals viz. the OA22 complex gates. In [35], an

EOQDI full adder was used. Compared to this, the full adder of [16] occupies 44.4% less

area for both handshake schemes, and hence it was considered for this work.

We designed several 32-bit IO mode asynchronous CSLAs utilizing traditional and

newly proposed multiplexers individually based on dual-rail encoding, and adhering to

RtZ and RtO handshaking. Specifically, one stage of the IO mode asynchronous circuit,

as shown in Fig. 1a, was constructed, including a register set for the adder inputs, a

completion detector, and the 32-bit CSLA functioning as the IO mode asynchronous

circuit. The design metrics for the 32-bit CSLAs, incorporating various multiplexers,

were evaluated for both RtZ and RtO handshaking, and they are presented in Table 2.

The design parameters were determined using Synopsys EDA tools mentioned earlier,

following the same low-leakage 28-nm CMOS cell library PVT specification and the

methodology followed for the multiplexers. A test bench with over 1000 random inputs

was supplied to the CSLAs at a latency of 10 ns for performing functional simulations

and tracking the switching activity. The test benches used for RtZ and RtO handshaking

are logically equivalent. The design metrics estimated for the CSLAs include forward

latency, reverse latency, cycle time (which is the sum of forward and reverse latencies),

area, and total power dissipation.

254 P. BALASUBRAMANIAN, N.E. MASTORAKIS

Table 1 presented the forward latency (since multiplexers were implemented

independently) alone and not the cycle time. This was because the completion detector's

latency was found to exceed that of certain multiplexers when the multiplexers were

implemented as a single IO mode asynchronous circuit stage, complicating the performance

comparison. However, when the 32-bit CSLA was implemented as an IO mode asynchronous

stage, its latency exceeded the completion detector’s latency, enabling accurate performance

comparisons of various multiplexers. Table 2 presents all three timing parameters (forward

latency, reverse latency, and cycle time) highlighting that the latencies in the forward and

reverse directions for some IO mode asynchronous CSLAs may be different. This issue has

been discussed in previous research [37]. Furthermore, different multiplexers impact the

CSLA’s timing in distinct ways. The forward latency of the CSLAs was directly measured,

while the reverse latency was computed based on the respective gate and net delays

specified in the timing reports. The cycle time, representing the duration of a single data

transaction, was obtained by summing the forward and reverse latencies.

Table 2 Design parameters of asynchronous 32-bit CSLAs with different multiplexers

realized using a 28-nm bulk CMOS process. In the table, FL denotes forward

latency, RL denotes reverse latency, and CT denotes cycle time.

Multiplexer used in CSLA FL (ns) RL (ns) CT (ns) Area (µm2) Power (µW)

Corresponding to RtZ handshaking

DIMS 2.51 1.80 4.31 2893.94 2279

Toms 2.71 2.07 4.78 2701.81 2269

Early output QDI 2.14 1.58 3.72 2468.50 2251

SIDCO 2.53 1.89 4.42 2475.36 2284

SIDCAO 2.56 2.00 4.56 2482.23 2297

Proposed (monotonic) 1.51 0.61 2.12 1768.59 2218

Corresponding to RtO handshaking

DIMS 2.50 1.78 4.28 2839.04 2264

Toms 2.70 2.05 4.75 2701.81 2264

Early output QDI 2.12 1.55 3.67 2468.50 2239

SIDCO 2.52 1.87 4.39 2475.36 2273

SIDCAO 2.54 1.97 4.51 2482.23 2286

Proposed (monotonic) 1.48 0.59 2.07 1768.59 2205

As shown in Fig. 9, the forward latency of the CSLAs is determined by the total

propagation delays of RCA_1, MX1, MX2, and MX3. Within MX1, a delay is introduced

by a 2-to-1 multiplexer that is responsible for passing the carry signal to MX2. Similarly,

in MX2, another 2-to-1 multiplexer introduces a delay as it forwards the carry signal to

MX3. In MX3, a final 2-to-1 multiplexer delay occurs, which generates the sum bit.

Therefore, the forward latency of the CSLA in Fig. 9 can be represented by (7), where

DReg stands for the propagation delay of an input register, DRCA_1 is the delay of the 8-bit

RCA_1, DFA denotes the propagation delay of a full adder, and DMUX21 is the delay of a 2-

to-1 multiplexer. In (7), the first two terms on the right-hand side are constants, as the

same full adder (depicted in Fig. 10) was used in all CSLAs. However, the third term

may vary depending on the specific multiplexer employed.

 FLCSLA = DReg + DRCA_1 + (3×DMUX21) = DReg + (8×DFA) + (3×DMUX21) (7)

 Asynchronous Monotonic Multiplexer 255

To examine how different multiplexers affect the forward and reverse latencies of CSLAs,

let us focus on RtZ handshaking as a test case here. A similar analysis can be conducted for

RtO handshaking, which we leave to an interested reader. However, we will present the

results of the theoretical delay modeling for both RtZ and RtO handshaking.

By substituting the appropriate multiplexer delays into (7), the forward latency of

CSLAs using DIMS, Toms, EOQDI, SIDCO, SIDCAO, and the proposed (monotonic)

multiplexers are represented by (8), (9), (10), (11), (12), and (13) respectively. These

equations serve as approximate latency models, as they omit the delays associated with

interconnects and parasitics for simplifying the theoretical analysis. In the equations, DCE2

and DAO22 represent the typical propagation delays of a 2-input C-element and an AO22

complex gate, while DOR2, DOR3, and DOR4 represent the propagation delays of 2-input, 3-

input, and 4-input OR gates, respectively.

 FLCSLA
DIMS = DReg + (8×DFA) + 3×(DCE2 + DOR4) (8)

 FLCSLA
Toms = DReg + (8×DFA) + 3×(2×DCE2 + DOR2 + DOR3) (9)

 FLCSLA
EOQDI = DReg + (8×DFA) + 3×(DCE2 + DOR3) (10)

 FLCSLA
SIDCO = DReg + (8×DFA) + 3×(2×DCE2 + DOR2) (11)

 FLCSLA
SIDCAO = DReg + (8×DFA) + (7×DCE2 + 3×DOR2) (12)

 FLCSLA
Proposed = DReg + (8×DFA) + 3×DAO22 (13)

The reverse latency can also be theoretically modeled to point out the delay variations

across CSLAs that use different multiplexers. With the inclusion of a monotonic full

adder (as shown in Fig. 10), the reverse latency of the CSLA (depicted in Fig. 9) using

strong indication or EOQDI multiplexers is generally represented by (14). However, the

reverse latency expression for the CSLA utilizing the proposed multiplexer will differ

and this will be addressed later in this section.

 RLCSLA = DReg + DRCA_1 + (3×DMUX21) = DReg + DFA + (3×DMUX21) (14)

By comparing (14) and (7), it becomes evident that the reverse latency is smaller than

the forward latency, primarily because only the delay of a single full adder is considered

in (14), whereas (7) accounts for the combined delays of eight full adders. This difference

arises due to the monotonic full adder, which can be reset early based on the adder inputs,

regardless of the carry input. For RtZ handshaking, as seen in Fig. 10, once the signals

P1/P0 and Q1/Q0, whichever were 1 earlier, transition to the spacer, both the sum

(FS1/FS0) and the carry output (FC1/FC0) of the full adder can also assume the spacer

state, regardless of whether C1/C0 assumes the spacer. This means that all the full adders

in RCA_1 through RCA_7 can transition to the spacer state at the same time. As a result,

when the spacer is applied, the delay of the RCA effectively reduces to the delay of just

one full adder, as indicated by the second term in (14). Since conventional multiplexers

contain C-elements in their design, the third term in (14) remains identical to that in (7).

Therefore, the reverse latency of CSLAs using DIMS, Toms, EOQDI, SIDCO, and

SIDCAO multiplexers are given by (15), (16), (17), (18), and (19), respectively. These

equations are also approximate models of latency, as they omit the delays associated with

interconnects and parasitics for simplicity.

256 P. BALASUBRAMANIAN, N.E. MASTORAKIS

 RLCSLA
DIMS = DReg + DFA + 3×(DCE2 + DOR4) (15)

 RLCSLA
Toms = DReg + DFA + 3×(2×DCE2 + DOR2 + DOR3) (16)

 RLCSLA
EOQDI = DReg + DFA + 3×(DCE2 + DOR3) (17)

 RLCSLA
SIDCO = DReg + DFA + 3×(2×DCE2 + DOR2) (18)

 RLCSLA
SIDCAO = DReg + DFA + (7×DCE2 + 3×DOR2) (19)

The reverse latency of the CSLA incorporating the proposed multiplexer is theoretically

given by (20). Similar to (15) through (19), the second term on the right-hand side of (20)

represents the delay of a full adder corresponding to RCA_1. Referring to Fig. 6a, since the

proposed multiplexer is monotonic, once A1/B1 (whichever was 1 earlier) or A0/B0

(whichever was 1 earlier) transitions to the spacer state, M1/M0 (whichever was 1 earlier)

will also transition to the spacer state, regardless of the state of the select signal (S1/S0). It

is important to note that (A1, A0) and (B1, B0), which represent the multiplexer inputs,

combine the corresponding output pairs of the full adders in RCA_2 through RCA_7.

Consequently, all the multiplexers in MX1, MX2, and MX3 can simultaneously transition

to the spacer state based on the outputs from RCA_2 to RCA_7, resulting in a delay that is

equivalent to a single multiplexer, as indicated by the third term in (20).

 RLCSLA
Proposed = DReg + DFA + DAO22 (20)

Equations (8) to (13) and (14) to (20) provide insights into the variations in cycle time

of CSLAs that incorporate different multiplexers. By substituting the average propagation

delays of the gates from the cell library [33] into these equations, we calculated the

theoretical cycle time for CSLAs utilizing various multiplexers, specifically for RtZ

handshaking. For CSLAs corresponding to RtO handshaking, we calculated the cycle

time after considering the dual versions of the gates described in (8) to (13) and (15) to

(20), excluding the C-element. To normalize the theoretical cycle time, we divided the

cycle time of each CSLA by the maximum cycle time within the group, doing so

separately for both RtZ and RtO handshaking. A similar normalization procedure was

applied to the practical cycle times of CSLAs, using the estimates provided in Table 2 for

RtZ and RtO handshaking. Figs. 11a and 11b portray a comparison between the

theoretical and practical (normalized) cycle times of CSLAs incorporating different

multiplexers based on RtZ and RtO handshaking, respectively.

Figs. 11a and b demonstrate that while there are noticeable variations between the

theoretical and practical cycle times for certain CSLAs, primarily due to the simplified

theoretical delay models, a strong correlation is seen between the theoretical and practical

delays. This validates the accuracy of our theoretical delay modeling. Additionally, Figs.

11a and b show that the CSLA utilizing the proposed monotonic multiplexer achieves a

substantial reduction in cycle time when compared to those using strong indication or

EOQDI multiplexers. As shown in Table 2, while the CSLA with the EOQDI multiplexer

has a lower cycle time than the one comprising the strong indication multiplexer, the CSLA

employing the monotonic multiplexer achieves a 43% (43.6%) reduction in cycle time

relative to the CSLA incorporating the EOQDI multiplexer for RtZ (RtO) handshaking.

 Asynchronous Monotonic Multiplexer 257

Fig. 11 Comparison of the theoretical and practical (normalized) cycle time of CSLAs

incorporating different multiplexers corresponding to the handshake schemes:

(a) RtZ and (b) RtO

Because the same full adder (shown in Fig. 10) was utilized in constructing the

CSLAs, and both the input registers and the completion detector external to the CSLA

remain unchanged, the area variations between the CSLAs listed in Table 2 are solely due

to the differences in the areas of the multiplexers present in the CSLAs. Fig. 12 depicts

the areas of various multiplexers for RtZ and RtO handshaking protocols.

The area occupied by several multiplexers is observed to be identical for both RtZ and

RtO handshaking. This similarity arises from the fact that certain gate pairs in the digital

cell library [33] have equivalent areas – such as 2-input and 3-input OR gates having the

same area as 2-input and 2-input AND gates for a normal drive strength. Additionally,

AO22 and OA22 complex gates with normal drive strength have identical areas. This

explains why, in Table 2, many CSLAs have the same areas for both handshaking types.

258 P. BALASUBRAMANIAN, N.E. MASTORAKIS

Fig. 12 Area (in µm2) of different multiplexers corresponding to the handshake schemes:

(a) RtZ and (b) RtO

Compared to strong indication and EOQDI multiplexers illustrated in Figs. 2 through 5,

the proposed monotonic multiplexer in Fig. 6 requires significantly fewer gates and logic

components, resulting in a much smaller area, as seen in Fig. 12. Specifically, the proposed

multiplexer occupies 83.6% less area than the EOQDI multiplexer, and the CSLA with the

proposed multiplexer occupies 28.4% less area compared to the CSLA with the EOQDI

multiplexer. However, despite this reduction in area, the power dissipation difference between

the two CSLAs is rather minimal, with only a 1.5% decrease for RtZ and RtO handshaking.

The reason for this shall be explained next. As observed in Table 2, the variation in power

dissipation across various CSLAs is not much. This is due to the design of the multiplexers

and full adders within the CSLAs, which adhere to the monotonic cover constraint. As

explained in Section 3.1, the monotonic cover constraint activates a single, unique signal path

from a primary input to a primary output, reducing unnecessary switching and signal

transitions in IO mode asynchronous circuits, thus minimizing power variation between

logically similar but structurally distinct CSLAs. Minor differences in power do exist, and this

is due to the differences in multiplexers' logic. The power dissipation of input registers, the

completion detector, and full adders remain almost the same since they are shared across all

CSLAs. These elements contain more logic than the multiplexers in the CSLA, which causes

them to dominate the total power dissipation. Consequently, the variation in power dissipation

among different CSLAs in Table 2 is rather minor.

In contrast, Table 1 revealed a noticeable variation in power dissipation, as it focused

specifically on the design metrics of individual multiplexers. The overall conclusion from

Table 2 is that the CSLA with the proposed multiplexer significantly reduced both cycle time

and area compared to traditional multiplexers, without an increase in power dissipation. This

implies the proposed multiplexer enables more optimization when considering all the design

metrics together. Furthermore, Table 2 shows that the proposed multiplexer when used for

RtO handshaking enables a slight decrease in both cycle time and power when used for RtZ

handshaking, and this is due to differences in the gate types corresponding to the handshake

schemes.

In synchronous design, the power and delay product commonly serves as a figure of

merit for low-power or low-energy evaluation [38]. The equivalent metric in IO mode

asynchronous design is the power and cycle time product (PCTP). Hence, we computed

 Asynchronous Monotonic Multiplexer 259

the PCTP for each CSLA, using the design metrics listed in Table 2 for both RtZ and RtO

handshaking. The calculated PCTPs were then normalized by dividing them by the

highest PCTP for RtZ and RtO handshaking separately. The normalized PCTPs

corresponding to RtZ and RtO handshake schemes are presented in Figs. 13a and 13b,

respectively. As seen in Fig. 13, the CSLA with the proposed multiplexer has a

substantially lower PCTP compared to CSLAs using other multiplexers. Specifically, the

CSLA with the proposed multiplexer achieves a 43.9% (44.5%) reduction in PCTP for

RtZ (RtO) handshaking compared to the CSLA featuring the EOQDI multiplexer.

Fig. 13 Normalized PCTP of CSLAs incorporating different multiplexers corresponding

to the handshake schemes: (a) RtZ and (b) RtO

An optimized IO mode asynchronous CSLA was presented in [35], which utilized the

EOQDI full adder of [36] and the SIDCO multiplexer of [32]. We implemented this CSLA as

well and estimated its design metrics for the two handshake schemes, given below. These

metrics were estimated by following the same design methodology discussed previously.

▪ RtZ handshaking: Forward latency = Reverse latency = 2.54 ns, and Cycle time =

5.08 ns; Area = 3158.50 µm2; Power = 2444 µW

▪ RtO handshaking: Forward latency = Reverse latency = 2.50 ns, and Cycle time =

5 ns; Area = 3158.50 µm2; Power = 2438 µW

260 P. BALASUBRAMANIAN, N.E. MASTORAKIS

Compared to these design parameters, the CSLA realized using the monotonic full

adder of [16] and the proposed monotonic multiplexer achieved the following reductions

in design metrics: (i) 58.3% less cycle time, 44% less area, 9.2% less power, and 62.1%

less PCTP for RtZ handshaking, and (ii) 58.6% less cycle time, 44% less area, 9.6% less

power, and 62.6% less PCTP for RtO handshaking.

6. CONCLUSION

This article introduced a new IO mode multiplexer design that falls under the monotonic

class. The proposed multiplexer is notable for its gate-level efficiency, requiring only ten

transistors for a static CMOS implementation. Compared to an existing optimized EOQDI

multiplexer, the proposed monotonic multiplexer demonstrates a latency reduction of 67%

(69%), an area reduction of 84% (84%), and a power reduction of 66% (67%) for RtZ

(RtO) handshaking, based on implementation a 28-nm CMOS technology. Since the

multiplexer is a relatively small component, its performance is best evaluated in a broader

circuit context. To do this, we incorporated conventional multiplexers and the proposed

multiplexer individually into IO mode asynchronous 32-bit CSLAs, keeping the compute

element (the full adder) consistent. The performance evaluation revealed that the CSLA

utilizing the proposed multiplexer achieves a 43% (44%) reduction in cycle time, a 28%

(28%) reduction in area, and a 44% (45%) reduction in PCTP compared to the CSLA with

an EOQDI multiplexer for RtZ (RtO) handshaking.

REFERENCES

[1] J. Sparsø and S. B. Furber, Principles of Asynchronous Circuit Design: A Systems Perspective.

Dordrecht: Kluwer Academic Publishers, 2001.

[2] S. M. Nowick and M. Singh, "Asynchronous Design – Part 1: Overview and Recent Advances", IEEE

Design & Test, vol. 32, pp. 5-18, June 2015.

[3] C. H. Van Berkel, M. B. Josephs and S. M. Nowick, "Applications of Asynchronous Circuits", Proc.

IEEE, vol. 87, pp. 223-233, Feb. 1999.

[4] A. J. Martin and M. Nystrom, "Asynchronous Techniques for System-on-Chip Design", Proc. IEEE,

vol. 94, pp. 1089-1120, June 2006.

[5] I. David, R. Ginosar and M. Yoeli, "Self-timed is Self-Checking", J. Electron. Test.: Theory Appl., vol. 6,

pp. 219-228, Apr. 1995.

[6] G. F. Bouesse, G. Sicard, A. Baixas and M. Renaudin, "Quasi Delay Insensitive Asynchronous Circuits

for Low EMI", In Proceedings of the 4th International Workshop on Electromagnetic Compatibility of

Integrated Circuits, 2004, pp. 27-31.

[7] Z. Yu, S. B. Furber and L. A. Plana, "An Investigation into the Security of Self-Timed Circuits", In

Proceedings of the 9th International Symposium on Advanced Research in Asynchronous Circuits and

Systems, 2003, pp. 206-215.

[8] L. A. Plana, P. A. Riocreux, W. J. Bainbridge, A. Bardsley, S. Temple, J. D. Garside and Z. C. Yu, "SPA

– A Secure Amulet Core for Smartcard Applications", Microprocess. Microsyst., vol. 27, pp. 431-446,

Oct. 2003.

[9] A. J. Martin, "The Limitation to Delay-Insensitivity in Asynchronous Circuits" In Beauty Is Our

Business; Texts and Monographs in Computer Science; Feijen, W.H.J., van Gasteren, A.J.M., Gries, D.,

Misra, J., Eds.; Springer: New York, USA, 1990.

[10] A. J. Martin and P. Prakash, "Asynchronous Nano-Electronics: Preliminary Investigation", In

Proceedings of the 14th IEEE International Symposium on Asynchronous Circuits and Systems, 2008,

pp. 58-68.

[11] C. L. Seitz, "System Timing" In Introduction to VLSI Systems; Mead, C., Conway, L., Eds.; Addison-

Wesley: Reading, MA, USA, 1980.

 Asynchronous Monotonic Multiplexer 261

[12] C. Brej, Early Output Logic and Anti-Tokens. Ph.D. Thesis, The University of Manchester, UK,

September 2005.

[13] K. S. Stevens, R. Ginosar and S. Rotem, "Relative Timing", IEEE Trans. VLSI Syst., vol. 11, pp. 129-

140, Feb. 2003.

[14] J. Cortadella, A. Kondratyev, L. Lavagno and C. Sotiriou, "Coping with the Variability of Combinational

Logic Delays", In Proceedings of the IEEE International Conference on Computer Design, 2004, pp. 1-4.

[15] V. I. Varshavsky, "Aperiodic Circuits", In Self-Timed Control of Concurrent Processes: The Design of

Aperiodic Logical Circuits in Computers and Discrete Systems; Varshavsky, V.I., (Ed.), (Translated from

the Russian by A.V. Yakovlev), Kluwer Academic Publishers: New York, USA, 1990.

[16] P. Balasubramanian and W. Liu, "High-Speed and Energy-Efficient Asynchronous Carry Look-Ahead

Adder", PLOS ONE, vol. 18, p. e0289569, Oct. 2023.

[17] P. Balasubramanian and N.E. Mastorakis, "Speed, Power and Area Optimized Monotonic Asynchronous

Array Multipliers", J. Low Power Electron. Appl., vol. 14, p. 1, Jan. 2024.

[18] D. E. Muller and S. Bartky, "A Theory of Asynchronous Circuits", In Proceedings of the International

Symposium on the Theory of Switching (Part I), 1957, pp. 204-243.

[19] P. A. Beerel, R. O. Ozdag and M. A. Ferretti, A Designer’s Guide to Asynchronous VLSI, Cambridge:

Cambridge University Press, 2010.

[20] M. Shams, J. C. Ebergen and M. I. Elmasry, "A Comparison of CMOS Implementations of an

Asynchronous Circuits Primitive: The C-element", In Proceedings of the International Symposium on

Low Power Electronics and Design, 1996, pp. 93-96.

[21] L. S. Heck, M. T. Moreira and N. L. V. Calazans, "Hardening C-elements against Metastability", In

Proceedings of the 24th IEEE International Conference on Electronics, Circuits and Systems, 2017,

pp. 314-317.

[22] T. Verhoeff, "Delay-Insensitive Codes – An Overview", Distrib. Comput., vol. 3, pp. 1-8, Mar. 1988.

[23] B. Bose, "On Unordered Codes", IEEE Trans. Comput., vol. 40, pp. 125-131, Feb. 1991.

[24] M. T. Moreira, R. A. Guazzelli and N. L. V. Calazans, "Return-to-one Protocol for Reducing Static

Power in C-elements of QDI Circuits Employing M-of-N Codes", In Proceedings of the 25th Symposium

on Integrated Circuits and Systems Design, 2012, pp. 1-6.

[25] J. Sparsø and J. Staunstrup, "Delay-Insensitive Multi-Ring Structures", Integr. VLSI J., vol. 15,

pp. 313-340, Oct. 1993.

[26] T. Sasao, Switching Theory for Logic Synthesis, Dordrecht: Kluwer Academic Publishers, 1999.

[27] P. Balasubramanian, "Comparative Evaluation of Quasi-Delay-Insensitive Asynchronous Adders

Corresponding to Return-to-zero and Return-to-one Handshaking", FU: Elec. Ener., vol. 31, no. 1,

pp. 25-39, 2018.

[28] W. B. Toms, Synthesis of Quasi-Delay-Insensitive Datapath Circuits, Ph.D. Thesis, The University of

Manchester, UK, February 2006.

[29] W. B. Toms and D. A. Edwards, "Indicating Combinational Logic Decomposition", IET Comput. Digit.

Tech., vol. 5, pp. 331-341, July 2011.

[30] R. K. Brayton, G. D. Hachtel, C. T. McMullen and A. L. Sangiovanni-Vincentelli, Logic Minimization

Algorithms for VLSI Synthesis, Springer: New York, 1984.

[31] R. Rudell, Logic Synthesis for VLSI Design, Ph.D. Thesis, University of California, Berkeley, USA,

1989.

[32] P. Balasubramanian and D.A. Edwards, "Power, Delay and Area Efficient Self-Timed Multiplexer and

Demultiplexer Designs", In Proceedings of the 4th International Conference on Design & Technology of

Integrated Systems in Nanoscale Era, 2009, pp. 173-178.

[33] Synopsys Databook, Synopsys SAED_EDK32/28_CORE Databook, Revision 1.0.0. January 2012.

[34] O. J. Bedrij, "Carry-Select Adder", IRE Trans. Electron. Comput., vol. EC-11, pp. 340-346, June 1962.

[35] P. Balasubramanian, "Asynchronous Carry Select Adders", Eng. Sci. Technol. Int. J., vol. 20,

pp. 1066-1074, June 2017.

[36] P. Balasubramanian, "A Robust Asynchronous Early Output Full Adder", WSEAS Trans. Circ. Syst.,

vol. 10, pp. 221-230, July 2011.

[37] P. Balasubramanian and S. Yamashita, "Area/Latency Optimized Early Output Asynchronous Full

Adders and Relative-Timed Ripple Carry Adders”, SpringerPlus, vol. 5, p. 440, Apr. 2016.

[38] J. M. Rabaey, A. Chandrakasan and B. Nikolić, Digital Integrated Circuits: A Design Perspective, 2nd

ed.; London: Pearson Education, 2003.

