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Abstract. Recent technological developments in power distribution networks (PDN) have 

triggered significant interest regarding the optimal operation of power grids. Despite the high 

cost of power network development and installation, there is a significant opportunity to 

improve voltage deviation, reduce power loss, boost efficiency, and ultimately raise system 

stability. This can be accomplished by reconfiguring the network and allocating distributed 

generations (DG) and distribution FACT devices, like distribution static compensator 

(DSTACOM), in the most effective way while considering the stochastic nature of solar 

irradiance variations, uncertainties, and load variations. The presented article enumerates the 

planning for optimal photovoltaic distributed generation (PVDG) and DSTATCOM device 

with Network Reconfiguration (NRX) using a hybrid marine predator jellyfish algorithm 

(HMPJA). Inspired by the coordinated movements of jellyfish and the effective hunting 

techniques of marine predators such as sharks, the HMPJA was created. It seeks to improve 

the exploration, exploitation, resilience, and flexibility of optimization algorithms in handling 

challenging situations by combining these tactics. Inspired by the social behavior of jellyfish 

and marine predators, this hybrid algorithm is used to evaluate the techno-economic benefits 

of installing PVDG and DSTACOM in radial PDN with reconfiguration. With multi-objective 

function Cost reduction, voltage stability enhancement, and voltage profile (VP) 

augmentation in radial PDN are the primary goals of the current study. The IEEE 33- and 69-

bus systems are used to demonstrate the efficacy of the HMPJA, demonstrating notable 

decreases in energy and power losses and improved VP with overall net profit. A comparison 

of the suggested strategy with other nature-inspired alternatives demonstrates its superiority. 

The findings of the proposed approach provide valuable insights for distribution system 

planning and operation in future grids with high renewable energy source penetration. 

Key words: Marine Predator Algorithm, Jellyfish Search, Radial Distribution System, 

DSTATCOM, PVDG, Reconfiguration 
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1. INTRODUCTION 

As we are transitioning toward sustainable energy technologies, it is necessary to 

develop innovative strategies for effective PDN planning, particularly photovoltaic systems, 

which present opportunities and challenges. This study investigates a probabilistic approach to 

optimal PDN planning that incorporates integrated photovoltaic-based distributed generation 

(PVDG) and Distribution Static Synchronous Compensators (DSTATCOM). To optimize 

system performance under fluctuating conditions, exploring network reconfiguration (NRX) 

strategies is crucial. This research aims to counteract uncertainties caused by solar irradiation 

and demand changes by optimizing the reliability and efficiency of PDN minimizing 

operational costs and optimizing the incorporation of sustainable energy sources through 

advanced probabilistic modeling. The findings will provide valuable insight into the 

construction of resilient PDNS that can adapt to the dynamic energy landscape and aid 

sustainable development initiatives. This research is intended to guarantee a more reliable 

and environmentally friendly energy future. 

1.1. Motivation 

The two main components of the electrical system are the transmission and distribution 

networks [1]. Planning an efficient PDN is complicated by the fact that solar irradiance is 

unpredictable, which adds a significant amount of uncertainty to power generation. As we 

are transitioning to more sustainable energy models, there is a need to deploy DG sources, 

particularly solar PVDG. By using PVDG countries can reduce their carbon emission and 

become energy-independent as they work to meet renewable energy targets. 

To further improve power quality and voltage stability in these developing networks, 

DSTATCOM can be implemented. PV systems and DSTATCOM work together to 

maximize operating efficiency. However, this synergy makes planning more difficult and 

calls for creative solutions that consider dynamic variations in supply and demand. 

By altering the network topology, operators can increase load distribution, boost 

dependability, and lower losses. Reconfiguration is a potent methodology for managing 

the uncertainties and results brought on by renewable energy sources as it enables real-

time reactions to variations in generation and demand. However, incorporating NRX into 

a probabilistic planning paradigm necessitates a sophisticated comprehension of how PV-

based DG, DSTATCOM, and fluctuating load conditions interact. 

By optimal allocation of PVDG and DSTACOM in a reconfigured distribution system 

enhances the reliability of the grid by mitigating voltage fluctuations, and also increasing 

economic efficiency by reducing power losses. 

1.2. Literature Review 

Sectionalizing lines are closed, as opposed to open tie lines which are open under 

normal conditions. [2]. By rearranging the sectionalizing and tie lines, the bus system can 

be reconfigured to its ideal state [3]. Reconfiguration aims to alleviate overload in the PDN, 

boost stability and dependability, decrease losses, and enhance voltage profile (VP).  

In [4] authors Merlin and Back found the idea of reconfiguring a PDNS. there are 
some old studies show the importance of the reconfigured network. In [5], a self-adaptive 
modified optimization algorithm was used to suggest the reconfiguration problem in 
terms of dependability. [6] presents a multi-step resolution process in which Harris Hawks 



 Optimizing Distribution Networks with PVDG-DSTACOM and Reconfiguration under... 399 

algorithm is essential to achieving the intended outcomes. In [7], NRX in existing networks 
was approached using a modified Selective Particle Swarm Optimization (PSO) while 
considering various loading situations. In [8], Multi-Objective Random-Key Genetic was 

introduced to enhance energy loss in electric PDNS by allocating meters. 
Traditional PDNSs have changed because of the integration of DG, particularly from 

renewable energy sources (RER) like solar and wind. PVDG is chosen over other RERs 
for numerous reasons, including There are no moving parts, exceptional reliability with a 
25-year warranty, and a less visible design compared to wind turbines, space-saving and 
wind-resistant, as panels can be put on a roof, Environmental, economic, and electricity 
network performance are closely linked for this type.  

Several efforts have been made to integrate PVDG into the electricity supply. The 
authors of [9] used the Bat algorithm to optimize the integration of capacitors and 
distributed generation while accounting for load variations. Ref [10] uses PSO to create a 
voltage stability index for the ideal DG allocation. In [11], a chaotic symbiotic organism 
search method was created to deploy DG units in a radial system, resulting in improved 
VP and reduced power loss. In article [12], an improved gravitational search method was 
used to examine NRX using DGs. The goal was to increase transient stability, reduce 
loss, and lower operating costs in the PDNS. A hybrid algorithm is used in [13] to insert 
multiple DG units for the desired outputs. The GWO method for choosing the best for 
line parameter calculation by the authors is reference [14]. The optimal PVDG size and 
location is determined using PSO and weighted-sum method in [15]. Authors in [16] find 
the optimal position for PV by using voltage collapse proximity index. 

From a technological and financial standpoint, the best distribution of distributed 
generators using shunt compensators is an efficient approach. DFACTS are widely 
incorporated. Manuscript presented in [17] shows deployment of DFACT devices with 
DG in PDNS. DSTACOM is a voltage source converter, shunted to a specific bus 
DSTATCOM is a productive device that operates as a voltage source converter that is 
shunted to a specific bus and able to reduce system harmonic, balance the load, and 
significantly improve the system's efficiency. Additionally, by injecting a regulated 
voltage, it responds quickly to either absorb or inject reactive power. Furthermore, it has 
no operating problems such as resonance or transient harmonics, in contrast to series or 

shunt capacitors [18, 19, 20]. In [21] authors represent hybrid plant growth simulation 

PGS-PSO algorithms for NRX in the presence of the multiple DG units. 
The immune algorithm was used in [22] to determine the DSTATCOM's location and 

dimensions to minimize losses. The Harmony Search Algorithm was used in [23] to 
optimize the DSTATCOM location and dimensions for loss minimization. In [24], Using 
the Differential Evolution (DE) technique, the DSTATCOM's location and size were 

adjusted with the optimal network design to minimize losses. The location and 

dimensions of the DSTATCOM for improvement have been determined using the binary 
gravitational search approach [25]. Combining the operators of several metaheuristic 
algorithms is one sort of hybridization that performs better in several areas, such as 
convergence speed and solution quality [26, 27]. To find the capacity and best location 
for the DSTATCOM for a multi-objective function with load demand uncertainties, the 
authors in [28] used the imperialist competitive approach.  

An ant colony method and a fuzzy approach are used in [29] to determine the best distribu

tion of PVDG and DSTATCOM. To reduce expenses, losses, and the VP, the DSTATCOM 

and DG have been assigned using the Bacterial Foraging optimization approach [30]. To 
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sustain the voltage and minimize losses, the PSO has been used to distribute the DG and 

DSTATCOM [31]. The authors in [32] optimized the locations and dimensions of the 

DSTATCOM and DG using the whale optimization (WOA) method to cut expenses and 

losses. In [33] authors work compares WOA, DE, GWO and their quasi-opposition-based 

variants for reactive power planning with FACTS devices. To reduce loss and improve VP 

and stability, the lightning search technique is used in [34] for DG-DSTATCOM allocation.  

To minimize voltage variations, cost, and loss, the DSTATCOM and DG allocation 

has been optimized using a hybrid lightning search algorithm and the simplex approach 

[35]. In [36], the best PVDG, DSTATCOM, and energy storage units have been chosen to 

minimize costs, enhance voltage performance, and increase dependability. The Harris Hawks 

technique was used by the authors in [37] to determine the ideal locations and sizes at various 

power factor values. To achieve a resilient and effective PDNS, the synergy between the 

integration of the PVDG-DSTATCOM and the optimal reconfiguration plays a vital role.  

Numerous studies emphasize the benefits of employing probabilistic models as 

opposed to deterministic ones. Authors in [38] load uncertainties are considered to see the 

impact while placing renewable DG in the system. Results in [39] shows, the proposed 

MALO-based optimization framework effectively addresses the challenges of PV-DG 

and DSTATCOM integration in distribution systems with uncertainties, leading to a more 

reliable and efficient grid operation. This literature review concludes the importance of 

PDNS planning in the presence of PVDG and DSTATCOM under probabilistic modeling 

and enhances the system performance by network resilience. 

1.3. Research Contribution 

It has been determined from previously published research that there has never been an 

investigation into network reconfiguration with the solar PVDG and DSTATCOM integrated 

into the PDN using hybridized marine predator and jellyfish search algorithms. This study 

adds to the published literature by utilizing the hybrid marine predator and jellyfish search 

technique. This hybrid approach leads to a faster convergence rate to using either individual 

algorithms, or enhanced exploration and exploitation processes. Hybrid algorithm has 

increased robustness and versatility and enhanced solution quality. This article presents 

the solution to the optimal power planning problem integrating PVDG and DSTATCOM, in 

a reconfigured network considering the uncertainties associated with four seasonal variations 

in solar irradiance and the load for summer, winter, spring, and autumn. The method is 

implemented on the widely used IEEE 33-bus standard. To determine the efficacy of the 

suggested technique, two case studies combining solar PVDG with and without uncertainties 

are studied, and the outcomes of the test are further compared to previously published results. 

The following is a summary of the contributions made to the article.  
a) Finding the optimal installation of PVDG sources and DSTATCOM, and reconfiguring 

the distribution network to account for the impact of load demand and solar 
irradiance uncertainty. 

b) A multi-objective optimization problem is formulated that involves minimizing 
cost, power losses and voltage deviation and improving the Voltage Stability 
Index using hybridisation of two nature-inspired algorithms. 

c) The load and the generation have been considered as random variables. Using 
historical data spanning three years, the uncertainty of the solar radiation and load 
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demand is modelled as gaussian distribution model and beta distribution model, 
respectively. 

d) Based on the simulation results, this research methodology for constructing large-
scale PDN at all load levels is far more practical and efficient.  

2. MODELLING 

2.1. Line Modelling 

Fig. 2 displays a simplified schematic of Fig. 1. At the uth bus, the injected complicated 

power is provided as, 

 u u us p jq= +  (1) 

Where, qu and pu is real and reactive power load at the uth bus, respectively. 

Eq. 2 represents current injected at the uth bus (iu), 
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Where the voltage at uth bus is denoted by vu. 

Eq. (3) gives the real power loss in a branch connecting nodes u and u+1. 
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2.2. Integrated Photovoltaic-Based Distributed Generation 

Positioning the PV unit at an ideal site and size facilitates reducing real power losses, 

enhancing VPs, minimizing environmental consequences, improving overall energy 

system performance, and alleviating PDN overload. Due to the random nature of solar 

PV-based plants, the network experiences an increase in uncertainty. As a result, 

precisely calculating PV power is difficult. Solar radiation intensity, absorption capacity, 

panel surface, and cell temperature all affect how much power PV systems can produce. 

Because solar radiation is stochastic, the related output power fluctuates. The PV output 

power (PrPV ) is given by 
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where the standard solar irradiance Gstdn, is 1000 W/m2 is and  shows solar irradiance 

W/m2. GC stands for a specific point of irradiance. 

 

Fig. 1 Illustrative PDNS 

            

Fig. 2 One-line diagram 

2.3. DSTATCOM Modeling 

DSTATCOM modeling typically involves a voltage source converter, energy storage 

system, and control algorithms. DSTATCOM modeling incorporates simulating 

the behavior of the power electronic devices for reactive power management in electrical 

systems to enhance power quality, improve voltage stability, and reduce losses. Under 

various operating situations, DSTACOM modeling helps to ensure reliable grid operation 

by analyzing system dynamics and optimal integration of renewable energy sources. This 

technique facilitates the evaluation of performance metrics, such as response time and 

efficiency, which leads to effective design and deployment in contemporary power 

systems. DSTATCOM reactive power is expressed as follows, with real power set to 

zero: 
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2.4. Network Reconfiguration 

The act of changing the structure of PDN to optimize the system performance by 

adjusting the switching arrangement of the nodes and branches is known as network 

reconfiguration. Wisely opening or closing switches during varying load conditions or 

during maintenance to minimize losses, redistribute power flows and to ensure 

uninterrupted service is an essential part of smart grid technologies as they develop and 
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try to regulate sophisticated distribution networks. The feeder power loss following the 

reconfiguration is given by 
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The net power losses of the new structure can be obtained by, 

  r

Tloss Tloss Tlossp p p = −  (9) 

2.5. Probabilistic Modeling 

Probabilistic modeling in the PDN planning plays an important role for enhancing 

resilience and improved resource placement. This strategy is important in light of changing 

energy scenarios and the merging of dispersed energy resources, specifically with regard to 

load demand and solar irradiation. The load demand and PV unit have been modelled 

probabilistically using the location historical data. Three years' worth of hourly statistics on 

solar irradiation and load demand were taken into account in this study. Consequently, the 

year is divided into four different seasons. A day (24 hours) within a season is used to 

characterize the stochastic behaviour of the PV and load demand within that season. Every 

year, there are 96 time periods (four seasons, twenty-four hours). By applying the data 

regarding the same hours of the day, the probability density function (pdf) for each season is 

determined. Thus, the 270 solar irradiances and load demand for each period—three years, 

three months per season, and thirty days per month—are used to generate the necessary hourly 

PDFs. The following is a description of the PV system and probabilistic load demand model. 

2.2.1. Solar irradiance modeling 

Using the data on solar irradiance, a beta pdf fB (gsr) has been generated for each hour, 

which can be explained as follows [40] [41]: 
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where Γ is gamma function and αsr, βsr are the beta parameters for each period. 

Using the historical data, these parameters can be established as follows [42], [43]: 
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where µsr and σsr are each period's solar irradiance mean and standard deviation. 

The continuous beta pdfs are separated into many segments, each of which yields a 

mean value. A segment's probability of happening at a specific hour can be determined 

by: 
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where gsr,t and gsr,t+1 stands for beginning and ending points of the interval, respectively 

for interval t. The likelihood that interval t will occur is denoted by probt
gsr. The generated 

beta pdf of the solar irradiance for a given period can be used to calculate the output power PV 

for the states of that period (6). 

2.2.2. Modelling of Load Dynamics 

At each bus, the load demand is modelled using gaussian pdf because it is stochastic. 

The gaussian pdf of the load demand fnl(l) is specified in eq. (14) [41]: 
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where the mean and standard deviation of the load demand are given by µld and σld for 

each period. The following is an expression for the segment's occurrence probability at a 

given hour: 
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where the beginning and ending points of the interval t are denoted by lt and lt+1 

respectively. probt
l symbolises the probability that interval t will occur. 

2.6. Integrated Model of Solar Irradiance and Probabilistic Load 

The probabilistic solar irradiance and load model are presented in the preceding 

sections. An integrated probability model of the PV load is generated using these. 

Convoluting the probability of solar irradiance and load demand allows one to compute 

the integrated model of the interval t in the manner described below: 

 
,

gr l

int t t tP prob prob=   (16) 

The objective function specified in (17) should be computed for each state and 
proportionate to the combined probability model in terms of weight, representing the 
state's probability of occurrence over the planning period. An hour is represented by each 
time section. This indicates that each variable has several values for every period. However, 
we have simply displayed the variables' mean or expected values for simplicity's sake. 

3. PROBLEM FORMULATION 

Promoting the technical and fiscal benefits of effective planning for the integration of 

PVDG and DSTATCOM in the power system is the primary task this work presents. 

Although load demand and solar irradiation is difficult to predict accurately, it should be 

mentioned that the planning period is three years long, with 91.25 days in each of the four 

seasons. The multi-objective function in (17) tends to minimize voltage deviation, cost, 

and VSI. 
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3.1. Objective Function 
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where Obje1, Obje2 and Obje3 represents voltage deviation, cost and VSI. The weighting 

factors ω1, ω2 and ω3 are governed by (18). 
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where TVDevWo and costWO shows the total voltage deviation and total cost without 

insertion of the PVDG or DSTATCOM and TVDevW and costW shows the total voltage 

deviation and total cost with the insertion of the PVDG or DSTATCOM 

Enhancing the VP by reducing the voltage deviations is stated in (19) 
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The total annual cost costW can be formulated as follows: 

 W loss grid PV Recon STcost cost cost cost cost cost= + + + +  (20) 

where costloss, costgrid, costPV, costRecon and costST represents the cost of power loss, energy 

loss, PV unit and DSTATCOM installation cost and cost of NRX, respectively. 
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Where closs represents the cost of the energy loss. NS represents the number of seasons per 

year and is equal to 4. NB represents the number of network branches. 

The cost of power injection at the substation is given in (22): 
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The cost of DSTATCOM installation is given in (23): 

 
(1 )

(1 ) 1

S

S

N

ST ST ST N
cost C Q

 



+ 
=  

+ −
 (23) 

where DSTATCOM’s rated kVAr, Capital cost is represented by QST; and CST; α denotes 

the asset rate of return DSTATCOM Ns is the lifetime of the DSTATCOM in years;. The 

cost of the PV system consists of fixed and variable cost given by (25) and (26). 
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 PV fixed Varicost cost cost= +  (24) 

 fixed PV ratedcost CRF C P=    (25) 
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where the operation and maintenance cost is denoted by COp&Mt,; PPV stands for output 

power of the PV unit given in eq. (6). 

Enhancing stability by improving the voltage stability index as given in (27): 
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2.1. Constraints 

The equality and inequality constraints are specified below. 
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 Maintaining radiality ( ) 1mainloop bN N NB= − +  (31) 

The other operational constraints are bus voltages within ± 5%, thermal limit for 

ampacity, real and reactive limits, DG real and reactive power generation. The number of 

sectionalising switches is given by (32) 

 1bN NB= −  (32) 

Nb is total no. of nodes in the system. 

4. SYNERGISTIC MARINE PREDATORS-JELLYFISH SEARCH OPTIMIZATION ALGORITHM 

4.1. Marine Predators Algorithm 

The ocean predator interactions and Levy and Brownian movement tactics in a marine 

predator algorithm (MPA) [44] are explained below 

4.1.1. Initialization 

Using (33), MPA derives randomly its initial solutions in terms of lth prey's position 

( )m

lPry  

 (0,1) ( )m m m m

lPry lbd rand ubd lb= +  −  (33) 

where rand is random integer between 0 and 1. The lower and upper bounds on the mth 

dimension are denoted by lbdm and ubdm, respectively. 
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4.1.2. Optimization 

The three stages of the algorithm mimic the methods used by predators to capture 

their prey. A distinct velocity ratio is considered in each of the MPA three stages. Every 

phase has a set number of iterations assigned to it. 

Phase 1 (Exploration stage): The prey moves more quickly (high velocity) than the 

predator. 

When Itr < 1/3 Maxitr, Phase 1 is chosen. (34) is used to update the solutions. 

 .l l lPry Pry P RV stepsz= +   (34) 

 ( )l Bl Bl istepsz RV Elite R Pry= −   (35) 
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where stepsz is step size, coefficient P is equal to 0.5. The matrices RV and RVBl, both of 

dimension 1 × dim, are composed of random values within the interval (0,1) and numbers 

produced by the Brownian movement, respectively. Elite is currently the best available option. 

Phase 2 (Exploration and Exploitation stage): Unit velocity ratios show that the 

predator and prey move almost simultaneously. There is an equal distribution of solutions 

between exploration and exploitation. Exploration is managed by the Predator, and the 

victim is being taken advantage of. The Levy function and Brownian motion, respectively, 

control the movement of the predator and the prey. Updated for the one-half of the population 

are the following formulae. 

 ( )l Ll Ll lstepsz RV Elite RV Pry= −   (37) 

Given random walk data generated by the Levy function, RVLl is a matrix of dimension 

equal to that of RV. 
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where a is in the range (1, 2) that determines the scale, which is taken to be 1.5, and ω is 

the flight length.  

The following integral shows the Levy function's probability distribution: 

 
0

1
( ; , ) exp( )cos( )a

Lf a q q dq   




 −  (39) 

 
(1 )

(1 )sin
2

( ; , )L a

a
a

f a




  
 +

 
 +  

 
 →   (40) 

where Γ represents Gamma function.  

The population is regulated using (41-43) for exploration. 

 .j j jPry Pry P CVF stepsize= +   (41) 

 ( )l Bl Bl jlstepsz RV Elite RV Pry=  −  (42) 
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2

1
Itr

ITR

Max

Itr

ITR
CVF

Max

 
  

  
= − 

 
 (43) 

where the step size is governed by CVF. 

 

Fig. 3 Pseudocode for MPA 
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Phase 3 (Exploitation stage): The predator has higher velocity than the prey, making it 

faster. Predators are kept up to date during this phase. Eq. (44-45) provided a mathematical 

formulation of this phenomenon. 

 .l lPry Elite P CVF stepsz= +   (44) 

 ( )l Ll Ll lstepsz RV Elite RV Pry=  −  (45) 

4.1.3. Eddy formation 

This stage is similar to Fish Aggregating Devices (FAGD) which causes predators to 

alter their behaviour. The FAGD is expressed mathematically as below: 

 
 

  1 2

( )      

(1 ) ( )        

l

l

l r r

Pry CF lbd RV ubd lbd U r FAGDs
Pry

Pry FAGDs r r X X otherwise

 +  +  −  
= 

+  − + −
 (46) 

 (1, )U rand dim FAGDs=   (47) 

where Xr1 and Xr2 are two randomly chosen solutions from the population, U is a binary 

vector and the FAGDs is 0.2. 

4.1.4. Predator memory 

After a successful feeding expedition, marine predators return to areas they have a 

good recollection of [35]. This capacity is replicated by keeping memories in MPA. To 

ascertain which answer is superior, the solutions from each iteration are compared to the 

prior one. Fig. 3 displays the pseudocode. 

4.2. Artificial Jellyfish Search Algorithm 

4.2.1. Initialization 

To replicate the movement of jellyfish in a swarm or while traveling towards the 

ocean current in quest of food, an artificial JFSA [45] was created. The colony of 

jellyfish is started at random. As a result of low population variety, there may be a risk of 

trapped local optima and sluggish convergence. The logistic chaotic map, as presented in 

Equation (54) provides a lower likelihood of early convergence and a wider range of 

initial populations compared to random initialization. 

 1 0(1 ),0 1i i iJSA JSA JSA JSA+ = −    (48) 

where JSAi is the logistic chaotic value; JSA0 is varied to generate the initial jellyfish 

population, JSA0 ∉ {0, .25, .5, .75, 1}, and 4 is the value for the parameter η. 

4.2.2. Ocean current 

The mean of every jellyfish's vector to the one currently occupying the optimal position 

represents the movement of the ocean current and is represented as (49). 
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 *1
( )c i

JFP

Direction JS e JSA
N

= −  (49) 

where NJFP represents number of jellyfishes in swarm and JSA* represents the best jellyfish 

while attraction govern factor is represented by ec. 

 * *i

c c JSA

JFP

JSA
Direction JSA e JSA e

N
= − = −


 (50) 

where μJSA shows the mean position of all the jellyfishes in an ocean 

 ( )0,1c JSAe rand=   (51) 

where βJSA is distribution coefficient whose value is taken as 3. 

The new jellyfish position is defined as: 

 ( 1) ( ) (0,1)i iJSA t JSA t rand Direction+ = +   (52) 

 
*( 1) ( ) (0,1) ( (0,1))i i JSA JSAJSA t JSA t rand JSA rand  + = + −     (53) 

4.2.3. Jellyfish swarm 

The majority of jellyfish exhibit passive motion (type A) at first around their initial 

sites, as the jellyfish swarm is still forming. They start to move more actively (type B) as 

time progresses. 

 ( 1) ( ) (0,1) ( )i i jsJS t JS t rand ub lb+ = +   −  (54) 

where γjs represents the motion coefficient and its value is taken as 0.1. 

The direction of the motion of the jellyfish in search of its food and its updated location 

in the search space are simulated by (43) and (44), respectively. 

 
( ) ( )   ( ) ( )

( ) ( )   ( ) ( )

j i i i

i j i i

JS t JS t if f JS f JS
Dir

JS t JS t if f JS f JS

− 
= 

− 
 (55) 

where f (JSi) and JSi represent the objective function and jellyfish location. 

 ( 1) ( )i iJS t JS t step+ = +  (56) 

where 

 ( )0,1step rand Dir=   (57) 

4.2.4. The control mechanism 

The type of jellyfish motion and its gradual transition from one swarm to another are 

determined with the aid of the time control function (CF(t)) [0,1]. If the jellyfish value is 

more than or equal to CF0, it floats with the ocean current; if it is less than CF0 it stays 

with the swarm. 
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 ( )
1

1 (2 (0,1) 1)
Itr

CF t rand
Max

 
= −  − 

 
 (58) 

where Maxitr represents the maximum number of iterations. 

4.2.5. Boundary conditions 

A jellyfish will eventually return if it leaves the boundaries of the search area. As an 

illustration of reintegration process, 

 

'

, , , , ,

'

, , , , ,

( ) ( )      

( ) ( )      

i d i d b d b i d b d

i d i d b d b i d b d

JSA JSA U L d if JS U

JSA JSA L U d if JS L

 = − + 


= − + 

 (59) 

where the ith jellyfish location in dth dimension is represented by JSAi,d and its upper and 

lower bounds in food search space is given by Ub,d and Lb,d, respectively. JSA'i,d is the 

updated position of the ith jellyfish.  

In Learning automata (LA), extended learning vector in is provided by the following 

equation: 

  1 2, ,  ,r nmP P P P=  (60) 

 

1 1 1

1

JSA nmJSA

r

JSNoJSA nmJSNoJSA

P P

P

P P

 
 

=
 
  

 (61) 

With more plausible values, the optimal motions have a higher chance of being selected. 

Conversely, non-optimal solution movements have smaller probability values and are 

therefore less likely to be selected. 

 

1

_ (0,1) ,1' 'i

nm

ii

p
Action index find rand first

p
=

 
 = 
 
 

 (62) 

where find is a searching function and the probability of ith motion is denoted by pi. JFSA 

pseudocode is given in Fig. 4. 

4.2. LA-based Hybridization 

The suggested hybridization of the LA-based HMPJA will increase the algorithms’ 

reliability and overcome the drawbacks of the individual metaheuristic algorithms, such 

as insufficient jellyfish movements, scattering of jellyfishes in the search space and MP 

complexity, slow or premature convergence locking in local optima, and sluggish search. 

Fig. 5 shows the HMPJA flowchart.  
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Fig. 4 Pseudocode for JSA 

5. SIMULATION RESULTS AND DISCUSSION 

The optimal operation is simulated under uncertainty. The one-line diagram of IEEE 

33- and 69-bus system are shown in Fig. 6 and Fig.7, respectively. Table 1 displays these 

systems' initial power flow solutions. The load flow calculations provide the bus voltages 

and power losses. In terms of losses and (min) voltage, the HMPJA performs better than 

the others in every case. For both of the situations under discussion, the optimal operation 

is obtained by using the recommended technique and compared with the results generated 

by other algorithms. The simulation is carried out on MATLAB, 64-bit operating system 

and 4GB RAM. The hybrid algorithm's empirical parameters are set at a maximum of 

100 iterations and 10 populations. 
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Fig. 5 Flow chart for hybrid HMPJA 
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Fig. 6 IEEE 33-bus system 

Table 1 The system specification and the base case results of 33-bus system 

System Specifications: 33-Bus 69-Bus 

NB 33 69 

Npr 32 68 

Vsys (kV) 12.66 12.66 

Base MVA 100 100 

Sload (MVA) 1003.802+j2.694 3.802+j2.694 

PTotal Loss (kW) 202.070 225 

QTotal Loss (kVAr) 142.437 102.198 

Vmin (pu), bus 0.9131, 18 0.9091, 65 

Table 2 The cost coefficients of the PVDG and DSTATCOM 

Cost Parameter Value 

PV CPV 770 $/kW 

CO&M 0.01 $/kWh 

𝜏 10% 

NP 20 

DSTATCOM CS 50 $/kVAr 

α 10% 

ND 30 

Grid Closs 0.06 $/kWh 

Cgrid 0.96 kWh 
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Fig. 7 IEEE 69-bus system 

In this instance, the suggested methods are used to solve the optimal planning issue on 

the considered bus systems while accounting for the uncertainties of the linked load and sun 

irradiances. Cost reduction, VP, and stability index improvement are among the multi-

objective functions for handling the optimum planning issue. It should be noted that this 

article takes into consideration three years' worth of hourly historical data on load demand 

and solar irradiation. This has led to the division of each year into four distinct seasons. 

A Day (24 hours) within each season is considered to describe the stochastic behavior 

of the PV and load demand throughout that season. As a result, there are 96 time periods in a 

year (four seasons of 24 hours). Fig. 8 and 9 show the obtained load profiles and solar 

irradiance under ambiguous settings. 

5.1. IEEE 33-Bus system 

The overall cost, TVDEVev, and VSID at the base scenario (without PV or DSTATCOM 

or NRX included) are 2.438704E+6 $, 1.3427E+4 pu., and 2.29424E+5 pu. respectively. The 

suggested approach solves the optimal planning issue by including up to two PVDGs and 

DTSTACOMs, both separately and in an altered network. The PVDG and DSTATCOM cost 

parameter data are shown in Table 2. The simulation results are shown in Table 3, Table 4 and 

Table 5 for the optimal integration of PVDG, and DSTATCOM allocation in the reconfigured 

network and separately by MPA, JFSA and HMPJA for single hybrid and two hybrid system 

respectively. 

When compared to PVDG or DSTATCOM and NRX without insertion, the overall 

cost is significantly decreased to 1.963071E+6$, or 19.5%, and 2.398893EC6 or 

(1.632%) respectively when a single hybrid system is included. Additionally, the TVDev 

is decreased to 1.0150EC4 (24.40%) and 1.2453EC4 (7.25%) respectively for PVDG or 

DSTACOM placement and NRX.  
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Table 3 Simulation results for IEEE 33- bus system for single hybrid systems by MPA 

and JFSA technique 

Entity Base 

Case 

MPA JFSA 

PV + 

DSTATCOM 

NRX PV + 

DSTATCOM 

+ NRX 

PV + 

DSTATCOM 

NRX PV+ 

DSTATCOM 

+NRX 

Eloss 

(MWh) 
1.0782 1.0647 1.0050 0.9186 1.0261 1.0257 1.0016 

Egrid 

(MWH) 
24.7293 24.4197 23.0504 21.0688 23.5321 23.5252 22.9724 

Optimal 

loc 1 
- 2 - 8 13 - 33 

Psr1 

(kW) 
- 1780 - 1527 2007 - 1769 

Qds1 

(kVAr) 
- 100 - 128 100 - 130 

TVDev 
1.3427 

E+4 
13312.3768 13545.4377 11638.5159 10912.8123 14902.0637 11584.5484 

VSID 
2.29424 

E+5 
229819.4956 229207.9052 237222.5434 241262.1909 225284.2976 239479.5715 

Closs 

($) 

6.4692 

E+4 

6.3882 

E+4 

6.0300 

E+4 

5.5116 

E+4 

6.1566 

E+4 

6.1542 

E+4 

6.0096 

E+4 

Cgrid 

($) 

2.374012 

E+6 

2.344291 

E+6 

2.212838 

E+6 

2.067081 

E+6 

2.259081 

E+6 

2.258419 

E+6 

2.205350 

E+6 

Cpv 

($) 
0 

1.93792 

E+5 
- 

1.66247 

E+5 

2.18506 

E+5 
0 

1.92594 

E+5 

Cds 

($) 
0 530.5 - 679.04 530.5 0 689.65 

Ctotal 

($) 

2.438704 

E+6 

2.602495 

E+6 

2.273138 

E+6 

2.289123 

E+6 

2.416274 

E+6 

2.319961 

E+6 

2.458729 

E+6 

Tie 

Switches 

33,34,35, 

36,37 

33,34,35, 

36,37 

35,36,25,  

9, 4 

35,36,25,  

9, 4 

33,34,35, 

36,37 

28,10,30, 

34,5 

28,10,30, 

34,5 

The VSID is increased to 2.41517EC5 (5.27%) and 2.32748EC5 (1.42%) respectively. 

Aside from that, there is a significant decrease in energy losses and the amount of energy 

taken from the grid when 13th bus has been designated as the ideal position for the hybrid 

system for PVDG-DSTACOM allocation, and the PVDG and DSTATCOM have respective 

sizes of 969kW and 500kVAR. When the allocation is done in the reconfigured network, total 

cost and voltage deviation are reduced by 24.63% and 29.93% respectively. VSID is 

improved by 6.78% as compared to base case condition. 
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Table 4 Simulation results for IEEE 33- bus system for two hybrid systems by MPA & JFSA 

Entity Base Case MPA JFSA 

PV + 

DSTATCO

M 

NRX PV + 

DSTATCOM 

+ NRX 

PV + 

DSTATCOM 

NRX PV+ 

DSTATCO

M 

+NRX 

Eloss 

(MWh) 
1.0782 0.8454 1.0901 0.9334 1.0041 1.0717 1.0032 

Egrid 

(MWH) 
24.7293 19.3909 25.0034 21.4086 23.0318 24.5815 23.0097 

Optimal 

loc 1 
- 2 - 11 2 - 2 

Optimal 

loc 2 
- 16  3 16  14 

Psr1 

(kW) 
- 500 - 767 100 - 736 

Psr2 

(kW) 
- 500  500 100  100 

Qds1 

(kVAr) 
- 500 - 500 100 - 100 

Qds2 

(kVAr) 
- 500  500 100  100 

TVDev 
1.3427 

E+4 
10356.0057 12804.4816 10250.9471 12766.8065 13572.8215 12764.093 

VSID 
2.29424 

E+5 

239869.656

2 
231941.7684 242147.2927 231587.6083 229289.5333 231955.9914 

Closs 

($) 

6.4692 

E+4 

5.0724 

E+4 

6.5408 

E+4 

5.6005 

E+4 

6.0251 

E+4 

6.4305 

E+4 

6.0193 

E+4 

Cgrid 

($) 

2.374012E

+6 

1.861526 

E+6 

2.400327 

E+6 

2.055232 

E+6 

2.211061 

E+6 

2.359825 

E+6 

2.208931 

E+6 

Cpv 

($) 
0 

1.08872 

E+5 
- 

1.37940 

E+5 

2.1774 

E+4 
0 

9.1016 

E+4 

Cds 

($) 
0 

5.305 

E+3 
- 

5.305 

E+3 

1.061 

E+3 
0 

1.061 

E+3 

Ctotal 

($) 

2.438704E

+6 

1.975703 

E+6 

2.465735 

+6 

2.198477 

+6 

2.418957 

E+6 

2.424130 

E+6 

2.361201 

E+6 

Tie 

Switches 

33,34,35,3

6,37 

69,70,71, 

72,73 

43,69,54, 

61,18 

43,69,54, 

61,18 

69,70,71, 

72,73 

44,17,58, 

39,22 

44,17,58, 

39,22 

The output power of the PV unit fluctuates in proportion to changes in solar radiation. 

In terms of cost, TVDEV, and VSID, Table 5 shows that the results produced by the 

suggested algorithm. The IEEE 33-bus PDN is also incorporating two hybrid systems. 

Table 5 shows a significant decrease in the overall cost to 18.71%, and in TVDev is 

32.69% in comparison to the basic scenario. VSID is raised by 6.81%. The 11th bus and 

the 2nd bus are the designated ideal places for the hybrid systems in this instance, and the 

first PVDG and DSTATCOM have respective sizes of 908 kW and 100kVAR. 

DSTATCOM and the second PVDG have respective ratings of 100kVAR and 100kW.  
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Table 5 Simulation results for IEEE 33- bus system for single and two hybrid systems by 

HMPJA technique 

Entity Base 

Case 

MPA JFSA 

PV + 

DSTATCOM 

NRX PV + 

DSTATCOM 

+ NRX 

PV + 

DSTATCOM 

NRX PV+ 

DSTATCOM 

+NRX 

Eloss 

(MWh) 
1.0782 0.82009 1.0606 0.87065 0.9246 0.8541 0.8274 

Egrid 

(MWH) 
24.7293 18.8095 24.3256 19.9691 21.2065 19.5894 18.9778 

Optimal 

loc 1 
- 13 - 13 8 - 11 

Optimal 

loc 2 
- - - - 2 - 2 

Psr1 

(kW) 
- 969 - 1115 1028 - 908 

Psr2 

(kW) 
- - - - 783 - 100 

Qds1 

(kVAr) 
- 500 - 500 100 - 100 

Qds2 

(kVAr) 
- - - - 100 - 100 

TVDev 
1.3427 

E+4 

1.0150 

E+4 
12453.289 9408.1626 11999.1171 9790.8691 9001.2101 

VSID 
2.29424 

E+5 
241517.2 232748.3228 244992.9943 234259.0181 

242342.869

1 
246198.3321 

Closs 

($) 

6.4692 

E+4 

4.9205 

E+4 

6.3636 

E+4 

5.2239 

E+4 

5.5476 

E+4 

5.1246 

E+4 

4.9644 

E+4 

Cgrid 

($) 

2.37401

2E+6 

1.805718 

E+6 

2.335257 

E+6 

1.191703 

E+6 

2.035830 

E+6 

1.880587 

E+6 

1.821868 

E+6 

Cpv 

($) 
0 

1.05496 

E+5 
- 

1.21392 

E+5 

2.16764 

E+5 
- 

1.09742 

E+5 

Cds 

($) 
0 

2.652 

E+3 
- 

2.652 

E+3 

1.061 

E+3 
- 

1.061 

E+3 

Ctotal 

($) 

2.43870

4E+6 

1.963071 

E+6 

2.398893 

E+6 

1.837986 

E+6 

2.309131 

E+6 

1.931833 

E+6 

1.982315 

E+6 

Tie 

Switche

s 

33,34,3

5,36,37 

33,34,35, 

36,37 

19,36,12, 

11,28 

19,36,12, 

11,28 

33,34,35, 

36,37 

9, 26, 34,  

7, 16 

9, 26, 34,  

7, 16 

Fig. 10 shows the system's VP with the DSTATCOM, PVDGs, and NRX in four 

seasons. It is evident from Fig. 10 that the addition of two-hybrid systems significantly 

improves the VP compared to the base situation. Based on Table 5, the results of 

applying the suggested method are superior to those of the published algorithm. 

5.2. IEEE 69-Bus system 

The proposed approach is also applied to IEEE 69-bus system for optimal planning is 

PDN under uncertainties. Fig. 8 and Fig. 9 also show the system load profile and solar 

irradiance under uncertain conditions. By combining single and two-hybrid systems with 

reconfiguration, the best possible solution to the power planning problem is evaluated. 
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The results for the 69-bus system are listed in Table 6, Table 7 and Table 8 for single 

and two hybrid system by using MPA, JFSA and HMPJA respectively. The total cost and 

TVDev are reduced by 17.69% and 26.00% respectively for a single hybrid system. The 

VP is shown in Fig. 11. It is seen from the Fig. 11, that the VP is enhanced with PVDG-

DSTACOM inclusion in a reconfigured network. For a two-hybrid system, the TVDev is 

reduced by 43.80%, along with a 21.72% reduction in total cost. The voltage stability is 

enhanced by 1.57% and 3.39% in single and two hybrid systems respectively. Table 9 

shows the superiority of the proposed algorithm while comparing with the previously 

published articles. 

 

Fig. 8 The hourly load profile across seasons 

 

Fig. 9 The variations in solar irradiance throughout the seasons 

The following conclusions are derived by the simulation results. 

a) A strong and effective tool for PVDG and DSTATCOM optimal planning in the 

redesigned PDN is made possible by the suggested HMPJA, which outperforms the most 

recent algorithms. 
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b) One PVDG and DSTATCOM integrated into the 33-bus system can reduce annual 
total costs and voltage variations by 24.63% and 28.98%, respectively. The base case 
voltage stability is improved by 6.35%. The total annual cost can also be reduced by 
optimally integrating two hybrid PVDG and DSTATCOM in the reconfigured network, 
with voltage deviations by 18.71 % and 32.96 %, respectively. The improvement in 
voltage stability over the base case is 6.81%. 

c) One PVDG and DSTATCOM hybrid with appropriate integration can reduce the 
predicted cost and voltage variations in the 69-bus system by 17.67% and 26.00%, 
respectively. The voltage stability is increased by 1.57% when two hybrid PVDG and 
DSTATCOM are implemented properly, reducing the overall annual cost and voltage 
deviation by 21.72% and 43.80%, respectively, and 3.39% when compared to the base 

scenario with one and two hybrid system respectively. 
To solve the challenges of optimal power planning involving the optimal integration of 

PVDG and DSTATCOM, future study will consider a variety of energy storage solutions, 
including fuel cells, batteries, hydro-pumps, compressed air, and superconducting magnetic 
energy storage, electrical vehicle charging stations. The effective implementation of the 
recommended HMPJA algorithm in the specified technical use gives an assurance to approve 
the coordinated functioning of FACTS controllers and expand to large-scale interconnected 
power networks in the future.  

Table 6 Simulation results for IEEE 69- bus system for single hybrid systems by MPA & JFSA 

Entity Base 
Case 

MPA JFSA 

PV + 
DSTATCO

M 

NRX PV + 
DSTATCOM 

+ NRX 

PV + 
DSTATCO

M 

NRX PV+ 
DSTATCOM 

+NRX 

Eloss 
(MWh) 

1.19726 1.1513 0.6680 0.5421 1.0796 0.8302 0.7036 

Egrid 
(MWH) 

27.4468
2 

26.4059 15.3211 12.4355 24.7614 19.0412 16.1393 

Optimal 
loc 1 

- 13 - 17 19 - 12 

Psr1 
(kW) 

- 573 - 695 500 - 666 

Qds1 
(kVAr) 

- 500 - 500 500 - 500 

TVDev 
1.24867 

E+4 
10852.5384 

11314.438
6 

8278.4685 12038.1415 17790.0922 14502.1812 

VSID 
5.40257 

E+5 
559748.8951 

539816.17
13 

552283.9652 
5.49450 

E+5 
516467 

E+5 
529179 

E+5 

Closs 
($) 

7.18361
99 

E+4 

6.9078 
E+4 

4.0080 
E+4 

3.2526 
E+4 

6.4776 
E+4 

4.4934 
+4 

4.3452 
+4 

Cgrid 
($) 

2.63489
5E+6 

2.534966 
E+6 

1.470825 
E+6 

1.193808 
E+6 

2.377094 
E+6 

1.827955 
E+6 

1.594560 
E+6 

Cpv 
($) 

- 
6.2383 

E+4 
- 

7.5660 
E+4 

5.44380 
+5 

0 
7.25087 

+5 
Cds 
($) 

- 
2.652 
E+3 

- 
2.652 
E+3 

2.652 
E+3 

0 
2.652 
E+3 

Ctotal 
($) 

2.70673
1E+6 

2.669079 
E+6 

1.510905 
E+6 

1.348458 
E+6 

2.988902 
E+6 

1.872889 
E+6 

2.365751 
E+6 

Tie 
Switches 

69,70,71
,72,73 

69,70,71, 
72,73 

8,17,11, 
53,21 

8,17,11, 
53,21 

69,70,71, 
72,73 

4,63,19, 
69,10 

4,63,19, 
69,10 
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Table 7 Simulation results for IEEE 69- bus system for two hybrid systems by MPA & JFSA 

Entity Base 

Case 

MPA JFSA 

PV + 

DSTATCOM 

NRX PV + 

DSTATCOM 

+ NRX 

PV + 

DSTATCOM 

NRX PV+ 

DSTATCOM 

+NRX 

Eloss 

(MWh) 
1.19726 1.1513 0.6680 0.5421 1.0162 0.7489 0.7242 

Egrid 

(MWH) 
27.44682 26.4059 15.3211 12.4355 23.3073 17.1766 16.6100 

Optimal 

loc 1 
- 17 - 7 15 - 2 

Optimal 

loc 2 
- 19  25 52  46 

Psr1 

(kW) 
- 500 - 539 500 - 500 

Psr2 

(kW) 
- 825  534 500  500 

Qds1 

(kVAr) 
- 500 - 500 500 - 500 

Qds2 

(kVAr) 
- 500  500 500  500 

TVDev 
1.24867 

E+4 
10852.5384 11314.4386 8278.4685 11383.8933 11059.5843 9489.7015 

VSID 
5.40257 

E+5 
559748.8951 539816.1713 552283.9652 

5.51959 

E+5 

5.41474 

E+5 

5.48543 

E+5 

Closs 

($) 

7.183619

9 

E+4 

6.9078 

E+4 

4.0080 

E+4 

3.2526 

E+4 

6.0972 

E+4 

4.4934 

+4 

4.3452 

+4 

Cgrid 

($) 

2.634895

E+6 

2.534966 

E+6 

1.470825 

E+6 

1.193808 

E+6 

2.243808 

E+6 

1.648953 

E+6 

1.594560 

E+6 

Cpv 

($) 
- 

1.44255 

E+5 
- 

1.16819 

E+5 

1.08872 

+5 
0 

1.08872 

+5 

Cds 

($) 
- 

5.305 

E+3 
- 

5.305 

E+3 

5.305 

E+3 
0 

5.305 

E+3 

Ctotal 

($) 

2.706731

E+6 

2.753604 

E+6 

1.510905 

E+6 

1.348458 

+6 

2.418957 

E+6 

1.693887 

E+6 

1.752718 

E+6 

Tie 

Switches 

69,70,71,

72,73 

69,70,71, 

72,73 

43,69,54, 

61,18 

43,69,54, 

61,18 

69,70,71, 

72,73 

44,17,58, 

39,22 

44,17,58, 

39,22 
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Table 8 Simulation results for IEEE 69- bus system for single and two hybrid systems by 

HMPJA 

Entity Base Case MPA JFSA 

PV + 

DSTATCOM 

NRX PV + 

DSTATCOM 

+ NRX 

PV + 

DSTATCOM 

NRX PV+ 

DSTATCOM 

+NRX 

Eloss 

(MWh) 
1.19726 1.02679 0.73328 0.68705 1.02382 0.6632 0.6306 

Egrid 

(MWH) 
27.44682 23.5502 16.8185 15.75820 23.4821 15.2126 14.4646 

Optimal 

loc 1 
- 15 - 61 11 - 2 

Optimal 

loc 2 
-  - - 12 - 19 

Psr1 

(kW) 
- 2571 - 1048 1000 - 700 

Psr2 

(kW) 
- - - - 1000 - 700 

Qds1 

(kVAr) 
- 100 - 105 700 - 700 

Qds2 

(kVAr) 
- -  - 700 - 700 

TVDev 
1.24867 

E+4 

1.1957 

E+4 

1.0553 

E+4 

9.236 

E+3 

1.07 

E+03 

1.0291 

E+4 

7.016 

E+3 

VSID 
5.40257 

E+5 

5.51881 

E+5 

5.43531 

E+5 

5.48883 

E+5 

5.57 

E+05 

5.43954 

E+5 

5.59230 

E+5 

Closs 

($) 

7.1836199 

E+4 

6.1566 

E+4 

4.3997 

E+4 

4.1223 

E+4 

6.1429 

E+04 

3.3979 

E+4 

3.7836 

E+4 

Cgrid 

($) 

2.634895E

+6 

2.259082 

E+6 

1.61457 

E+5 

1.557926 

E+6 

2.254282 

E+06 

1.460409 

E+6 

1.388860 

E+6 

Cpv 

($) 
- 

2.79909 

E+5 
- 

1.14097 

E+5 

2.17744 

E+05 
- 

1.52420 

E+5 

Cds 

($) 
- 

5.305 

E+3 
- 

5.586 

E+3 

7.427 

E+03 
- 

7.427 

E+3 

Ctotal 

($) 

2.706731E

+6 

2.550452 

E+6 

2.222720 

E+6 

2.227695 

E+6 

2.540882 

E+06 

1.800208 

+6 

1.586543 

E+6 

Tie 

Switches 

69,70,71,7

2,73 

69,70,71, 

72,73 

13,17,21, 

42,58 

13,17,21, 

42,58 

69,70,71, 

72,73 

71,54,14, 

64,9 

71,54,14, 

64,9 



 Optimizing Distribution Networks with PVDG-DSTACOM and Reconfiguration under... 423 

Table 9 Comparative analysis for IEEE 69- bus system for single and two hybrid systems 

Entity Base Case MPA JFSA 

PV + 

DSTATCOM 

NRX PV + 

DSTATCOM 

+ NRX 

PV + 

DSTATCOM 

NRX PV+ 

DSTATCOM 

+NRX 

Eloss 

(MWh) 
1.19726 1.02679 0.6582 1.3345 1.02382 0.8136 1.1174 

Egrid 

(MWH) 
27.44682 23.5502 24.857 26.604 23.58  21.6146 

Optimal 

loc 1 
- 15 62 57 11 63 62 

Optimal 

loc 2 
-  -  12 57 58 

Psr1 

(kW) 
- 2571 1113 532 1000 690 1805 

Psr2 

(kW) 
- - -  1000 1337 1316 

Qds1 

(kVAr) 
- 100 1290 2689 700 1449 935 

Qds2 

(kVAr) 
- - -  700 581 1683 

TVDev 
1.24867 

E+4 

1.1957 

E+4 
8.74E+03 7.61E+03 1.07E+03 6.95E+03 6.12E+03 

VSID 
5.40257 

E+5 

5.51881 

E+5 
5.62E+05 5.66E+05 5.57E+05 5.69E+05 5.77E+05 

Closs 

($) 

7.1836199 

E+4 

6.1566 

E+4 
3.95E+04 8.01E+04 6.17E+04 4.88E+04 6.70E+04 

Cgrid 

($) 

2.634895E

+6 

2.259082 

E+6 
2.39E+06 2.55E+06 2.26E+06 2.24E+06 2.08E+06 

Cpv 

($) 
- 

2.79909 

E+5 
1.21E+05 5.72E+04 1.84E+05 2.21E+05 3.40E+05 

Cds 

($) 
- 

5.305 

E+3 
6.84E+03 1.43E+04 7.49E+03 1.08E+04 1.39E+04 

Ctotal 

($) 

2.706731E

+6 

2.550452 

E+6 
2.55E+06 2.71E+06 2.52E+06 2.519764E 2.50E+06 
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(a) 

 

(b) 

Fig. 10 VP of the 33-bus system by incorporating the one and two hybrid systems PV-

DSTATCOM with NRX in (a)  Winter, (b) Spring (CONTD…) 
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(c) 

 

(d) 

Fig. 10 VP of the 33-bus system by incorporating the one and two hybrid systems PV-

DSTATCOM with NRX in (c) Summer, (d) Autumn 
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(a) 

 

(b) 

Fig. 11 VP of the 69-bus system by incorporating the one and two hybrid systems PV-

DSTATCOM with NRX in (a)  Winter (b) Spring (CONTD…) 
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(c) 

 

(d) 

Fig. 11 VP of the 69-bus system by incorporating the one and two hybrid systems PV-

DSTATCOM with NRX in (c) Summer (d) Autumn 
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6. CONCLUSION 

This study addresses the best design and evaluation of integrating a combined system 

with PVDG and DSTATCOM in a reconfigured PDN while taking seasonal fluctuations 

in solar irradiance and load demand into account. With the use of gaussian and beta 

probability density functions, demand for load and solar irradiance’s random nature are 

accurately represented. A hybrid marine predator jellyfish search algorithm (HMPJA) has 

been presented based on the learning automata to improve the method's dependability. 

This integration aims to provide a more resilient and effective optimization method that 

can handle a variety of difficulties in different problem scenarios. A multi-objective 

function's ideal location and size have been determined by applying the suggested 

HMPJA, which takes into account factors including cost savings, VP, and stability index 

enhancement in the reconfigured network. The proposed technique has been applied to 

IEEE 33-bus and 69-bus systems. A comparison has been made to mitigate power loss 

under load and solar irradiance variation to certify that the suggested technique works.  

The suggested HMPJA may be used as a future research project to address challenging 

issues related to power system optimization, such as combined economic emission 

dispatch, microgrid energy management, and the best location for distributed generation 

sources. This would aid in evaluating the algorithm robustness and effectiveness in 

managing a variety of complex restrictions within the allotted time. 
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