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Abstract. At the gate level, the Kogge-Stone adder (KSA) is known to outperform many 

high-speed adders including other parallel prefix adders in terms of the speed 

performance. This paper presents a methodology to synthesize a new high-speed adder 

automatically, called the AHSA, using a logic synthesis tool. We describe what adder 

architectures can be input to a logic synthesis tool and what synthesis constraints 

should be specified so that the AHSA can be automatically synthesized. The AHSA is 

significant since it has a speed similar to that of the KSA while requiring less area and 

dissipating less power. In this paper, 32-bit addition serves as an example, and various 

adders belonging to different architectures were synthesized using a 28 nm Synopsys 

CMOS standard cell library. The design metrics estimated show that while the KSA has 

a 5.2% reduced delay than the AHSA, the AHSA occupies 29.1% less area and 

consumes 9.6% less power than the KSA. In terms of the figures of merit used for a 

digital circuit design such as power-delay product (PDP), area-delay product (ADP), 

and power-delay-area product (PDAP), the AHSA achieves a 4.7% reduced PDP, a 

25.2% reduced ADP, and a 32.4% reduced PDAP compared to the KSA. This paper 

demonstrates that when speed is the key factor in an adder design, the AHSA is 

preferable to the KSA. Moreover, the AHSA is shown to be significantly faster than 

other high-speed adders at the gate level.  
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1. INTRODUCTION 

High-speed adders are critical in digital circuits and computer architecture, primarily 
used for performing addition operations quickly. Some key uses of high-speed adders are 
given as follows. High-speed adders are important in arithmetic and logic units that 
perform arithmetic and logical operations in processors. High-speed adders are used in 
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digital signal processors for the fast computation of algorithms such as filtering and 
Fourier transforms. High-speed adders help to speed up the operation of embedded systems 
and general-purpose processors by speeding up arithmetic operations. High-speed adders 
support fast computations necessary for handling complex graphics in graphics processing 
units. Fast addition using high-speed adders is critical in cryptographic algorithms where 
performance can significantly impact security operations. High-speed adders are used in high-
performance computing to perform complex mathematical computations where speed is vital. 
Further, high-speed adders are often implemented in application-specific integrated circuits 
and field-programmable gate arrays to optimize specific functions. Thus, high-speed adders 
play a fundamental role in enhancing the speed performance of digital electronic circuits and 
systems.  

Addition and multiplication are fundamental arithmetic operations that consume 
significant power in computing systems. For instance, in [1], it was noted that in graphics 
processing units, arithmetic operations such as addition/multiplication were responsible 
for more than 70% of their power consumption. In fast Fourier transform processors, 
addition and multiplication account for approximately 80% of the total power [2]. Adders 
are crucial for performing arithmetic computations and are integral to the data paths of 
digital signal processors. Studies have shown that addition is often executed in real-time 
digital signal processing [3]. A study of an ARM processor’s arithmetic and logic unit 
revealed that addition is involved in nearly 80% of its operations [4]. Consequently, 
developing high-speed adders is critical to improving the efficiency of digital systems.  

Literature discusses several adder architectures [5,6], including the ripple carry adder 
(RCA) comprising a cascade of one-bit full adders or two-bit full adders [7], the 
conditional-sum adder (CSMA) [8], the carry skip adder (CSKA) [9], the carry-select adder 
(CSLA) constructed using two RCAs [10] or one RCA and an add-one circuit or a binary to 
excess-1 code converter [11,12], diverse carry look-ahead adders (CLAs) such as the 
conventional CLA [13], the delay-optimized CLA [14] and the new CLA [15], as well as a 
family of parallel prefix adders (PPAs) [16]. All these adder architectures are well 
documented in the literature, and their performance parameters were compared [15]. The 
PPA [16] is an advanced adder architecture, and several variants of PPAs have been 
explored, such as the Brent-Kung adder (BKA) [17], the Sklansky adder [18], and the 
Kogge-Stone adder (KSA) [19]. While all PPAs aim to accelerate addition through 
parallelized carry generation, each differs in structure, performance, and area utilization. 
The KSA, known for its highly parallel binary tree structure, performs prefix operations 
quickly, making it faster than the other PPAs. However, the KSA requires more area than 
other PPAs due to its extensive parallelism. Nevertheless, the KSA excels in scalability and 
handles large bit widths effectively,    

This paper presents a method to automatically synthesize a new high-speed adder 
called AHSA that optimizes the trade-off between area, delay, and power, outperforming 
the KSA in terms of efficiency. While the KSA is widely acknowledged as one of the 
fastest gate-level adders, it often underperforms in terms of area and power consumption 
compared to other high-speed alternatives. In contrast, the newly synthesized adder 
(AHSA) achieves a speed performance comparable to the KSA but with reduced area and 
power requirements. The remainder of the paper is structured as follows: Section 2 
discusses the methodology used to synthesize the AHSA with a synthesis tool. Section 3 
presents the standard design metrics of various 32-bit adders, which were synthesized 
using a 28 nm Synopsys CMOS standard cell library and characterized using Synopsys 
EDA tools. Section 4 summarizes the contributions of this work.  
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2. AUTOMATED HIGH-SPEED ADDER SYNTHESIS 

The output of a logic synthesis tool depends on the input provided, which may be 

described in a hardware description language, and the specific synthesis scripts that 

dictate whether the synthesis should be optimized for area, speed, or power. Through a 

series of experiments, we noted that certain high-speed adder architectures, when described in 

Verilog and synthesized under specific constraints using a logic synthesis tool (Synopsys 

DesignCompiler) can automatically generate a new high-speed adder, which we label as 

the Automatically generated High-Speed Adder (AHSA). The AHSA is observed to be 

closer in speed to the KSA but requires less area and dissipates less power. However, we 

also noted that not all high-speed adder architectures described in Verilog result in an 

AHSA after synthesis when using the same synthesis scripts. Therefore, this paper 

provides specific information on which adder architectures to use as input and outlines 

the necessary design constraints to specify to synthesize an AHSA.  

Our experimentation has revealed that when certain adders are described structurally, 

i.e., using gate primitives in Verilog and synthesized using DesignCompiler by specifying 

the constraints ‘set_dp_smartgen_options -optimize_for speed’ and ‘compile_ultra,’ yield 

the AHSA. These adders include (i) an RCA composed of cascaded two-bit full adders, 

(ii) CLA architectures employing standard or delay-optimized CLA modules of uniform size 

[20], and (iii) an NCLA [15] employing delay-optimized CLA modules of varying sizes. 

For reference, we have made available the structural Verilog code of a 32-bit CLA, 

constructed using eight 4-bit CLAs, and the synthesized gate-level netlist of the AHSA 

on GitHub [21], which is open for access. The synthesis was carried out using Synopsys 

DesignCompiler, utilizing the gates of a 28 nm Synopsys CMOS standard cell library [22]. 

For example, Figs. 1 and 2 illustrate standard 4-bit CLAs used to construct a 

conventional 32-bit CLA. In Fig. 1, the 4-bit CLA has no carry input, and in Fig. 2, the 4-

bit CLA has a carry input. Here, AX+4 to AX and BX+4 to BX represent the augend inputs, 

CX denotes the carry input, SX+4 to SX represents the sum outputs, and CX+4 denotes the 

carry output. CX+3 to CX+1 denote internal carry signals. In Figs. 1 and 2, PX+3 to PX 

denote carry-propagate logic, and GX+3 to GX denote carry-generate logic. Assuming AY 

and BY to be the adder inputs, the carry-propagate and carry-generate logic are generally 

expressed as the logical exclusivity and logical conjunction of inputs as follows: PY = 

AYBY, and GY = AYBY. The generalized expressions for lookahead carry outputs with 

no carry input (i.e., CX = 0), and the sum output of a 4-bit CLA is given by (1) to (5) 

below: 

 CX+1 = GX (1) 

 CX+2 = GX+1 + PX+1GX (2) 

 CX+3 = GX+2 + PX+2GX+1 + PX+2PX+1GX (3) 

 CX+4 = GX+3 + PX+3GX+2 + PX+3PX+2GX+1 + PX+3PX+2PX+1GX (4) 

 SK = PK  CK (5) 
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Fig. 1 Structural diagram of a 4-bit CLA with no carry input 

The generalized expressions for lookahead carry outputs of a 4-bit CLA with a carry 

input (CX) are given by (6) to (9) below: 

 CX+1 = GX + PXCX (6) 

 CX+2 = GX+1 + PX+1GX + PX+1PXCX (7) 

 CX+3 = GX+2 + PX+2GX+1 + PX+2PX+1GX + PX+2PX+1PXCX (8) 

 CX+4 = GX+3 + PX+3GX+2 + PX+3PX+2GX+1 + PX+3PX+2PX+1GX + PX+3PX+2PX+1PXCX (9) 
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Fig. 2 Structural diagram of a 4-bit CLA having a carry input 

After synthesizing a 32-bit AHSA using a standard digital cell library, its gate-level 

netlist was simulated for functionality using Synopsys VCS by supplying approximately 

a thousand random inputs at a nominal latency of 4 ns. An image showing a segment of 

simulation waveforms of the 32-bit AHSA is shown in Fig. 3 where a[31:0] and b[31:0] 

represent the adder’s inputs, and sum[32:0] represents the adder’s output. The adder 

inputs and output are shown in hexadecimal in Fig. 3. Four markers, namely M1, M2, 

M3, and M4, are highlighted in Fig. 3, which capture specific instances of the input-

output waveforms. M1 highlights the scenario where inputs (EEEE EEEE) and (EFFF 

EEEF) are added, resulting in a sum of (1 DEEE DDDD). M2 highlights the scenario 

where (FFFF FFFF) and (FEEE FFFE) are added, resulting in a sum of (1 FEEE FFFD). 

M3 highlights the scenario where (0000 0000) and (0000 0000) are added, resulting in a 

sum of (0 0000 0000). Lastly, M4 highlights the scenario where (1111 1111) and (1111 

1111) are added, resulting in a sum of (2222 2222).  
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Fig. 3 An image showing a segment of simulation waveforms of the 32-bit AHSA, obtained 

using Synopsys VCS 

3. DESIGN METRICS OF ADDERS 

Here, we consider 32-bit addition as an example, although the addition of any size could 
be considered. Contrary to some existing works such as say [12] which considered different 
adder designs corresponding to one specific architecture viz. the CSLA for implementation 
and comparison, here, various 32-bit adders belonging to diverse architectures such as the 
RCA, CSKA, CSMA, CSLA, CLAs (CCLA, DCLA, and NCLA), and well-known PPAs 
were considered for implementation and comparison. To synthesize a 32-bit RCA, a 32-bit 
adder was described in data-flow style in Verilog using the arithmetic operator (+), and the 
‘compile_ultra’ command of DesignCompiler was used for synthesis, resulting in an 
RCA comprising 31 full adders and a half adder logic.  

All the high-speed adders were described at the gate level in Verilog for synthesis 
using a 28-nm CMOS standard digital cell library [22]. The synthesis targeted a typical 
process, voltage, and temperature condition of the cell library (supply voltage = 1.05 V; 
operating junction temperature = 25 °C). The operating condition chosen is ‘ttlp05v25c’, 
and the library specification used is ‘saed32hvt_ttlp05v25c’.   

Default wire load models were automatically chosen by DesignCompiler to estimate the 
delay and power consumption of interconnects (wires) during the synthesis process. Two 
common wire load models are ForQA and 8000. ForQA is primarily used for quality 
assurance (QA) testing. This model provides a conservative estimate of wire delay and 
capacitance for synthesizing designs, focusing on ensuring that the design will meet timing 
and power requirements across a wide range of conditions. It is typically used in environments 
where design quality needs to be validated against typical wire characteristics. The 8000 wire 
load model is more specific and widely used, typically for large designs. This model estimates 
the wire delay based on a set of empirical parameters and is named ‘8000’ because it is often 
applied in designs with around 8000 gates. It provides more accurate estimations for wire 
delay and capacitance, especially for larger designs, making it more suited for general 
production use. Both models serve to help designers understand the impact of interconnects 
on overall performance, but they differ in their application contexts and accuracy, with ForQA 



 Automated Synthesis of a High-Speed Adder 463 

focusing on QA and 8000 offering more practical use in larger designs. Here, ForQA was 
used as the default wire load model for synthesis using the compile_ultra command; 8000 was 
used as the default wire load model for synthesis using the compile_ultra command with 
speed specified as the optimization goal; and the wire load model 8000 was used for the top 
module while the wire load model ForQA was used for the bottom (i.e., instantiated) modules 
for synthesis using the compile command with speed specified as the optimization goal.  

A fanout-of-4 driving strength was uniformly associated with the sum bits of all the 
adders. During the synthesis, a virtual clock was used to constrain the adders’ inputs and 
outputs. The clock does not form a part of the physical design, and it has no impact on the 
design metrics.  

A 32-bit RCA implemented with a cascade of two-bit full adders, as outlined in [7], is 
referred to as RCA-2 in this work. We considered three types of CLAs: the conventional CLA 
(CCLA) consisting of standard and uniform-size CLA modules, the delay-optimized CLA 
(DCLA) comprising delay-optimized and uniform-size CLA modules, and the new CLA 
(NCLA) featuring delay-optimized and non-uniform-size CLA modules. The details of 
CCLAs and DCLAs are given in [20], and the details of NCLAs are given in [15]; hence, an 
interested reader is suggested to refer to the same for necessary information. Given that we 
consider the 32-bit addition as a representative example here, three 32-bit CCLAs were 
examined, each comprising a different number of CLAs: one with sixteen 2-bit CLAs 
(CCLA-2×16), another with eight 4-bit CLAs (CCLA-4×8), and another with four 8-bit CLAs 
(CCLA-8×4). Likewise, three 32-bit DCLAs were also considered, referred to as DCLA-
2×16, DCLA-4×8, and DCLA-8×4 in the paper. Among several NCLAs, NCLA-8844422, 
which utilizes 2-bit, 4-bit, and 8-bit CLAs, was the best optimized [15]. Therefore, we 
considered this NCLA alone for this work. For the 32-bit KSA, we referenced the structural 
description provided in [23]. Regarding the CSLA, we followed the guidance given in [24], 
which recommended an 8-8-8-8 input partition to realize a delay-optimized CSLA. 
Additionally, we referred to the Synopsys DesignWare library that contains synthesis-ready 
models of some high-speed adders such as the Ling adder, CSMA, BKA, and the Sklansky 
adder. All the high-speed adders were synthesized using the ‘compile’ command, with speed 
set as the optimization goal in the first round. Next, they were all synthesized using the 
‘compile_ultra’ command with speed set as the optimization goal in the second round.      

For synthesis using DesignCompiler, the ‘compile’ command with speed optimization 
uses less aggressive optimization techniques, and its focus is on achieving a balance 
between timing and other design goals, such as area or power. The ‘compile’ command with 
speed optimization generally includes gate resizing, buffer insertion, basic logical 
restructuring, etc. On the other hand, the ‘compile_ultra’ command generally leverages 
advanced and more aggressive timing optimization techniques, including advanced retiming, 
multilevel optimization, critical path emphasis, etc. The ‘compile_ultra’ command with speed 
optimization primarily targets speed but also considers other metrics such as area and power. 
This partly explains why RCA-2, CCLAs, DCLAs, and the NCLA yield the AHSA when the 
synthesis was performed with speed specified as the optimization goal and the ‘compile_ultra’ 
command was used in DesignCompiler. The 32-bit CSKA yields a high-speed adder that has 
the same speed and dissipates the same power as the AHSA, but there is a slight variation in 
the area occupancy. Hence, the CSKA is said to yield the AHSA partly. However, the 
difference in area between the AHSA and the high-speed adder derived from the CSKA is 
negligible. Moreover, in the case of the Ling adder, CSLA, BKA, Sklansky adder, and KSA, 
some trade-offs in design metrics are noticed when synthesized using ‘compile’ and 
‘compile_ultra’ commands. This is due to the native logic optimization algorithms embedded 
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in a (commercial) synthesis tool that are not accessible to an end user, so a trial-and-error 
approach may have to be adopted to achieve a preferred design outcome.  

After synthesis using DesignCompiler, the total area of each adder, which includes 
their cell area and interconnect area, was estimated. The gate-level netlists of the adders 
obtained by synthesis were validated for functional correctness using Synopsys VCS, 
with a test bench comprising approximately one thousand random inputs. The inputs to 
the adders were provided at a nominal latency of 4 ns to accommodate the critical path 
delay of the slower RCA. The power dissipation of adders was estimated by considering 
their switching activity recorded via functional simulations performed using VCS. Synopsys 
PrimePower was used to estimate the total (average) power dissipation. The critical path delay 
of adders was determined using PrimeTime, with a virtual clock constraining the inputs and 
outputs of the adder. Since the virtual clock is not part of the actual design, it did not affect the 
design metrics. A fanout-of-4 drive strength was applied to the sum outputs of all adders. A 
default wire-load model was used during synthesis to account for interconnect and parasitic 
effects. The following versions of Synopsys EDA tools were utilized in this research: (i) 
DesignCompiler: Q-2019-12-SP5, (ii) PrimeTime (PrimePower): O-2018.06-SP5-2, and (iii) 
VCS: 2020_12_SP2_6.   

The standard design metrics, namely total area (i.e., cells area + interconnect area), critical 
path delay, and total power dissipation of various adders synthesized, are given in Table 1. 
Table 1 presents three categories of adders synthesized using DesignCompiler by applying 
different synthesis settings to the Verilog description of adders. The first category comprises 
the conventional RCA obtained by synthesizing an adder described using the arithmetic 
operator (+) using the ‘compile_ultra’ command. The second category comprises the KSA 
and NCLA-8844422 synthesized using DesignCompiler using the ‘compile’ command with 
speed designated as the optimization goal. Reference [15] presented a comparison of design 
metrics of various adders belonging to diverse architectures, which were synthesized using the 
‘compile’ command with speed set as the optimization goal. It was observed in [15] that the 
KSA is the fastest, although it occupies more area and dissipates more power than other 
adders, while NCLA-8844422 offers a good trade-off between delay, area, and energy 
compared to its counterparts. Hence, these two adders are of primary interest here, and 
therefore, their design metrics are shown in Table 1 for speed-oriented synthesis using the 
compile command. Also, we noted that the AHSA did not result based on the synthesis of any 
high-speed adder using the ‘compile’ command with the optimization goal set as speed. So, 
the design metrics of the rest of the high-speed adders, given in [14], are not repeated here. 
The third category of adders given in Table 1 was synthesized using DesignCompiler using 
the ‘compile_ultra’ command with speed set as the optimization goal. Instances of AHSA 
synthesis corresponding to the third category of adders are highlighted in boldface in Table 1. 

Figure 4 shows the split-up of total power dissipation of various adders synthesized based 
on different synthesis settings using DesignCompiler. The summation of cell internal power 
and net switching power is referred to as the dynamic power, and the cell leakage power 
denotes the static power, as reported by Synopsys PrimePower. In Figure 4, three notations 
are used within brackets, namely ‘CU’, ‘C&S’, and ‘CU&S’ – these refer to the synthesis of 
adders using compile_ultra command, compile command with speed set as the optimization 
goal, and compile_ultra command with speed set as the optimization goal, respectively.      
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Table 1 Design attributes of various 32-bit adders estimated after synthesis using a 28 nm 

CMOS standard digital cell library by applying different synthesis settings 

Adder input to the  
synthesis tool 

Area (µm2) Delay  
(ns) 

Power  
(µW) 

AHSA  
yielded Cells Interconnect Total 

RCA synthesized using the ‘compile_ultra’ command; no optimization goal specified 

Adder (+) 155.03 10.98 166.01 3.40 42.13 No 

Synthesis using the ‘compile’ command; optimization goal – speed 

KSA 1014.29 174.43 1188.72 0.73 84.99 No 

NCLA-8844422 476.52 53.21 529.73 0.99 50.00 No 

Synthesis using the ‘compile_ultra’ command; optimization goal – speed 

Adder (+) 387.06 62.75 449.81 2.74 56.63 No 

RCA-2 728.63 114.19 842.82 0.77 76.81 Yes 

CSKA 729.91 114.18 844.09 0.77 76.81 Partly 

CSMA 412.48 77.65 490.13 1.71 69.43 No 

CSLA 444.75 72.41 517.16 1.62 66.47 No 

Ling adder  391.89 76.10 467.99 2.56 64.19 No 

CCLA-2×16 728.63 114.19 842.82 0.77 76.81 Yes 

CCLA-4×8 728.63 114.19 842.82 0.77 76.81 Yes 

CCLA-8×4 728.63 114.19 842.82 0.77 76.81 Yes 

DCLA-2×16 728.63 114.19 842.82 0.77 76.81 Yes 

DCLA-4×8 728.63 114.19 842.82 0.77 76.81 Yes 

DCLA-8×4 728.63 114.19 842.82 0.77 76.81 Yes 

NCLA-8844422 728.63 114.19 842.82 0.77 76.81 Yes 

BKA 425.69 82.61 508.30 2.35 67.29 No 

Sklansky adder 391.89 76.10 467.99 2.56 64.19 No 

KSA 515.15 94.39 609.54 1.85 61.92 No 

 

Fig. 4 Split-up of total power dissipation of various adders in terms of their dynamic and 

static power components (given in µW). The blue, orange, and green bars represent the 

net switching power, cell internal power, and cell leakage power, respectively. The net 

switching power and cell internal power together account for the dynamic power, and 

the cell leakage power accounts for the static power.  



466 P. BALASUBRAMANIAN, N. E. MASTORAKIS 

From Table 1, it is noted that the KSA synthesized using the ‘compile’ command with 

speed specified as the optimization goal, and the AHSA synthesized by applying the 

‘compile_ultra’ command on select adders with speed specified as the optimization goal 

stand out from the rest in terms of speed. From Table 1, it may be understood that while 

the CSKA, CSMA, CSLA, Ling adder, CCLAs, DCLAs, NCLA (NCLA-8844422), 

BKA, and Sklansky adder are considered high-speed adders, the existing KSA and the 

newly presented AHSA may be categorized as ‘very high-speed adders’ due to their 

significantly faster performance. The gates present in the critical path of the 32-bit AHSA 

and the 32-bit KSA (synthesized by the ‘compile’ command), determined from the timing 

reports generated by PrimeTime, are expressed by (10) and (11).  

 DAHSA_32b = DNOR2X0 + (3×DOAI21X1) + (2×DAOI21X1) + DXNOR2X1  (10)   

 DKSA_32b = (2×DXOR2X1) + (5×DAO21X1) + DAND2X1 (11) 

In (1) and (2), DNOR2X0 denotes the average delay of a 2-input NOR gate, DOAI21X1 

denotes the average delay of an OR-AND-INVERT complex gate, DAOI21X1 denotes the 

average delay of an AND-OR-INVERT complex gate, DXNOR2X1 denotes the average delay 

of a 2-input XNOR gate, DXOR2X1 denotes the average delay of a 2-input XOR gate, DAO21X1 

denotes the average delay of an AND-OR complex gate, and DAND2X1 denotes the average 

delay of a 2-input AND gate. In the gate delay notations, the suffix ‘X0’ implies a gate 

drive strength of 0.5, indicating an associated capacitive load of 2 fF, and the suffix ‘X1’ 

implies a gate drive strength of 1, indicating an associated capacitive load of 4 fF. 

Substituting the average delays of gates in the standard cell library [22] into (1) and (2), 

the theoretical critical path delays of 32-bit AHSA and 32-bit KSA are calculated as 0.599 ns 

and 0.585 ns. Though a theoretical calculation of critical path delays is approximate in the 

absence of interconnect and parasitic, nevertheless, the theoretical calculation points to a 

slightly lesser delay for the KSA compared to the AHSA which agrees with the trend noticed 

in the practical (physical) estimates of 0.73 ns for the former and 0.77 ns for the latter.    

The AHSA demonstrates substantial reductions in critical path delay compared to 

other high-speed adders, as summarized below.    

▪ 73.7% reduction compared to CSKA (synthesized by ‘compile_ultra’) 

▪ 55% reduction compared to CSMA (synthesized by ‘compile_ultra’) 

▪ 33.6% reduction compared to CSLA (synthesized by ‘compile_ultra’) 

▪ 67.8% reduction compared to Ling adder (synthesized by ‘compile_ultra’) 

▪ 33.6% reduction compared to CCLA-8×4 (synthesized by ‘compile_ultra’) 

▪ 26.2% reduction compared to NCLA-8844422 (synthesized by ‘compile_ultra’) 

▪ 68.2% reduction compared to BKA (synthesized by ‘compile_ultra’) 

▪ 71.9% reduction compared to Sklansky adder (synthesized by ‘compile_ultra’) 

From the perspective of speed, the AHSA and the KSA are comparable. The synthesis 

results show that the KSA achieves a 5.2% reduction in delay compared to the AHSA. 

However, the AHSA occupies 29.1% less area and consumes 9.6% less power than the KSA.  

Three well-known figures of merit used for a digital logic design are power-delay 

product (PDP), area-delay product (ADP), and power-delay-area product (PDAP). PDP 

quantifies the energy consumed per switching event in a digital circuit, making it a key 

metric for energy-efficient design. A lower PDP indicates that the circuit consumes less 

power while maintaining fast switching, which is crucial for battery-powered and low-

power applications. PDP is particularly useful for evaluating trade-offs in high-speed 
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circuits where power dissipation and operational speed are both critical factors. ADP 

measures the trade-off between circuit area and speed, helping designers optimize for 

both compactness and performance. A lower ADP signifies a design that is both smaller 

and faster, which is particularly important for system-on-chip and applications with 

stringent area constraints. This metric ensures that performance gains do not come at an 

excessive cost in chip real estate. PDAP integrates power, delay, and area into a single 

metric, offering a comprehensive evaluation of circuit efficiency. It is particularly useful 

in scenarios where designers should optimize for low power, high speed, and minimum 

area simultaneously, such as in energy-efficient processors and compact embedded 

systems. A lower PDAP is ideal for applications that require balanced power, performance, 

and silicon cost. We noted from Table 1 that the AHSA achieves a 4.7% reduced PDP, a 

25.2% reduced ADP, and a 32.4% reduced PDAP compared to the KSA. When speed is the 

key factor in an adder design, the AHSA is preferable to the KSA. Moreover, the AHSA is 

shown to be significantly faster than other high-speed adders at the gate level.  

4. CONCLUSION 

This paper expounded the automatic synthesis of a very high-speed adder (called the 

AHSA), using a commercial logic synthesis tool. The AHSA demonstrated its competitive 

performance alongside the KSA, which is generally considered the fastest gate-level adder. 

Through experimentation, we observed that an RCA constructed via a cascade of two-bit full 

adders, or CLAs when given as inputs to the synthesis tool (DesignCompiler), and 

synthesized using the ‘compile_ultra’ command with speed specified as the optimization goal, 

the AHSA was generated. The functionality of the AHSA, along with several other high-

speed adders, was verified through simulation, and the design metrics were estimated. 

Notably, the AHSA is significantly faster than all other high-speed adders, except the KSA. 

Nevertheless, the critical path delays of AHSA and KSA are comparable, and AHSA occupies 

less area and has less power dissipation. Therefore, it can be concluded that when speed is the 

primary criterion for an adder design, which is the norm in a high-performance computing 

environment, the AHSA emerges as a preferred option to the KSA. We also provided an 

example adder code that was input to the synthesis tool and the gate-level netlist of the AHSA 

synthesized in a publicly accessible format through GitHub [21], which could be useful to 

researchers in academia/industry. Although we discussed the synthesis of AHSA in this paper 

using Synopsys DesignCompiler, there is no information about whether the AHSA could be 

synthesized using any other logic synthesis tool (open-source or commercial) based on 

specific synthesis constraints as reported in this work in the existing literature. Hence, we 

leave this issue to the research community to ponder further work in this aspect. Also, the 

scope for further work exists whereby the AHSA may be considered for the realization of 

arithmetic circuits such as multipliers, multiply-and-accumulate units, etc., to investigate the 

significance of the AHSA. 
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