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Abstract. The efficiency of the proposed automatic speaker recognizer is evaluated 

using two speech databases. The feature vector consists of 21 mel-frequency cepstral 

coefficients (MFCCs), along with up to three additional features derived from the 

amplitude spectrum. The additional features are calculated based on the logarithm of 

the energy around the appropriate local maximum in the spectrum, the frequency of 

that maximum, and the logarithm of the energy of the maximum component in the 

spectrum across all frames of the observed signal. The speaker identification procedure 

for a closed set of speakers is tested on the Solo section of the CHAINS database and a 

speech database with expressed emotions, developed within the S-ADAPT project. The 

achieved maximum mean recognition accuracies are 97.11%, on the CHAINS 

database, using a feature vector of 21 MFCCs and two additional features, and 98.65% 

on neutral speech, as well as 98.72% on the entire database, for the S-ADAPT 

database, using a feature vector of 21 MFCCs. 
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1. INTRODUCTION 

Determination of speech features is one of key segments in construction of automatic 

speaker recognizer. The speaker features used affect the recognition accuracy of the 

speaker recognizer. Timbre is one of the fundamental characteristics of a speaker’s, 
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representing the subjective perception of the listener. To achieve automatic speaker 

recognition, it is necessary to extricate information about the speaker’s timbre.  

Timbre is a consequence of the harmonic spectral content of speech, which is 

contained in the spectral envelope of the speech signal. Mel-frequency cepstral 

coefficients (MFCCs) follow the spectral envelope of the speech signal [1, 2]. This means 

that MFCCs contain information about the spectral envelope of the speech signal. 

MFCCs are short-term features of speech, they are usually calculated for speech frames 

of around 25 ms. Timbre, as subjective perception of listener, is long-term feature of 

speech. Therefore, to get the information about timbre of the speaker’s speech it is 

necessary to apply adequate transformation to previously calculated vectors of MFCCs 

and represent the determined set of feature vectors in a unique way. In [3] vector 

quantization (VQ) is applied. Gaussian mixture model (GMM) is the type of probabilistic 

model that can be used for modeling of MFCC feature vectors, results in [4] show that 

MFCC-GMM speaker recognizer achieves higher recognition accuracy with respect to 

MFCC-VQ speaker recognizer. In [5] is shown that Gaussian Mixture Model-Universal 

background model (GMM-UBM) gives a lower equal error rate (EER) compared to 

GMM. Nowadays the procedures are oriented to processing of a large amount of short-

term feature vectors into long-term feature, and in searching for correlations, some kind 

of connections or relationship, between short-term MFCC feature vectors. In [6] this is 

achieved by a multilayer perceptron feed-forward artificial neural network (MLPFANN) 

which is trained by backpropagation. Speaker recognition based on use of MFCCs from 

distant speech, in [7], is done with UBM i-vector (intermediate-vector) based system and 

with deep neural network (DNN) speaker embedding based system. This work shows the 

robustness of a DNN speaker embedding based speaker recognition system for distant 

speech data. Robust speaker recognition is done by x-vectors DNN embeddings in [8]. 

Emotion invariant speaker embeddings for speaker identification, i-vectors based approach, 

is done in [9]. Results in this paper show that when training and testing speech are in 

different emotions, accuracy is higher when speech in neutral emotion is used in training. 

Combination of MFCCs with convolutional neural network (CNN) as feature extractors and 

K-Nearest Neighbor (KNN) classificator is used in [10]. A supervised learning approach for 

speaker recognition, based on use of MFCCs and CNN, is proposed in [11]. Constrained 

CNN model for speaker recognition, which performs classification by processing speech 

spectrograms, is presented in [12]. Study the optimal design of CNN networks for speaker 

identification and clustering when simple spectrograms are used as input to CNN is 

investigated in [13]. In [14], system based on deep learning and CNN is compared with 

recognizer based on MFCCs and support vector machine (SVM). Introduced a point-to-

point investigation of MFCCs technique in [15] emphasize easily recognize the voice with 

the help of MFCC techniques. Speech based security system oriented to identifying Arabic 

speakers, proposed in [16], uses MFCCs and radial basis function neural network 

(RBFNN). Combination of MFCCs, calculated for voiced frames, and inverted MFCCs 

(IMFCCs) calculated for unvoiced frames is described in [17]. 

In addition to MFCCs, other features derived from the speech spectrum are also used 

in the literature. These features are often combined with MFCCs to better utilize the 

information potential of the speaker’s speech and to increase the efficiency of the speaker 

recognizer. Spectral subband centroids (SSC) [18-21], which represent the centroid 

frequency in each observed subband, are one such feature. Experiments in [18] show that 

MFCCs are not as good as SSCs under noisy conditions. A study of the characterization 
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of subband energy as a two dimensional feature, comprising Spectral Centroid Magnitude 

(SCM) and Spectral Centroid Frequency (SCF), was conducted in [19]. Addition of SSC 

features to feature vector which contains Linear Predictive Cepstral Coefficients (LPCC), 

in [20], is increased speaker recognition accuracy. To allow better adaptation to formant 

movements and other dynamic phenomena, in [21] is proposed to adapt the subband filter 

boundaries on a frame-by-frame basis using a globally optimal scalar quantization 

scheme. In [22] is proposed that SSCs are more apt for marginalization-based Missing 

Feature Theory (MFT). It was shown that speaker recognizer based on use of SSCs, MFT 

and diagonal-covariance GMM, is more robust to noise presence than speaker recognizer 

based on use of MFCCs and diagonal-covariance GMM. Normalized Dynamic Spectral 

Features (NDSF) [23] have been found to be more robust than cepstral features like 

MFCCs and Linear Predictive Cepstral Coefficients (LPCCs) in the case of sensor 

mismatch condition. The combination of MFCCs and non-linear Spectral Dimension 

(SD) features [24] results in better performance compared to a recognizer based solely on 

MFCCs. In [25-26], the combination of MFCCs with frequency modulation (FM) 

features increases the efficiency of speaker recognition. The combination of MFCCs and 

features derived by Unique Maped Real Transform (UMRT) in [27] provides better 

accuracy of speaker recognition as compared to speaker recognizer based on use of 

MFCCs. Efficiency of MFCCs can be improved by adding additional features or by using 

other short-term acoustic features, alternative methods such as spectral centroids, group 

delay function, and integrated noise suppression can be useful for DNN-based automatic 

speaker verification system [28]. Research in [29] highlights the significant enhancement in 

computational speed and speaker recognition performance by applying adequate algorithms 

for feature optimization. It is done through fusion of features (MFCCs, SSCs, …), dimension 

reduction employing principal component analysis (PCA) and independent component 

analysis (ICA), and feature optimization through genetic algorithm (GA) and marine predator 

algorithm (MPA). 

Automatic speaker recognizer for closed set of speakers based on use of the feature 

vectors comprised of 21 MFCCs along with up to three additional features derived from 

amplitude spectrum is presented in this paper. By using covariance matrix as speaker 

model and training and testing on speech recordings of sentences, this speaker recognizer 

has small computational complexity. Impact of the proposed feature vectors to speaker 

identification accuracy in experiments on two speech databases is analyzed. One of the speech 

databases contains speaker recordings in different emotions. In addition to speaker recordings 

in neutral speech this speech database contains speaker recordings in four emotions: anger, 

joy, fear and sadness. Therefore, the impact of different emotions on speaker identification 

accuracy when training is performed by neutral speech also is examined in this paper. In the 

next parts of the paper, a description of the automatic speaker recognizer used in the 

experiments, a short description of the speech databases used, and the results of recognition 

and their discussion will be provided. 

2. AUTOMATIC SPEAKER RECOGNIZER USED 

Automatic speaker recognizer in experiments described in this paper work on speech 

signals whose frequency sampling is fs=44100 Hz. The speech signal is assumed to 

remain stationary inside of the interval around 25 ms. This interval is usually used as the 
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frame duration for spectral analysis of a speech signal. Algorithm of fast Fourier 

transform (FFT) is used for efficient calculation of discrete Fourier transform (DFT) and 

amplitude spectrum of speech frames. It is necessary that frame duration N is in the form 

N=2x, where x is a natural number, for the FFT to be applied. Therefore, feature vectors 

are calculated for speech frames of N=1024=210 samples, it is approximate 23.2 ms, 

mutually shifted by 368 samples or approximate 8.3 ms . Feature vector contains 21 

MFCCs and one to three additional features derived from amplitude spectrum. MFCCs 

are basic speaker features used for experiments in this paper. Their calculation is based 

on cosine transform of logarithm of energy inside of fixed, M=22 frequency selective 

ranges, wide of 300 mel and mutually shifted by 150 mel. Denoting the estimation of 

energy inside of the m-th frequency selective range by Em, MFCCs are determined by the 

equation: 
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where n = {1, 2, …, 21}. Results in [30] show that maximum accuracy is achieved for 

maximal number of MFCCs with respect to the number of frequency selective ranges M. 

Here nmax=21, since factor π is used in cosine transform c22=0. Determination of 

boundaries of the selective ranges in Hz scale was done from equation: 
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The equation used between continuous frequency f and discrete frequency k in discrete 

spectrum calculated by DFT in N=1024 points is: 
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The squares of the amplitude characteristics of 22 used frequency selective ranges is of 

sigmoid shape, this shape of square of amplitude characteristic give better results in [31] 

in comparison with exponential shape which is used in [30]: 
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X(k) is the value of DFT of Hann windowed frame x(n) on the discrete frequency k. 

The basic feature vector comprised of 21 MFCCs is extended with one to three 

additional features. These features represent maximums of energy in appropriate spectral 

ranges of speech frame analyzed. They are determined by observing square of the 

amplitude of the maximum spectral component in observed spectral range and components in 

the nearest neighborhood of the maximum component. First additional feature is determined 

by observing all components of amplitude spectrum in range of discrete frequency 0 to 

N/2-1, considering the symmetry of the amplitude spectrum with respect to the discrete 

frequency N/2. Calculation of additional features is done in two steps. In first step it is 

calculated energy equivalent for i-th additional feature: 

 ( )
=


−=

−




 ++





=

2

0
2

2

2

max,

2

max,ln, )(ln)(ln
j

j
j

iii jsjkXkXE , (6) 

whereby 
xe

xs
−+

=
01.02

1

1
)( , kmax,i is discrete frequency of i-th amplitude maximum, it is 

frequency of amplitude maximum on the frequency range where is calculated i-th 

additional feature for frame x(n). Finally, value of the i-th additional feature is determined 

in the second step: 
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(|X(k)|max,all)2 represents the maximum of square of amplitude spectrum in all speech 

frames of signal observed. Each of additional features is determined in appropriate 

spectral range. First additional feature is calculated on the widest spectral range: 

20 Nk  , the second additional feature is calculated on the reduced spectral range: 
21020 1m ax,1m ax, Nkkkk +− , the third additional feature is calculated on 

the more reduced spectral range: 21020 2m ax,2m ax, Nkkkk +− . Additional 

features capture information from speech spectrum that may not be fully captured by 

MFCCs alone. Use of these additional features increases the utilization of the information 

potential of amplitude spectrum. Discriminative capabilities of speaker recognizer can be 

increased and more comprehensive representation of speech signal is achieved. The 

feature extraction parameters are summarized in Table 1. 

Feature vectors calculated for appropriate speech signal are grouped into matrix. The 

first feature vector is written into first column of matrix, the second feature vector into 

second column, and so on for all other feature vectors. For the matrix X of n feature 

vectors of dimension d, the appropriate model   is calculated as covariance matrix of 

matrix X: 1
( ) ( )
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TX X
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, µ represents vector of mean values of matrix X. 

Covariance matrix   of matrix of feature vectors X, describes appropriate recording of 

speaker’s speech and represents long-term feature of observed speaker [32]. 
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Table 1 Feature extraction parameters  

Parameter Description (Values) 

Frame size 1024 samples, 23.2 ms, mutually shifted by 368 samples or 8.3 ms 

Window type Hann window, 10),
1

2
cos1(5.0)( −

−


−= Nn

N

n
nw  

Sampling frequency fs=44100 Hz 

Frequency selective 

ranges 

300 mel wide, mutually shifted by 150 mel, 22 ranges of sigmoidal 

square of amplitude characteristic 

MFCCs cn Basic feature vector: [c1, c2, ..., c21]T 

Additional feature e1 Range : 20 Nk   

Additional feature e2 Range: 21020 1m ax,1m ax, Nkkkk +−  

Additional feature e3 Range: 21020 2m ax,2m ax, Nkkkk +−  

Diagonal elements of the covariance matrix, }...,,,{ 2211 dd , give equivalent of 

measure of energy inside the first, the second, …, d-th dimension of feature vectors. 

Elements outside of the main diagonal of the covariance matrix, jidjiji  ,,1},{ , , 

give information about correlation between different dimensions, i.e. about energies in 

corresponding dimensional pairs. Transition from the matrix of feature vectors, matrix X, 

to covariance matrix   is consequence of the attention hope from observing only 

dimensions in feature vectors towards observing energies inside and between dimensions. 

Multiplication of matrix X of feature vectors by some other matrix represents and can be 

observed as some kind of attention hope from only dimensions in feature vectors towards 

some targeted information in observed feature vectors [33]. Appropriate matrix X of 

feature vectors and covariance matrix   as model are formed in training phase for each 

recording of speakers. Covariance matrices calculated for all recordings of the same 

speaker are named by the identity of that speaker. Automatic speaker recognizer during 

training phase forms its own memory, two textual files for archiving names of models 

and calculated models, for each speech recording used for training. 

Automatic speaker recognizer realized in C++ [34], was projected to work on closed 

set of speakers. Therefore, before testing of recognizer on some speech recording of 

observed speaker it is necessary that name and reference model of this speaker exist in 

memory, in two appropriate textual files, of speaker recognizer. In phase of recognizer 

testing, for recording of test speech also was formed appropriate matrix of feature vectors 

and also appropriate covariance matrix as the model of test speech recording. In the phase 

of decision making the first step is to define and determine the difference between two 

models. The difference between observed test test  and reference ref  model, is calculated 

by equation: 
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where d represents the dimensionality of feature vector. Similar difference is used in [32]. 

During testing the model of test speech, test , is compared with all reference models in 

recognizer memory. If recognizer has in memory R reference models then identity of the most 

similar reference model with respect to (8) is recognized speaker, the test speech “test” has the 
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identity of the i-th reference model if: ( , ) ( , ),test i test jr r      {1, 2,..., }\{ }j R i , where 

test  represents the covariance matrix of matrix testX  of feature vectors of test speech 

recording. 

3. EXPERIMENT SETUP, RESULTS AND DISCUSSION 

Testing of accuracy of speaker identification was done on the part named Solo of the 

speech database CHAINS (CHAracterizing INdividual Speakers) [35] and on the speech 

database recorded in the project: Speaker/style adaptation for digital voice assistants 

based on image processing methods (acronym: S-ADAPT). Both speech databases are 

recorded in WAV format, sampling frequency of 44100 Hz and quantization resolution of 

16 bit/sample. The Solo part of the CHAINS speech database contains recordings of 36 

speakers and is characterized by speaking style: “subjects simply read a prepared text at a 

comfortable rate”. For each speaker, 33 recordings are used. These recordings represent 

the pronunciation of individual sentences and are characterized by duration of usually 

approximately 2 to 3 seconds. Sentences are of different sizes. Duration of recordings of 

the shortest sentences is around 1 second, of the longest sentences is greater than 3 s. 

Speech database recorded in the project S-ADAPT contains 11369 speech recordings 

of 55 speakers. This is speech database with expressed emotions in speech. For most 

speakers, in addition to recordings of sentences in neutral speech, there are also recordings of 

the same sentences in four emotional states: anger, joy, fear and sadness. Each speaker in each 

of emotions or at least in neutral emotional state recorded 62 mutually different sentences, 32 

longer and 30 shorter sentences, in Serbian language. Emotions were simulated, it is enough 

that the neutral speech was changed in pronunciation on the manner how the speaker speaks in 

appropriate emotion. Duration of recordings is usually around 2 to 3 seconds, but exist 

recordings of duration around 4, 5 or 6 seconds. During recording of speech database 

each speaker recorded his own voice by using his own mobile phone. Application used for 

recording shows the sentence that speaker should pronounce in appropriate emotional state. 

Testing is arranged in ten tests. Speech databases used, the Solo part of CHAINS and 

S-ADAPT, are divided in ten parts. Each part was used for testing and rest 9/10 of 

database was used for training. Four feature vectors are used in experiments. First feature 

vector contains only 21 MFCCs. Next three feature vectors contain 21 MFCCs and 

additional features, second feature vector contains 21 MFCCs and additional feature e1 

(21 MFCCs+e1), third feature vector contains 21 MFCCs and additional features e1 and e2 

(21 MFCCs+e1e2), fourth feature vector contains 21 MFCCs and additional features e1, 

e2, and e3 (21 MFCCs+e1e2e3). Results of speaker identification accuracy in the tables are 

given in percentage values. Mean value and standard deviation of recognition accuracy 

are given for each set of ten tests when the same feature vector used. For the set of ten 

values of recognition accuracy {a1, a2, …, a10} the mean value was calculated by: 

10)...( 1021 aaa +++= , and standard deviation by: 10)(
10

1

2


=

−=
i

ia . 

Results for CHAINS database are in the next table, testing was divided in ten tests: in 

most cases additional features in CHAINS database increased recognition accuracy. In 

first column of table was indicated description (Descri) of that experiment: which 

recordings are used for testing (Test set) and number of reference models obtained in 
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appropriate training. In used part of CHAINS database each speaker is represented by 33 

recordings. Therefore, in seven of ten tests testing is done on three recordings and in 

three tests testing is done on four recordings. Maximum value of accuracy in each 

experiment achieved with minimum features is shaded in lighter gray in the table. In six 

experiments maximum of accuracy also was repeated for feature vector with greater 

number of features and these values are shaded in darker gray, because that realization of 

recognizer is of lower efficiency. 

Table 2 Results for CHAINS  

Test set/Descri 21MFCCs +e1 +e1e2 +e1e2e3 

s01,s02,s03; 1080 mod. 88.89% 88.89% 89.81% 89.81% 

s04,s05,s06; 1080 mod. 87.96% 90.74% 94.44% 93.52% 

s07,s08,s09,s10; 1044 mod. 92.36% 95.14% 93.75% 94.44% 

s11,s12,s13,s14; 1044 mod. 94.44% 95.14% 97.22% 96.53% 

s15,s16,s17; 1080 mod. 99.07% 99.07% 99.07% 99.07% 

s18,s19,s20; 1080 mod. 99.07% 100.00% 100.00% 100.00% 

s21,s22,s23; 1080 mod. 97.22% 97.22% 98.15% 98.15% 

s24,s25,s26; 1080 mod. 98.15% 99.07% 100.00% 100.00% 

s27,s28,s29; 1080 mod. 100.00% 99.07% 100.00% 100.00% 

s30,s31,s32,s33; 1044 mod. 97.22% 97.92% 98.61% 97.92% 

mean accuracy 95.44% 96.23% 97.11% 96.94% 

stan. deviation 4.13% 3.59% 3.22% 3.22% 

Mean error 4.56% 3.77% 2.89% 3.06% 

When we compare results in different experiments it is evident that recognition 

accuracy in first four experiments is below 95%, when test recordings are from next sets: 

{s01, s02, s03}, {s04, s05, s06}, {s07, s08, s09, s10}, {s11, s12, s13, s14}, and when 

feature vector of 21 MFCCs is used. Sentences from the first four experiments are shorter 

with respect to sentences from next six experiments. In next six experiments, for the same 

feature vector, the recognition accuracy is higher than 97%. In experiments when test sets 

are: {s15, s16, s17} and {s18, s19, s20} recognition accuracy was greater than 99%; and 

when test set is {s27, s28, s29} recognition accuracy is 100%. Sentences s01, s02, …, 

s33, are of different textual content and size. This indicates that recognition accuracy 

depends of textual content and of the size of sentences which speaker pronounces during 

training and testing. Accuracy is the lowest, below 90% for feature vector of maximum 

length (21 MFCCs + e1e2e3), in first experiment when s01, s02 and s03 recordings are 

used as test recordings. The sentence s01 is of medium size with respect to other 

sentences used, but sentences s02 and s03 are shorter compared to most other sentences 

[35]. The sentence s01 is the question sentence. In the set of sentences used, sentences 

s01, s06, s30, s31, s32, are questionable sentences. These sentences are different in 

intonation, mostly in the beginning of sentence, compared to declarative sentences. This 

intonation from the beginning of questionable sentence extends through the sentence, and 

makes it different from the standpoint of speaker recognition. In the second experiment 

recognition accuracy for the base feature vector of 21 MFCCs is the lowest, 87.96%, 

additional features e1 and e2 are increased recognition accuracy to 94.44%. It is evident 

that in this test is maximum increase of recognition accuracy, around 6.48%, similar 

increase of accuracy is achieved in [24-25]. In six experiments maximum of recognition 
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accuracy is achieved already after adding first two additional features to basic features. In 

two tests maximum of accuracy is achieved after adding one additional feature and in two 

tests maximum of accuracy is achieved for the basic feature vector. From the row “mean 

accuracy” it is evident that with additional features recognition accuracy is increased. 

Maximum of mean recognition accuracy, 97.11%, and minimum of standard deviation is 

achieved for feature vector 21 MFCCs+e1e2. By comparing minimum of mean accuracy, 

95.44%, for feature vector of 21 MFCCs, with respect to maximum of mean accuracy, it 

is evident that increasing of mean accuracy is around 1.67%. Results of identification 

accuracy in tests on CHAINS are similar to results in [20] and [23-25]. The mean errors 

vary in the range 2.89% - 4.56%. The minimum mean error is approximately 3%. This is 

error of speaker identification, since recognition is applyed in the closed set of speakers.  

Results for S-ADAPT database are in the next five tables, testing was divided in ten 

tests, each table shows results of two appropriate tests for two appropriate sets of test 

recordings (marked as underlined and double underlined). In each test approximately is 

used one tenth part of S-ADAPT speech database as testing set. In the name of the table 

is given what recordings are used for testing, for example in Table 3 these are recordings 

marked with 01, 02 and 03, underlined, and 04, 05, 06, double underlined. Test set 

01,02,03, contains three short recordings, marked by 01, 02, 03, and three longer 

recordings, marked  also by 01, 02, 03, in each of emotions for each of speakers. 

Similarly, other test sets also contain short and longer recordings. First column of each of 

five tables for S-ADAPT speech database contains description of the appropriate test for 

test set mentioned in the title of the table, the emotional states of speech recordings used 

for training (tra) and testing (test) and number of reference models obtained in 

appropriate training. First set of tests was done when training done by neutral speech, it is 

marked in the table by tra-n. Tests are done when: test recordings are in neutral speech 

also, test-n; test recordings are in anger emotional state, test-a; test recordings are in joy 

emotional state, test-j; test recordings are in fear emotional state, test-f; test recordings are 

in sadness emotional state, test-s. Sixth double row contains results when training was 

done in neutral speech and test recordings are in all emotional states, test-all. Results in 

this double row are derived from appropriate results in previous five double rows, 

accuracy for the appropriate feature vector is determined as ratio of sum number of 

correctly recognized and sum of tests done. Seventh double row give results when 

training was done by speech recordings in all emotional states and test recordings are also 

in all emotional states, tra-all, test-all. In each test, in each row, maximum results are 

shaded. It is evident from results that when emotional states of training speech and testing 

speech are different then recognition accuracy is significantly decreased with respect to 

the case when speech used for training and testing are in same emotional state. 

Results in Table 3 for test set 01,02,03, show that when training and testing speech 

are in neutral state recognition accuracy is around 96%. When emotional state of testing 

speech is changed the recognition results are decreased, from around 10% for test speech 

in joy emotion to around 40% for test speech in sadness emotion. Also, it is evident 

significant decrease of recognition accuracy in summary results when training speech is 

in neutral emotion and testing speech is in all emotional states, decreasing of recognition 

accuracy is greater than 20%. Recognition accuracy set back to the order of magnitude 

when training and testing speech are in neutral speech, when in process of training is used 

speech of the same emotional states as in testing (tra-all, test-all). Recognition accuracy 

in that case is greater than 97.5% when additional features are not used i.e. feature vector 
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contains 21 MFCCs. Except of experiments when training speech is in neutral emotional 

state and testing speech is in sadness emotional state, additional features are decreased 

recognition accuracy. 

Table 3 Results for S-ADAPT (test sets: 01,02,03; 04, 05, 06)  

Description 21MFCCs +e1 +e1e2 +e1e2e3 

tra-n, test-n; 3034 mod. 96.75% 95.87% 96.46% 95.28% 

tra-n, test-n; 3046 mod. 99.39% 97.55% 98.16% 97.86% 

tra-n, test-a; 3034 mod. 81.53% 75.04% 72.48% 71.88% 

tra-n, test-a; 3046 mod. 81.42% 75.37% 73.41% 72.37% 

tra-n, test-j; 3034 mod. 86.39% 82.31% 79.83% 79.38% 

tra-n, test-j; 3046 mod. 86.59% 82.31% 79.83% 79.38% 

tra-n, test-f; 3034 mod. 75.75% 71.01% 71.90% 71.56% 

tra-n, test-f; 3046 mod. 75.87% 70.39% 71.28% 70.95% 

tra-n, test-s; 3034 mod. 53.73% 55.03% 59.26% 61.71% 

tra-n, test-s; 3046 mod. 54.88% 55.76% 59.68% 61.87% 

tra-n,test-all; 3034 mod. 75.94% 72.56% 72.45% 72.63% 

tra-n, test-all; 3046 mod. 76.34% 72.70% 72.65% 72.71% 

tra-all,test-all; 10429 mod. 97.77% 96.17% 95.43% 95.43% 

tra-all,test-all; 10233 mod. 98.59% 97.97% 97.89% 97.97% 

Arrangement of maximums of accuracy in rows of Table 3 for test recordings 04,05,06 is 

the same as for recordings 01,02,03. By comparing these results it can be mentioned 

significant increase in recognition accuracy when testing and training speech are both in 

neutral emotional state and feature vector consists of 21 MFCCs, increase of 99.39% - 96.75% 

= 2.64%. Similar as in results for test set 01,02,03, recognition accuracy was decreased when 

testing speech and training speech are in different emotional states. 

Table 4 Results for S-ADAPT (test sets: 07,08,09; 10,11,12)  

Description 21MFCCs +e1 +e1e2 +e1e2e3 

tra-n, test-n; 3043 mod. 99.70% 99.39% 99.39% 99.09% 

tra-n, test-n; 3043 mod. 98.79% 97.57% 97.57% 97.27% 

tra-n, test-a; 3043 mod. 81.25% 75.97% 73.19% 72.26% 

tra-n, test-a; 3043 mod. 82.29% 75.37% 73.30% 72.26% 

tra-n, test-j; 3043 mod. 87.12% 82.07% 80.03% 79.26% 

tra-n, test-j; 3043 mod. 86.88% 81.74% 79.38% 78.97% 

tra-n, test-f; 3043 mod. 75.75% 70.67% 71.95% 72.01% 

tra-n, test-f; 3043 mod. 75.25% 69.94% 71.06% 70.84% 

tra-n, test-s; 3043 mod. 54.46% 55.61% 60.04% 62.65% 

tra-n, test-s; 3043 mod. 54.36% 54.41% 59.36% 61.61% 

tra-n,test-all; 3043 mod. 76.36% 72.87% 72.95% 73.12% 

tra-n,test-all; 3043 mod. 76.35% 72.13% 72.36% 72.47% 

tra-all,test-all; 10233 mod. 98.59% 98.15% 98.77% 98.68% 

tra-all,test-all; 10235 mod. 99.03% 98.24% 97.79% 97.97% 

Results in Table 4 for test set 07,08,09 show increase in accuracy when training and 

testing are in neutral speech with respect to the results for the same conditions in Table 3 

for test set 04,05,06. Accuracies in the cases when training and testing speech are in 
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different emotional states are similar to the results in Table 3. Results for test set 07,08,09 

show increase in recognition accuracy for two additional features when training and 

testing speech are in all emotional states. 

Results of recognition accuracy for test set 07,08,09 for training and testing in neutral 

speech are very similar to each other. Little variability also is evident in results when 

training and testing speech are in all emotional states. Variability is greater in 

experiments when training speech is neutral and test speech is in some other emotion. 

Results of recognition accuracy for test set 10,11,12 are similar to results of tests for 

previous test sets on S-ADAPT database. Recognition accuracy for testing and training 

speech in all emotional states is approximately 99% for feature vector of 21 MFCCs. 

Table 5 Results for S-ADAPT (test sets: 13,14,15; 16,17,18)  

Description 21MFCCs +e1 +e1e2 +e1e2e3 

tra-n, test-n; 3045 mod. 98.17% 98.17% 98.47% 97.56% 

tra-n, test-n; 3050 mod. 97.52% 98.76% 98.14% 98.45% 

tra-n, test-a; 3045 mod. 81.20% 74.82% 72.64% 71.33% 

tra-n, test-a; 3050 mod. 81.03% 74.77% 73.30% 72.26% 

tra-n, test-j; 3045 mod. 86.10% 81.87% 79.46% 78.97% 

tra-n, test-j; 3050 mod. 86.71% 81.87% 79.38% 79.22% 

tra-n, test-f; 3045 mod. 75.53% 69.27% 69.78% 69.89% 

tra-n, test-f; 3050 mod. 76.26% 70.78% 71.62% 71.90% 

tra-n, test-s; 3045 mod. 55.19% 55.40% 59.78% 62.13% 

tra-n, test-s; 3050 mod. 54.46% 56.18% 60.67% 63.33% 

tra-n,test-all; 3045 mod. 76.10% 72.15% 72.09% 72.19% 

tra-n,test-all; 3050 mod. 76.20% 72.65% 72.78% 73.19% 

tra-all,test-all; 10235 mod. 98.41% 97.97% 98.24% 97.79% 

tra-all,test-all; 10248 mod. 98.66% 98.66% 97.95% 98.13% 

Results of recognition accuracy for test set containing recordings numbered 13,14,15, 

when training and testing speech are in neutral emotional state, show maximum for 

feature vector of 21 MFCCs + e1e2, Table 5. Variability of recognition accuracy for 

different test sets, shows that these features depend of the text content of recordings used 

for training and testing of the speaker recognizer. For test set 16,17,18, (Table 5) 

maximum of recognition accuracy in neutral speech is achieved for feature vector 21 

MFCCs + e1. Maximum of the recognition accuracy when training and testing speech are 

in all emotional states is for the feature vector of 21 MFCCs but the same accuracy was 

achieved also for feature vector 21 MFCCs + e1. Recognition accuracy when training and 

testing speech are in different emotional states is similar to results in previous tables. 

For test set 19,20,21, (Table 6) when training and testing recordings are both in the 

same emotional states, neutral or all emotional states, maximum of recognition accuracy 

around 99% is achieved for feature vector 21 MFCCs + e1e2. 
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Table 6 Results for S-ADAPT (test sets: 19,20,21; 22,23,24)  

Description 21MFCCs +e1 +e1e2 +e1e2e3 

tra-n, test-n; 3049 mod. 98.46% 99.07% 99.38% 98.15% 

tra-n, test-n; 3049 mod. 99.38% 99.07% 99.07% 98.76% 

tra-n, test-a; 3049 mod. 82.18% 75.64% 73.73% 72.48% 

tra-n, test-a; 3049 mod. 81.25% 75.75% 73.46% 72.48% 

tra-n, test-j; 3049 mod. 86.63% 82.44% 79.87% 79.50% 

tra-n, test-j; 3049 mod. 86.80% 82.11% 79.75% 79.22% 

tra-n, test-f; 3049 mod. 76.26% 71.12% 72.12% 71.84% 

tra-n, test-f; 3049 mod. 75.14% 69.94% 70.95% 70.45% 

tra-n, test-s; 3049 mod. 55.24% 55.82% 60.25% 62.65% 

tra-n, test-s; 3049 mod. 54.15% 55.71% 60.09% 62.75% 

tra-n,test-all; 3049 mod. 76.65% 73.02% 73.09% 73.15% 

tra-n,test-all; 3049 mod. 76.03% 72.67% 72.69% 72.81% 

tra-all,test-all; 10250 mod. 98.57% 98.48% 98.93% 98.39% 

tra-all,test-all; 10257 mod. 99.28% 98.56% 98.47% 98.56% 

When set of testing recordings numbered by 22,23,24, (Table 6), arrangement of 

maximum values of recognition accuracy is similar to results in Table 3, but in the case 

of training and testing recordings in neutral speech, the results of recognition accuracy for 

feature vector 21 MFCCs, when is achieved maximum of accuracy, and for feature 

vectors 21 MFCCs + e1, 21 MFCCs + e1e2, are very similar each other. 

For test set 25,26,27,28 (Table 7 - underlined), maximum of recognition accuracy 

when training and testing speech are in neutral emotional states is achieved for feature 

vector of 21 MFCCs, the same accuracy is achieved for feature vector 21 MFCCs + 

e1e2e3. Accuracies for two other feature vectors are very similar. For test set 29,30,31,32 

(Table 7 - double underlined) maximum of accuracy when training and testing speech are 

in all emotional states is achieved for feature vector 21 MFCCs + e1e2e3. 

Table 7 Results for S-ADAPT (test sets: 25,26,27,28; 29,30,31,32)  

Description 21MFCCs +e1 +e1e2 +e1e2e3 

tra-n, test-n; 2940 mod. 98.61% 98.38% 98.38% 98.61% 

tra-n, test-n; 3058 mod. 99.68% 98.41% 99.05% 98.73% 

tra-n, test-a; 2940 mod. 81.09% 75.20% 72.91% 71.72% 

tra-n, test-a; 3058 mod. 81.47% 75.15% 73.02% 72.32% 

tra-n, test-j; 2940 mod. 86.35% 81.09% 78.93% 78.81% 

tra-n, test-j; 3058 mod. 86.51% 82.23% 79.71% 79.34% 

tra-n, test-f; 2940 mod. 75.53% 70.39% 71.90% 71.95% 

tra-n, test-f; 3058 mod. 76.70% 71.28% 71.45% 71.23% 

tra-n, test-s; 2940 mod. 54.88% 56.23% 59.99% 62.54% 

tra-n, test-s; 3058 mod. 55.14% 55.87% 60.20% 62.65% 

tra-n,test-all; 2940 mod. 76.38% 72.77% 72.82% 73.13% 

tra-n,test-all; 3058 mod. 76.55% 72.84% 72.69% 72.93% 

tra-all,test-all; 9886 mod. 99.12% 98.52% 98.31% 98.65% 

tra-all,test-all; 10315 mod. 99.15% 98.96% 98.86% 99.43% 

As is evident from results on S-ADAPT, in some experiments when training and test 

speech are in the same emotional state additional features are increased recognition accuracy 

or not decreased (Table 4 – test set 07,08,09, in all emotional states; Table 5 – test set 
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13,14,15, in neutral state; Table 5 – test set 16,17,18 and Table 6 – test set 19,20,21, in neutral 

and in all emotional states; Table 7: for test set 25,26,27,28, in neutral state, for test set 

29,30,31,32, in all emotional states). The consequence is that the results in those cases are 

very slowly variable. 

In next table will be mean accuracy, standard deviation and mean error for each of 

experiments on S-ADAPT. The difference between maximum and minimum mean 

recognition accuracy, Table 8, when training and testing speech both are in neutral emotional 

state is approximately 98.65% - 97.98% = 0.67%, and when training and testing speech both 

are in all emotional states is approximately 98.72 – 98.06% = 0.66%. Mean recognition 

accuracy in these cases for the base feature vector of 21 MFCCs is greater than 98.5% and to 

increase recognition accuracy closer to 100% it is necessary to use additional features of 

maximum efficiency. In [20] feature vector of 38 coefficients is used, in future work number 

of additional features can be carefully increased to achieve higher increase in accuracy. 

Table 8 Mean accuracy, standard deviation and mean error for S-ADAPT  

Description 21MFCCs +e1 +e1e2 +e1e2e3 

tra-n, test-n 

98.65%  

0.91% 

1.35% 

98.23% 

0.98% 

1.77% 

98.41% 

0.86% 

1.59% 

97.98% 

1.05% 

2.02% 

tra-n, test-a 

81.47% 

0.41% 

18.53% 

75.31% 

0.37% 

24.69% 

73.14% 

0.36% 

26.86% 

72.14% 

0.35% 

27.86% 

tra-n, test-j 

86.61% 

0.28% 

13.39% 

82.00% 

0.37% 

18.00% 

79.62% 

0.31% 

20.38% 

79.20% 

0.21% 

20.80% 

tra-n, test-f 

75.80% 

0.46% 

24.20% 

70.48% 

0.59% 

29.12% 

71.40% 

0.66% 

28.60% 

71.26% 

0.69% 

28.74% 

tra-n, test-s 

54.65% 

0.47% 

45.35% 

55.60% 

0.52% 

44.40% 

59.93% 

0.40% 

40.07% 

62.39% 

0.51% 

37.61% 

tra-n,test-all 

76.29% 

0.21% 

23.71% 

72.64% 

0.27% 

27.36% 

72.66% 

0.28% 

27.34% 

72.83% 

0.32% 

27.17% 

tra-al,test-al 

98.72% 

0.43% 

1.28% 

98.17% 

0.73% 

1.83% 

98.06% 

0.96% 

1.94% 

98.10% 

1.00% 

1.90% 

Mean recognition accuracy is around 98% when training and test done on neutral 

speech. When test is done in some other emotion, mean accuracy is decreased. In test of 

anger decrease is around 20%, in test of joy mean accuracy is decreased around 17%, in 

test of fear decrease is around 25% and in test of sadness decrease is around 40%. Mean 

recognition accuracy is returned on the value as well as in test for neutral speech when 

training is done in all emotional states. Standard deviation of recognition accuracy in 

experiments is below 1.1%. This indicates good compliance of recognition accuracy in 

appropriate tests. Accuracy on S-ADAPT when training and test speech are in same 

emotion is around 98% or often higher than 97%. These results are comparable with 

results in [20], [23-24]. 
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Errors of speaker identification are errors in experiments described on the speech 

database S-ADAPT, since recognition is applied in the closed set of speakers. Mean error 

is in the range 1.28% - 2.02%, when training and test speech both are in neutral 

emotional state or in all emotional states. This error increases when training and test 

speech are in different emotions. In experiments when test speech is in anger, joy or fear 

emotion, additional features are increased mean error. The largest value of mean error is 

in the case when test speech is in sadness emotion. In that case additional features 

decreases mean error, maximum of accuracy when test speech is in sadness emotion is 

achieved for feature vector 21 MFCCs + e1e2e3. 

The range of mean recognition accuracy for different feature vectors depends on 

emotions of training and test speech (Table 8). This can be used in applications on groups 

of speakers where can be expected changes in emotion of speech, and where it is 

necessary to estimate the emotion of observed test speech of speakers. In all experiments 

additional feature e3 is increased accuracy when test speech is in sadness emotion. This 

finding additionally can be used for detecting sadness in speakers. Suppose that we have 

the training models for observed group of speakers in neutral speech. If difference 

between accuracies for test speech in neutral emotion and test speech in observed 

emotion is around 40%, if this difference decreases when additional features are added so 

that for the feature vector 21 MFCCs + e1e2e3 this difference is the smallest, then can be 

expected that test speech is in sadness emotion. 

This paragraph presents results from the literature for the purpose of comparison with 

results of this paper. Gaussian mixture model (GMM) in combination with MFCCs on 

dataset of 15 speakers, 10 male and 5 female, in [4], give accuracy of 86.27% for text 

independent case and 94.12% for text dependent case. Gaussian Mixture Model – 

Universal Background Model (GMM-UBM) applied in the verification of speakers with 

the Constraint of Limited data (<15 sec) in [5], gives equal error rate (EER) around 37% 

on the NIST-SRE-2003 database. The proposed method in [6] on the database of Indian 

scenario named as IITG Multivariability Speaker Recognition Database, Part-III phase-

IV (the subject was asked to read some text), which performs classification by using a 

Multilayer perceptron feed-forward neural network trained by backpropagation and 

MFCCs feature vectors, gives an accuarcy of 94.44%. In experiments in [8], on Speakers 

in the Wild and NIST SRE 2016 Cantonese data sets, EER vary from 9.68% for i-vector 

based speaker recognizer to 4.16% for speaker recognizer based on x-vectors. Speaker 

recognizer based on use of i-vectors in [9] give recognition accuracy of 93.8% when test 

speech is in neutral emotion, IEMOCAP database is used. In emotion invariant system 

accuracy is increased when test speech is in happiness, anger or sadness emotion, 

accuracies in those cases are 91.3%, 89.3% and 89.6%. The speaker recognition system 

developed in [10], which combines the CNN method with MFCC, achieved a high accuracy 

of 96% on live speaker recordings, and 94.66% on used TIMIT dataset. Research was 

conducted on 50 speakers from the TIMIT dataset, which contained eight utterances for 

each speaker and 60 speakers from live recording using a smartphone. CNN using MFCC 

in [11], on the dataset VoxForge Speech Corpus achieves an accuracy of 96.95%. 

Unconstrained and constrained CNN model applied on speech spectrograms of 1 second 

of speech in [12] was tested in emotional speech when training was done on neutral 

speech, on the closed set of speakers of the Serbian emotional amateur corpus (SEAC) 

recorded by amateur speakers using mobile phones. The proposed unconstrained CNN 

speaker model in [12] achieves high average recognition accuracy of 99.248% on neutral 
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test speech, around 85% in the case of test speech in anger, fear or joy emotion, and 

79.84% when test speech is in sadness emotion. Constrained 8-bit representation of 

weights results in negligible difference in achieved recognition accuracy with respect to 

full-precision unconstrained 32-bit model. The difference in the case of the ternary 

quantization model is up to 3.3%, degradation in the case of the binary quantization 

model is up to 10.55%. Accuracies of 97.22% and 94.01% are achieved in the cases of 

ternary and binary quantization, when training and test speech are in neutral emotional 

state. Speaker recognition accuracy of 97% by using simple spectrograms as input to 

CNN, in [13], is achieved in experiments on the TIMIT dataset. The average speaker 

identification accuracy of experiments on the speech from five speakers speak in Thai 

language of which voices are extracted from YouTube, in [14], achieved for the system 

using MFCCs and SVM is 91.26% and for CNN applied on spectrograms of 2 seconds of 

speech is 95.83%. MFCCs and radial basis function neural network (RBFNN) in [16], 

tested on the database of Arabic speakers who pronounce “Thank you” in Arabic, 

achieves accuracy of 97.5%. Combination of MFCCs, calculated for voiced frames, and 

inverted MFCCs (IMFCCs) calculated for unvoiced frames, increased speaker recognition 

accuracy in [17] from 80% for only MFCCs used to 90% for MFCCs and IMFCCs used. 

Addition of 26 SSCs to feature vector of 12 LPCC and modeling by GMM in experiments 

on TIMIT speech database [20], results in increase of speaker recognition accuracy by 2.9% 

and reached accuracy is 99.1%. Graphically presented results of experiments in [22] on the 

TIMIT database, where diagonal-covariance GMMs with 32 mixtures are used as speaker 

models, show that for signal to noise ratio (SNR) around 25 dB speaker identification 

accuracy for SSCs and marginalization-based MFT features is around or higher than 90% 

while for MFCCs accuracy is smaller than 80%. NDSF features with included spectral 

subtraction in combination with cepstral mean normalization [23], in experiments on 

Hindi and IITG datasets, increase accuracy to almost 100% with respect to accuracy 

achieved by using MFCCs or LPCCs features. By addition of SD features to MFCCs and 

using GMM_128 model in experiments on AURORA2.0 data set in [24], increase of 

identification accuracy is higher than 5% and achieved accuracy is approximately 95%. 

An overall 5% relative improvement in accuracy over the conventional MFCC-based 

front-end was obtained in [25] by addition of FM features, in experiments on the NIST 

2001 Evaluation database by using GMMs. Combinations of MFCC and UMRT based 

features and use of Multi-layer perceptron (MLP), in [27], in experiments on the data set 

of ten samples of words each spoken by 15 persons (8 female and 7 male) is resulted in 

increase of average accuracy by 3%. The accuracy achieved is around 97.91% for speech 

dependent system and around 94.44% for speech independent system. A comparative re-

assessment of feature extractors for deep speaker embeddings conducted on x-vector 

system, in [28] show that: minimal EER of 3.89% on Voxceleb1-E data set is achieved 

for MFCC+SCMC (Spectral centroid magnitude coefficients)+Multi-taper features, 

minimal EER of 6.08% on SITW-DEV data set is achieved for Power-normalized cepstral 

coefficients (PNCCs) features. The research in [29] yields exceptional results across 

different datasets and classifiers. For instance: on the TIMIT babble noise dataset (120 

speakers), feature fusion achieves speaker identification accuracy of 92.7%; speaker 

identification accuracy of 93.5% on the TIMIT babble noise dataset (630 speakers) using a 

KNN classifier with feature optimization; on the TIMIT white noise dataset (120 and 630 

speakers) – speaker identification accuracies of 93.3% and 83.5%, respectively, by using 

PCA dimension reduction and feature optimization techniques (PCA-MPA) with KNN 
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classifiers; on the Voxceleb1 dataset PCA-MPA feature optimization with KNN classifiers 

achieves a speaker identification accuracy of 95.2%. 
Since the proposed additional features are short-term speech features, as well as 

already good defined MFCCs, and since the results on S-ADAPT show that with feature 
vector of 21 MFCCs can be achieved mean accuracy greater than 98.5%, therefore one of 
directions of future work can be in investigation for efficient long-term features of 
speakers i.e. for more efficient models of speakers. Covariance matrix of matrix of feature 
vectors is only one possibility for speaker modeling, it is one of a lot of manners to 
transform matrix of feature vectors in a more compact shape. These transformations are 
possibilities or potential possibilities which help in forming a more compact representation 
of speaker from information potential contained in matrix of feature vectors and in finding 
relations between feature vectors, i.e. embedded specific information about speaker. To 
achieve better recognition accuracy it is necessary to improve  and as fully as possible take 
advantage of information potential of the matrix of feature vectors X. Also, the impact of 
amount and of text content of speech material used for training and testing on accuracy of 
speaker recognition will be interesting to detailed examine. 

4. CONCLUSION 

Results of recognition show that in training it is necessary to use recordings in all emotions 

which are expected in test conditions. By this way the robustness of speaker recognizer to 

changes of emotions in speech is ensured. Mean recognition accuracy for feature vector of 21 

MFCCs in experiments on CHAINS speech database is 95.44%. It is more than 3% smaller 

with respect to mean accuracy on S-ADAPT speech database when feature vector of 21 

MFCCs used and training and testing speech both are in the same emotional state. Also, a 

smaller amount of speech is used in training and testing on the CHAINS database. Impact of 

additional features on increase of recognition accuracy is more expressed in experiments on 

CHAINS speech database. Mean recognition accuracy is increased by adding additional 

features in experiments on CHAINS approximately 1.67% and decreased on S-ADAPT less 

than 0.67% when training and testing speech are neutral or in all emotions. 

Additional features used in this paper are efficient in recognition on smaller closed 

sets of speakers when lesser number of recordings is used for training and testing. When 

in experiments on S-ADAPT, for training and test speech in same emotion, a larger 

number of recordings are used in training and testing, then in most experiments feature 

vector of 21 MFCCs is sufficient for efficient recognition. However, these additional 

features improve accuracy of recognition in some cases in experiments on S-ADAPT when 

accuracy higher than 98% is achieved for feature vector of 21 MFCCs. In experiments on 

CHAINS database: when s18, s19, s20, are used as test recordings recognition accuracy is 

increased from 99.07% to 100%; and when s24, s25, s26, are used as test recordings 

additional features are increased recognition accuracy from 98.15% towards 100%. These 

results on CHAINS and S-ADAPT databases indicate that proposed additional features can 

in some experiments improve recognition accuracy even though with feature vector of 21 

MFCCs achieved accuracy is 98% or 99%. Achieved maximums of mean recognition 

accuracy on both speech databases are higher than 97%. These results are comparable 

with results in presented literature. Used speaker recognizer has a small number of 

parameters. The complexity of the proposed method is not higher than complexity of the 

methods in presented literature. 
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