
FACTA UNIVERSITATIS
Series: Electronics and Energetics Vol. 38, No 3, September 2025, pp. 533 - 551

https://doi.org/10.2298/FUEE2503533R

© 2025 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

Original scientific paper

IMPROVING EXTRACTIVE TEXT SUMMARIZATION VIA

EFFICIENT COATI ALGORITHM FOR SINGLE DOCUMENT

Jyotirmayee Rautaray1*, Sangram Panigrahi2, Ajit Kumar Nayak2

1Department of Computer Science & Engineering, Siksha ‘O’ Anusandhan (Deemed to

be University), Bhubaneswar-751030, Odisha, India
2 Department of Computer Science & Information Technology, Siksha ‘O’ Anusandhan

(Deemed to be University), Bhubaneswar-751030, Odisha, India

ORCID iDs: Jyotirmayee Rautaray https://orcid.org/0000-0003-2747-3919

 Sangram Panigrahi https://orcid.org/0000-0003-1703-4613
 Ajit Kumar Nayak https://orcid.org/0000/0003/2302-9458

Abstract. In the digital era, the rapid expansion of online information demands

efficient automated text summarization techniques to extract key insights from large

documents. This study introduces a novel single-document extractive summarization

approach that utilizes Term Frequency-Inverse Topic Frequency (TF-ITF) for feature

extraction and the Coati Optimization Algorithm (COA) for optimal sentence selection.

COA enhances summarization performance by balancing precision and recall through

an adaptive fitness function, improving the quality of extracted summaries. The

proposed model is evaluated on DUC 2002, 2003, and 2005 datasets using ROUGE,

BLEU, precision, recall, and F1-score metrics. Comparative analysis against state-of-

the-art optimization algorithms, including PSO, CSO, GWO, BCO, QABC, MCSO, and

GLO, demonstrates that COA outperforms existing techniques, achieving higher recall

and F1 scores while maintaining competitive precision. These findings establish COA

as an effective optimization technique for enhancing automated text summarization.

Key words: Term Frequency-Inverse Topic Frequency, Coati Optimization Algorithm,

vectors, Single Document Text Summarization, Rouge scores, BLEU score

1. INTRODUCTION

The major aim of text summarization is to condense long written texts into a precise,

concise and understandable format which highlights the most important details from the

original source. By picking out important lines and incorporating all pertinent details

from the source text, automatic text summarization creates summaries. In Natural

Language Processing (NLP), summarization is a major challenge since it necessitates

Received December 19, 2024; revised March 01, 2025 and March 15, 2025; accepted March 17, 2025

Corresponding author: Jyotirmayee Rautaray

Department of Computer Science & Engineering, Siksha ‘O’ Anusandhan (Deemed to be University),
Bhubaneswar-751030, Odisha, India

E-mail: jyotirmayee.1990@gmail.com

https://orcid.org/0000-0003-2747-3919
https://orcid.org/0000-0003-1703-4613
https://orcid.org/0000/0003/2302-9458

534 J. RAUTARAY, S. PANIGRAHI

thorough text analysis, including lexical and semantic analysis, in order to generate high-

quality summaries. The two primary methods of summarization are abstractive and

extractive. Whereas abstractive summarization interprets and rewords the essential portions to

produce the final summary, extractive summarization finds and immediately copies the most

significant passages from the source material into the summary [1][2]. Creating a summary

that successfully communicates the main ideas of the original text is the goal of abstractive

summarization, which frequently involves merging words or phrases which are not found in

the given text [3]. Conversely, extractive summarizing generates a summary solely from the

original material by using the text's original words, structures, or phrases. Automated

extractive text summarization is a valuable tool in education, as it efficiently extracts key

elements without requiring manual effort or human intervention [4].

Depending on the type of the inputs, the documents can be divided into two categories:

single-document and multi-document summarization. In contrast to multi-document

summary, which entails summarizing a group of connected documents, this work

concentrates on single-document text summarization, in which the input consists of a single

document [5]. Summarization involves three key objectives: generating the summary from

one or more documents, retaining essential information, and producing a concise summary

[6]. For single-document systems, the summary is generated solely from that individual

document. Four main extractive summarization techniques are commonly used, depending

on the text: machine learning, meta-heuristics, statistical, and semantic methods [7][8]. In

order to find near-optimal solutions for complicated problems, metaheuristic optimization

algorithms use techniques modelled after natural processes, such as evolution or swarm

activity, to explore the solution space. Coati Optimization, a metaheuristic approach,

emulates the foraging behavior of coatis, balancing exploration and exploitation by

simulating their adaptive and dynamic search strategies to find optimal solutions [9]. Recent

advancements have focused on refining these models with attention mechanisms and fine-

tuning on large datasets to generate more accurate and context-aware summaries [10].

Regardless of previous summaries, the main goal is to quickly create one from a given text

or collection of documents using a variety of methods and algorithms. The goal of

metaheuristic algorithms in this context is to identify high-scoring phrases. These methods

are employed in text summaries to choose the best or nearly best collection of sentences that

create an understandable and instructive synopsis. Examples include genetic algorithms and

other optimization methods [11][12][13]. An innovative optimization method that draws

inspiration from coatis' natural behaviors is the Coati Optimization Algorithm (COA). COA

provides a number of benefits for resolving global optimization issues, including the

elimination of the need for parameter adjustments due to its lack of control parameters and its

high effectiveness in addressing a big range of optimization problems in different scientific

domains, including intricate high-dimensional issues.

1.1. Contribution

▪ An organized method for summarizing a single document that includes TF-ITF feature

extraction and thorough text preprocessing, improving the accuracy and applicability

of the summaries.

▪ This paper introduces the innovative use of the COA for summary generation,

optimizing vector-based processes with a unique fitness function, achieving greater

efficiency compared to traditional methods.

 Improving Extractive Text Summarization via Efficient Coati Algorithm for Single Document 535

▪ The study uses ROUGE scores, BLEU scores, accuracy, recall, and F-score metrics to

statistically assess the efficacy of the COA on the DUC 2002, 2003, and 2005 datasets.

It shows that the COA can generate clear and insightful summaries from complicated

textual material.

Structure of the paper: Section 1 provides an overview of text summarization and its

various forms; Section 2 reviews the literature on document summarization using various

methods and algorithms; Section 3 introduces the proposed model, methods, and COA;

Section 4 covers the research findings and result analysis; and Section 5 concludes the study.

2. RELATED WORKS

While multi-document summarizing entails producing a summary from several papers,

single-document summarization creates a summary from a single document. While it is

possible to apply single-document summary techniques to multi-document summarization,

summarizing several documents is far more difficult. This section examines previous attempts

in the literature on text summarization and looks at several optimization techniques and

algorithms that have been put forth for this aim.

Cheng et al. [14] proposed a data-driven approach leveraging continuous sentence

features and neural networks. They developed a hierarchical document-based framework

to support single-document summarization. The models are trained with very big datasets

large number of document-summary pairs, without relying on language annotations. Two

types of models were created, focusing on word and phrase extraction. This approach enables

the models to learn informativeness characteristics through continuous approximations,

enhancing the summarization process.

Kryściński et al. [15] proposed a model-based, weakly-supervised approach for detecting

discrepancies and verifying factual consistency between source documents and generated

summaries. Sentences from source texts are modified using rule-based transformations to

create training data. The model is trained on three key tasks: 1) Assessing whether sentences

retain factual consistency after translation; 2) Extracting a supporting span from the source

documents that upholds the consistency assumption; and 3) Identifying any incongruent spans

from the summary sentence.

Debnath, D et al. [16] proposed an Archive-based Micro Genetic-2 Algorithm to tackle

the multi-objective Extractive Single Document Summarization problem. The evaluation was

conducted using the DUC-2001 and DUC-2002 datasets, and the results were compared with

previous methods using ROUGE metrics.

Timea Bezdan et al. [17] introduced a Hybrid FFO method that outperforms K-Means

for text document clustering. The case study, which examined text documents with

limited functionalities, demonstrated the effectiveness of that given approach.

Debnath, D et al. [18] addressed a single-document extraction problem for automated

text summarization and used Cat Swarm Optimization (CSO). CSO aims to produce

useful, redundant-free summaries with ample coverage. Compared to the leading dataset

techniques, ROUGE-1 and ROUGE-2 scores improved by 25% and 5%, respectively.

Pati and Rautray et al. [19] employed the DUC 2003 dataset to showcase the superior

performance of Cuckoo Search (CS) for single-document extractive summarization,

comparing it with the Firefly Algorithm (FFA) and Ant Colony Optimization (ACO).

536 J. RAUTARAY, S. PANIGRAHI

Svore et al. [20] introduced NetSum, a novel automated summarization method

utilizing neural networks. In this approach, each sentence is analyzed based on a set of

features that highlight its importance within the text. The method incorporates advanced

features derived from Wikipedia entities and recent search query data.

Mandal, S et al. [21] proposed a method combining sentiment analysis, language scoring,

and Cuckoo Search (CS) computation. The approach uses sentence scoring techniques to

evaluate phrases based on mathematical frameworks, and CS computation is then applied to

select the most suitable phrases for generating the summary.

Jain et al. [22] proposed using the PSO algorithm for text summarization in the Punjabi

language. The search process is conducted by rapidly moving particles that update their

positions and velocities at the end of each iteration. Throughout the generations, the algorithm

continuously updates the personal best and global best solutions.

Zhang et al. [33] proposed a comprehensive survey on text summarization, transitioning

from statistical methods to large language models (LLMs). It reviewed advancements in

benchmarking, modeling, and evaluation metrics, emphasizing the role of pre-trained

language models (PLMs) and LLMs in improving summarization tasks. The study utilized

various standard datasets to evaluate the techniques and provided insights into the latest trends

and challenges.

Yadav et al. [34] proposed an analysis of extractive and abstractive text summarization

techniques to address information overload. The study explored standard datasets, evaluation

metrics, and highlighted challenges in creating advanced summarizers. It reviewed techniques

such as extractive and abstractive summarization and analyzed their effectiveness on

widely used summarization datasets.

Mirjalili et al. [35] proposed the Grey Wolf Optimizer (GWO), an optimization algorithm

inspired by the hierarchical hunting mechanism of grey wolves. GWO has been applied in text

summarization to enhance sentence selection based on relevance and informativeness. The

algorithm effectively balances exploration and exploitation, leading to high-quality summaries.

However, it may suffer from premature convergence in high-dimensional datasets.

Karaboga et al. [36] introduced the Bee Colony Optimization (BCO) algorithm, which

mimics the foraging behavior of honeybees to extract key sentences for summarization.

This method effectively reduces redundancy and enhances informativeness by leveraging

swarm intelligence. Nevertheless, its performance is highly dependent on parameter

tuning, which can impact consistency across different datasets.

Wang et al. [37] developed Multi-Colony Swarm Optimization (MCSO) for text

summarization, where multiple cooperating colonies work together to extract meaningful

sentences. This approach enhances the diversity and quality of generated summaries

through multi-objective optimization. However, the increased computational complexity

due to interactions among multiple colonies can be a drawback for large-scale document

processing.

Sharma et al. [38] proposed Glowworm Swarm Optimization (GLO) for extractive

summarization. Inspired by glowworm luminescence, this algorithm dynamically selects

relevant sentences based on a luciferin-based attraction mechanism. The adaptability of

GLO ensures high-quality summaries with strong contextual relevance. However, it can

face computational overhead when processing large document sets.

Yuan et al. [39] introduced the Quick Artificial Bee Colony (QABC) algorithm, an

enhanced version of the traditional BCO designed for faster convergence in optimization

problems, including text summarization. By refining the search mechanism and reducing

 Improving Extractive Text Summarization via Efficient Coati Algorithm for Single Document 537

unnecessary computations, QABC improves search efficiency and sentence selection

speed. However, it still requires careful parameter tuning to maintain robustness across

diverse datasets.

Table 1 Existing research contains a range of optimization techniques

Sl.

no

Author,

Reference

Dataset Methodology Advantage Disadvantage

1 Cheng et al.,

[14]

DUC 2002,

Daily Mail news

highlights corpus

Encoding and

attention-based

extractor

The approach

leverages the power of

neural networks for

more effective

summarization without

requiring hand-crafted

features

Data Dependency,

Relies on

Extractive

Summarization,

Complexity

2 Debnath D

et al., [16]

DUC 2002, DUC

2001

AMGA2 Efficient for extractive

summarization with

multi-objective

optimization.

Computationally

expensive -

Performance

depends on

parameter tuning.

3 Kryściński

et al., [15]

CNN/

DailyMail

BERT Leverages pre-trained

transformers for high-

quality abstractive

summaries.

Struggles with

factual consistency

in longer

documents.

4 TimeaBezda

n et al., [17]

Text datasets

FFA Good for feature

selection, improving

summary relevance

and quality.

Not suitable for

highly dynamic or

complex datasets.

5 Debnath D

et al., [18]

DUC 2002,

DUC 2001

CSO Enhances coherence

and accuracy in

extractive

summarization tasks.

Limited

generalization

across diverse

summarization

datasets.

6 Pati and

Rautray, et

al., [19]

DUC 2003 ACO, FFA, and

CSO

Hybrid approach

improves efficiency,

accuracy, and feature

optimization.

Increased model

complexity and

resource

requirements.

7 Svore et al.,

[20]

DUC 2002, DUC

2003

Rank Net

learning

algorithm

Scalability,

Relevance Ranking

Generalization

Issues, Potential

for Information

Overload

8 Mandal S et

al., [21]

Kaggle dataset CSA Incorporation of

Sentiment Analysis,

Scalability, Feature

Integration

Generalizability

Issues, Dataset

Dependency,

Computational

Complexity

9 Jain et al.,

[22]

Punjabi datasets PSO Optimization

Efficiency, Feature-

Based Scoring,

Scalability

Language

Dependency,

Limited Dataset,

Lack of Semantic

Understanding

538 J. RAUTARAY, S. PANIGRAHI

10 Zhang et al.,

[33]

Various

summarization

datasets

Statistical,

Deep Learning,

and LLMs

Offers a thorough

historical and

contemporary analysis

of text summarization

methods

Does not propose

new models or

techniques and

relies heavily on

existing literature.

11 Yadav et al.,

[34]

Standard

summarization

datasets

Text Rank,

Seq2Seq

Offers a comprehensive

overview of state-of-the-

art methods, aiding

researchers in

understanding

advancements in the

field.

Heavily relies on

existing datasets

and benchmarks,

limiting novelty

12 Mirjalili et

al., [35]

Standard

benchmark

datasets for

optimization

problems

Grey Wolf

Optimizer

(GWO)

Balances exploration

and exploitation

efficiently, leading to

high-quality summaries

May converge

prematurely in

complex, high-

dimensional

problems

13 Karaboga et

al., [36]

Various text

datasets,

including news

articles

BCO Reduces redundancy

and enhances

informativeness through

swarm intelligence

Performance highly

dependent on

parameter tuning

14 Wang et al.,

[37]

DUC datasets

(DUC-2001,

DUC-2002)

MCSO Multi-objective

optimization ensures

diverse and high-quality

summaries

Increased

computational

complexity due to

multiple colony

interactions

15 Sharma et

al., [38]

Scientific and

news article

datasets

GLO Dynamically adjusts

selection based on

informativeness and

context

May struggle with

large document sets

due to

computational

overhead

16 Yuan et al.,

[39]

Summarization

benchmark

datasets

QABC Improves search

efficiency and sentence

selection speed through

refined search

mechanisms

Requires careful

parameter tuning to

maintain robustness

across datasets

Existing text summarization methods encounter several challenges, including difficulty in

generalizing to various document structures and maintaining factual consistency between

summaries and source texts. Techniques such as Genetic Algorithms and Firefly Algorithms

often fall short in multi-objective optimization, while neural networks and sentiment

analysis approaches may struggle to adapt to diverse text types and languages.

Additionally, Particle Swarm Optimization-based methods may prove inadequate for

handling complex summarization tasks effectively. The COA addresses these limitations

by balancing exploration and exploitation, which enhances adaptability to various text

types and structures. COA improves search efficiency for optimal summarization

solutions and reduces reliance on extensive datasets, making it more effective in multi-

objective problems and improving overall summarization accuracy.

The surge of vast electronic texts in the digital age has created a growing need for efficient

automated text summarization methods to distill essential information succinctly. Current

 Improving Extractive Text Summarization via Efficient Coati Algorithm for Single Document 539

extractive and abstractive approaches often struggle to accurately capture key content while

maintaining readability and coherence. Moreover, many existing models depend on complex

linguistic annotations and manual feature engineering, which can hinder scalability and

adaptability across various text types. By investigating neural network-based methods and

optimization algorithms, this study tries to address above issues and uplift the effectiveness

and caliber of single-document summarization. The goal is to create strong frameworks that

generate excellent summaries without the need for a lot of human input or language resources.

3. PROPOSED METHOD

The approach follows a structured workflow designed to generate concise and informative

summaries effectively. The process begins with text preprocessing, including cleaning,

tokenization, stop word removal, and lemmatization to standardize the content. In the feature

extraction phase, words are transformed into vector representations, and sentence relevance is

ranked using TF-IDF. Additional processing is applied to refine vector features. During

summary generation, the COA selects the most informative sentences using a fitness function.

The final summary is then evaluated using metrics such as ROUGE score, BLEU score,

precision, recall, and F-score. These steps are visually represented in the improved Figure 1.

Fig. 1 Flow Diagram of Single Document Summarization

3.1. Text pre-processing

This procedure, which comes before summary, entails transforming the original report into

a more organized and controllable data format. To summarize individual documents, the DUC

540 J. RAUTARAY, S. PANIGRAHI

2002, DUC 2003, and DUC 2005 databases are utilized. These datasets are widely

recommended benchmarks in text summarization research. These datasets offer high-quality,

manually curated summaries that ensure a rigorous evaluation of summarization techniques.

While modern datasets like Reddit, the New York Times Annotated Corpus, or WikiNow are

relevant for contemporary challenges, the DUC datasets remain a preferred choice due to their

structured nature and established use in benchmarking.

Segmenting sentences, tokenizing words, eliminating stop words, and lemmatizing

words are important steps in this process.

Cleaning data: To clean data, first identify and handle missing values by removing or

imputing them. Next, duplicate entries are removed to ensure data consistency. Finally,

text data is standardized by converting to lowercase and stripping whitespace.

Sentence Segmentation: Sentence segmentation entails tokenizing the individual words

that make up sentences. Punctuation, including commas, semicolons, question marks,

colons, and periods is used to divide the message into sentences [23].

Word Tokenization: Tokenization divides sentence onto words according to grammar

and blank spaces [23].

Stop Word Removal: These are those words that carry little to no significant meaning,

such as conjunctions, articles, possessive words, pronouns, and relational terms. These

words, like "is," "and," and "the," can negatively impact the efficiency of processing

large tokens, making it essential to remove them from text during analysis. After dividing

the text into paragraphs, these stop words are filtered out to improve the relevance of the

remaining words [24].

Lemmatization: Lemmatization is the process of reducing words to their root words in

order to lessen their redundancy [25].

The basic steps involved in text preprocessing steps are illustrated in figure 2 given below.

Fig. 2 Overview of Text Preprocessing Steps

3.2. Feature Extraction

A numerical statistical technique called Term Frequency-Inverse Topic Frequency (TF-

ITF) is applied in NLP applications including data extraction and text mining. It enhances the

traditional Bag of Words method for converting text into vectors by considering a word's

significance within a specific document relative to other documents in the corpus. A word's

TF-ITF score is calculated by multiplying two statistical components. The first, term

frequency (TF), measures how important a word is within a particular document. The second,

 Improving Extractive Text Summarization via Efficient Coati Algorithm for Single Document 541

inverse topic frequency (ITF), reflects how frequently the word appears across the entire

corpus. As a result, words that occur frequently in all documents receive lower scores. The

TF-ITF output for each document is a high-dimensional sparse vector, where the number of

non-zero elements correspond to the count of unique words in the text as shown in equn (1),

(2), and (3) [26].

 ()

 .

frequency of term in the document
TF term

Total no of terms in the document
= (1)

 ()
 .

log
.

Total no of topic
ITF term

no of topic with that terms in it
= (2)

 () () ()TF ITF term TF term ITF term− =  (3)

TF-ITF values range between [0,1] with ten-digit precision. Once these values are

calculated, the terms are arranged in descending order. Each term is then paired with its

respective value to create a new word scenario. This arrangement is crucial for analyzing

the TF-ITF values of individual words, allowing for the examination of previously

overlooked results. The significance of a phrase is determined by calculating the TF-ITF

value of each word, and the overall importance of the phrase is derived from the combined

value of all words, including the action word. The words are then listed chronologically in

descending order of their importance. The TF-ITF technique follows the traditional TF-IDF

principles, where word importance is determined based on document frequency.

Essentially, TF-ITF is conceptually the same as TF-IDF, and we acknowledge that the

standard term "Inverse Document Frequency (IDF)" should be used for consistency.

Tf_ITF calculation with one example is shown through the given example. Consider a

corpus with 5 topics, and a document containing the following words with respective

frequencies:

Term Frequency in Document Total Terms in Document Topics Containing Term

“cancer” 4 100 3

“scan” 2 100 2

“deep” 1 100 5

TF("cancer") =100/4=0.04

TF("scan") =100/2=0.02

TF("deep") =100/1=0.01

ITF("cancer") = log (5/3)=0.22

ITF("scan") = log (5/2)=0.40

ITF("deep") = log (5/5)=0.00

TF_ITF("cancer") = 0.04×0.22=0.0088

TF_ITF("scan") = 0.02×0.40=0.0080

TF_ITF("deep") = 0.01×0.00=0.0000

After computing these values, the terms are ranked in descending order of importance:

1. "cancer" → 0.0088

2. "scan" → 0.0080

3. "deep" → 0.0000

542 J. RAUTARAY, S. PANIGRAHI

3.3. Vectorization

The phrases are now transformed into vectors in this stage. Each phrase is broken up
into a list of separate words. Since every word in the collection has a TF-ITF score, it is
allocated to them. The words' probable vector forms are listed in this list of TF-ITF scores.
The algorithm then receives these vectors in order to process and produce an outcome [27].
In our proposed approach, words are represented using TF-ITF, a numerical statistical
technique for feature extraction in text processing. Unlike word embeddings, which capture
semantic relationships between words, TF-ITF focuses on statistical significance by
determining a word’s importance within a document relative to a corpus. This means our
method does not rely on contextual similarity or distributional semantics but instead
emphasizes the frequency-based importance of words. Sentences are then represented as
vectors of TF-ITF weights, allowing for effective text representation without requiring word
embeddings. These TF-ITF-based vectors are then used as input for further processing in
our vectorization stage, where each phrase is broken into separate words and assigned their
respective TF-ITF scores. The resulting vectors are then optimized using the COA to
enhance the performance of the model, ensuring effective parameter tuning for improved
classification accuracy.

By using the COA to choose hyperparameters such Learning Rate, Batch Size, Dropout
Rate, and Embedding Dimension optimally, they improve the vectorization. This approach
ensures efficient and effective parameter tuning.

3.3.1. Hyper-parameter optimization using Coati Optimization Algorithm (COA)

Coatis, also called coatimundis, belong to the Procyonidae family's Nasua and Nasuella
genera, which belong to diurnal animal. Each coati has a long, non-prehensile tail used for
balance and signalling, black paws, tiny ears, and a slender head with a flexible, elongated,
somewhat upward-turned nose. The adult coatis can be as long as their body, measuring
between 33 to 69 cm from top to bottom tip [28]. COATI optimization algorithm is used for
improving extractive summarization rather than deep learning-based models. Unlike neural
summarization models, which require large-scale training data and significant computational
resources, COATI provides an efficient and interpretable optimization technique that
enhances summarization outcomes without extensive learning-based mechanisms.

The COATI optimization algorithm is inspired by coatis' natural hunting and escape
behaviors. During the hunting phase, coatis search for food by exploring various locations,
which mirrors the algorithm’s global search process—broadly exploring the solution space
to identify optimal parameters. In the escape phase, coatis swiftly adjust their positions to
evade predators, resembling the local search phase, where the algorithm fine-tunes its
parameters for better optimization. By integrating these two strategies, COATI efficiently
optimizes hyperparameters, enhancing extractive summarization performance. Hyper-
parameter optimization is the process of determining the best mix of vectorization hyper-
parameter settings to optimize performance on data in a reasonable quantity. This process is
essential to vectorization capacity for precise result prediction. Most of this input text uses the
hyperparameters' default values. The proposed model optimizes the hyperparameter utilizing
the COA. The hyperparameter values for learning rate, batch size, and dropout rate are
selected based on common practices to balance model performance and efficiency. The

learning rate, typically ranging from , is chosen to ensure stable convergence;
too small a value slows learning, while too large a value can lead to instability. Batch sizes of
16, 32, 64, 128, and 256 are used to balance computational efficiency and generalization, with

 Improving Extractive Text Summarization via Efficient Coati Algorithm for Single Document 543

smaller sizes offering noisy but beneficial gradient updates, and larger sizes providing stable
gradients but requiring more memory. The dropout rate, ranging from 0.1 to 0.5, helps prevent
overfitting by randomly deactivating neurons during training, where lower values provide
minimal regularization and higher values offer stronger regularization to ensure robust
learning. These ranges are widely used because they offer flexibility in achieving an optimal
model configuration.

The COA is used to optimize these hyperparameters. The COA step-by-step procedure is
explained below.

Step 1: Initialization: The main idea behind this method is to catch the optimal
hyperparameter. First, establish the problem's upper and lower boundaries, the variables'
dimensionality D, the maximum number of iterations, and the Coati size N. LR, BS, DR, and
ED are among the hyperparameters that make up each solution that the Coati represents. First, a
selection is made at random. The following equation displays the initial solution format:

  1 2, ,N NP S S S= (4)

Here, PN is the Nth solution or Coati’s position

  , , ,i i
S LR BS DR ED= (5)

Step 2: Fitness calculation: After initialization, each solution's fitness is evaluated
using the suggested AO2 technique. In this instance, the fitness function is used to define
the classification accuracy. The most effective solution is one with the topmost fitness
value. The fitness function is determined with the help of the equation:

TP TN

Fitness Max
TP TN FP FN

+ 
=  

+ + + 
 (6)

Step 3: Updating using COA: COA utilizes 2 distinct techniques known as the attacking
and hunting strategy on iguanas and process of escaping from predators.

Strategy 1: Hunting and attacking strategy on iguana

Coatis moves around in the search space as a result of this strategy, demonstrating the

COA's ability to do global research within the problem-solving domain.

 ()1 1

, , ,: . (.)P P

i i j i j j i jS S S r Iguana I S= + − (7)

After reaching the floor, the iguana is placed at random around the search area. Coats
on the ground move in the search space based on this random placement, where N is the
number of coatis.

 : .(), 1,2, ,
j

G G

j Z j jIguana Iguana I r uz lz j m= + − = (8)

 1
, ,1 1

,

, ,

.(,),
:

.()

G

G

i j j i j Iguana FP P

i i j G

i j i j j

S r Iguana I S F
S S

S r S Iguana else


 + −

= 
+ +

 (9)

 1, 2, ,
2 2

N N
For i N

   
= + +   

   
 (10)

The update mechanism accepts the new position that is determined for each coati
when it raises the value of the target function; otherwise, the coati remains in its original
location. This update need is intended for i = 1, 2, . . . , N.

544 J. RAUTARAY, S. PANIGRAHI

1 1,

,
,

P P

i i i

i

i

S F F
S

S else

 
= 


 (11)

Here Si
P1 represents the newly calculated location for the ith coati, while Si,j

P1 denotes

its jth measurement, Fi
P1 is the value of its objective function. The Iguana indicates the

location of the best performing member in search region, with Iguana representing its jth

dimension.Iguanaj
G refers to the jth measurement at this randomly chosen position, while

FIguana
G represents the value of the objective function at this location.

Strategy 2: The act of running away from a predator

Because of the maneuvers it has made in this technique, Coatis’position is secure with

relation to its present position, which implies that the COA can be employed in local

search.

 , , 1,2, ,
j jlocal local

j j

lz lz
lz uz where t T

t t
= = = (12)

 ()2 2

, ,: (1 2). .(.())P P local local local local

i i j i j j j j jS S S r lz r uz r uz lz= + − + + − (13)

The newly found and determined position is found to be appropriate if it raises the

objective function's value.

2 2,
,

,

P P

i i i

i

i

S F F
S

S else

 
= 


 (14)

Here Si
P2 is the new position determined by using the second phase of COA for the ith

coati, Si,j
P2 is the jth dimension, Fi

P2 is the outcome of its objective function,

Step 4: Termination condition: Until the best hyper-parameter choice is achieved,

the procedure is repeated. The selected hyperparameter value is applied to the improved

vectorization. The COA pseudo-code is displayed in the table below.

Fig. 3 Flowchart for COA

 Improving Extractive Text Summarization via Efficient Coati Algorithm for Single Document 545

The proposed method utilizes a classification-based approach for text summarization,

where each sentence is classified as either part of the summary or not. This classification

is performed using a neural network, and to ensure optimal performance, the Coati

Optimization Algorithm (COA) is employed for hyperparameter tuning. Specifically,

COA optimizes key hyperparameters such as learning rate, batch size, dropout rate, and

embedding dimension, which significantly impact the model’s accuracy and efficiency.

The optimization process begins with the initialization of a population of Coatis, where

each represents a unique combination of hyperparameters. The fitness of each candidate

solution is evaluated based on classification accuracy, and the positions of Coatis are

updated using two strategies: the hunting and attacking strategy for global exploration

and the escape from predators strategy for local refinement. This iterative process

continues until the best set of hyperparameters is identified, which is then applied to the

neural network model. As a result, while COA does not directly perform summarization,

it plays a crucial role in enhancing the neural network’s ability to accurately classify

sentences, thereby improving the overall quality of the generated summary.

4. RESULT AND DISCUSSION

The findings show that the COA outperforms current optimization algorithms in

producing succinct and insightful summaries, as evidenced by higher ROUGE and BLEU

scores. The COA's potential as a potent tool for automatic text summaries is highlighted

in the debate, which also highlights how well it extracts important information from

documents while maintaining summary quality. A computer with an Intel (R) Core (TM)

i5 4570s CPU running at 2.90 GHz, 8GB of RAM, Windows 64-bit, and Python was used

for the experiments.

4.1. Dataset Description

In order to evaluate automated text summarizers, the dataset contains a variety of

document collections as well as human-generated summaries. Each dataset contains

single-document summaries with varying file sets (50, 30, and 50 sets, respectively) and

differing numbers of files per set (12, 20, and 25). The type of documents ranges from

human-written queries with summaries (DUC 2002), news articles with summaries (DUC

2003), to queries with five reference summaries (DUC 2005). These datasets are sourced

from duc.nist.gov or TREC, with summaries containing average word counts of 112, 101,

and 109, respectively.

4.2. Evaluation Metrics

It has chosen many metrics to gauge how well change-proneness prediction models

are doing. They have selected such as ROUGE score, BLEU score, precision, recall, and

F-score. The study compares the performance of the COA with existing state-of-the-art

optimization algorithms such as PSO [29], CSO, GWO [30], Quick Artificial Bee colony

optimization algorithm (QABC) [31], Modified cat swarm optimization algorithm

(MCSO), Greedy local optimizer (GLO) [32].

546 J. RAUTARAY, S. PANIGRAHI

Recall

Recall is a performance indicator that quantifies the percentage of pertinent

information that is successfully extracted from the source text in machine learning tasks

such as text summarization. It is computed as follows equation (15):

TP

recall
TP FN

=
+

 (15)

Precision

A performance parameter called precision is used to assess how accurately

information is obtained in machine learning activities such as text summarization. It is

computed as follows equation (16):

TP

precision
TP FP

=
+

 (16)

F1-score

A statistic called the F1-score is used to assess how well a summarization model

balances recall and accuracy. The F1-score assigns equal weight to accuracy and recall by

taking the harmonic mean of these two criteria. It is computed as follows equation (17):

2

1
2

TP
F Score

TP FP FN
− =

+ +
 (17)

TP signifies the true positive, FP the false positive, TN the true negative, and FN the false

negative.

ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) ratings were first

introduced and have subsequently become widely recognized measures for assessing text

summarization systems. The degree of overlap between machine-generated and human-

written summaries is used to measure summarization quality in equation (18).

()

()() j i

match n gram

v v

S Refsummarizes n grams SCount
ROUGE

S Refsummarizes n grams S Count n gram

−



 − 
=

 −  −

 


 
 (18)

BLEU

The produced summary's word count is measured by BLEU (Bilingual Evaluation

Understudy) in comparison to a reference summary in equation (19), (20),

 ()1
exp log

N

n nn
BLUE BP w p

−
=   (19)

1

1

r

c

if c r
BP

e if c r
−




= 
 

 (20)

 Improving Extractive Text Summarization via Efficient Coati Algorithm for Single Document 547

Figure 4(a) presents ROUGE scores across three metrics—F-Measure, Precision, and

Recall—highlighting performance for ROUGE-1, ROUGE-2, and ROUGE-L. In the

chart, F-Measure is represented in blue, Recall in green, and Precision in red. The

outcomes unequivocally show how effective the suggested method is in comparison to

alternative strategies. The performance metrics of several methods on the single-

document 2002 dataset are shown in Figure 4(b). The suggested method performs better

than the others, especially when considering the F1-score of 0.51. All metrics show that

the PSO and GWO techniques perform poorly. Overall, the proposed approach proves to

be more effective than the other methods evaluated.

Fig. 4 Single-Document DUC 2002 dataset(a): Rouge-1, Rouge-2, Rouge-L results and

(b) Evaluation metrics of proposed work with current techniques

ROUGE-1, ROUGE-2, and ROUGE-L scores for various techniques on the single-

document 2003 dataset are shown in Figure 5(a).

Fig. 5 Single-Document DUC 2003 dataset (a): comparison of proposed approach with

existing methods using Rouge-1, Rouge-2, Rouge-L metrics (b): Analysis of

Performance Metrics for Proposed work and Existing methods.

548 J. RAUTARAY, S. PANIGRAHI

In all measures, the suggested technique excels, especially in ROUGE-1. The proposed

methodology outperforms PSO and CSO in Recall and F-Measure, demonstrating its efficacy.

Figure 5(b) compares Performance metrics like BLEU score, Precision, Recall, and F1-score

for the same dataset. The proposed technique again beats alternatives with an F1-score of

0.78. In comparison, PSO and GWO lag in Precision and Recall.

Fig. 6 Single-Document DUC 2005 dataset (a): Rouge-1, Rouge-2, Rouge-L scores

between the proposed approach and existing methods. (b) Evaluation of performance

metrics for the proposed method compared to existing approaches.

ROUGE-1, ROUGE-2, and ROUGE-L scores for different approaches on the single-

document 2005 dataset are compared in Figure 6(a). The approach with the highest scores

in all criteria excels in ROUGE-1 and ROUGE-L. The graph also shows Precision, Recall,

and F-Measure, proving the technique works. The suggested algorithm outperforms PSO and

CSO in Recall and F-Measure, proving its superiority. Figure 6(b) compares BLEU,

Precision, Recall, and F1-score for the same dataset. All other methods fail to match the

proposed method's 0.92 F1-score. PSO and GWO score lower in BLEU and Precision.

Table 2 compares the suggested model's performance in detail.

Table 2 Comparative analysis of the proposed model

Dataset → DUC

2002

 DUC

2003

 DUC

2005

Techni
ques ↓

BLEU Preci-
sion

Re
call

F1
score

BLEU Preci-
sion

Re
call

F1
score

BLEU Preci-
sion

Re
call

F1
score

PSO 0.15 0.27 0.54 0.42 0.20 0.28 0.65 0.42 0.15 0.27 0.54 0.42

CSO 0.19 0.28 0.65 0.40 0.15 0.29 0.67 0.42 0.19 0.28 0.65 0.40
GWO 0.16 0.25 0.69 0.39 0.19 0.23 0.69 0.39 0.16 0.25 0.69 0.19

BCO 0.15 0.27 0.76 0.43 0.20 0.25 0.76 0.42 0.15 0.27 0.76 0.43

MCSO 0.17 0.24 0.80 0.38 0.18 0.24 0.78 0.39 0.17 0.24 0.80 0.38
GLO 0.19 0.26 0.73 0.41 0.17 0.28 0.77 0.41 0.19 0.26 0.73 0.41

QABC 0.16 0.23 0.74 0.36 0.16 0.26 0.72 0.38 0.21 0.29 0.71 0.39

Proposed 0.29 0.35 0.92 0.51 0.22 0.30 0.78 0.41 0.26 0.34 0.91 0.49

The proposed approach is evaluated against state-of-the-art optimization techniques,

including PSO, CSO, GWO, BCO, MCSO, GLO, and QABC, using the DUC 2002,

2003, and 2005 datasets. Performance is assessed based on BLEU, precision, recall, and

F1 score. The results indicate that our method surpasses existing techniques, particularly

 Improving Extractive Text Summarization via Efficient Coati Algorithm for Single Document 549

in recall, achieving the highest values across all datasets—0.92 for DUC 2002, 0.78 for

DUC 2003, and 0.91 for DUC 2005—demonstrating its effectiveness in preserving essential

content. Additionally, it attains the highest BLEU score of 0.29 on DUC 2002, outperforming

alternative methods, which range between 0.15 and 0.21. The F1 scores are also among the

highest, peaking at 0.51 on DUC 2002, reflecting a well-balanced trade-off between precision

and recall. However, while our approach excels in recall and F1 score, methods such as CSO

and GLO achieve slightly comparable precision values, particularly in DUC 2003. This

suggests that although our model retrieves a larger proportion of relevant sentences, further

refinement may help reduce redundancy. Moreover, the computational complexity of COA

warrants further investigation compared to other optimization techniques. Despite these

considerations, the findings confirm that the proposed method significantly improves

summarization performance, positioning it as a competitive alternative to existing state-

of-the-art approaches.

5. CONCLUSION

The development of automated text summarization algorithms is crucial for efficiently

extracting key information from large textual datasets, addressing the challenge of information

overload in the digital era. This study introduces a systematic approach to single-document

summarization by transforming words into vector representations and leveraging TF-ITF to

assess sentence importance. The summarization process is further optimized using the Coati

Optimization Algorithm (COA), which fine-tunes hyperparameters to enhance sentence

ranking. Experimental results on benchmark datasets, including DUC 2002, 2003, and 2005,

demonstrate that the COA-based approach outperforms state-of-the-art optimization

techniques such as PSO, CSO, GWO, BCO, QABC, MCSO, and GLO, achieving higher

recall and F-score values. By effectively refining sentence selection and improving

vectorization, COA contributes to generating more informative and coherent summaries. The

key contributions of this study include the integration of TF-ITF with COA for enhanced

sentence ranking, a comprehensive comparative analysis with multiple optimization

techniques, and the optimization of hyperparameters to improve summarization performance.

Future work will focus on extending this approach to multi-document summarization and

exploring deep learning-based hybrid models to further enhance summary quality.

REFERENCES

 [1] W. Kryściński, N. S. Keskar, B. McCann, C. Xiong and R. Socher, "Neural Text Summarization: A

Critical Evaluation", arXiv preprint, arXiv:1908.08960, 2019.

 [2] J. Weston, "A Neural Attention Model for Abstractive Sentence Summarization", arXiv preprint,
arXiv:1509.00685, 2015.

 [3] L. Liu, Y. Lu, M. Yang, Q. Qu, J. Zhu and H. Li, "Generative Adversarial Network for Abstractive Text

Summarization", In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, Apr.
2018, pp. 1-3.

 [4] D. Miller, "Leveraging BERT for Extractive Text Summarization on Lectures", arXiv preprint,

arXiv:1906.04165, 2019.
 [5] K. Sarkar, "Automatic Single Document Text Summarization Using Key Concepts in Documents", J. Inf.

Process. Syst., vol. 9, no. 4, pp. 602-620, 2013.

550 J. RAUTARAY, S. PANIGRAHI

 [6] H. Christian, M. P. Agus and D. Suhartono, "Single Document Automatic Text Summarization Using
Term Frequency-Inverse Document Frequency (TF-IDF)", ComTech: Comput. Math. Eng. Appl., vol. 7,

no. 4, pp. 285-294, 2016.

 [7] R. Z. Al-Abdallah and A. T. Al-Taani, "Arabic Single-Document Text Summarization Using Particle
Swarm Optimization Algorithm", Procedia Comput. Sci., vol. 117, pp. 30-37, 2017.

 [8] U. Rani and K. Bidhan, "Review Paper on Automatic Text Summarization", Int. Res. J. Eng. Technol.

(IRJET), vol. 7, no. 4, pp. 3349-3354, 2020.
 [9] A. A. Syed, F. L. Gaol and T. Matsuo, "A Survey of the State-Of-The-Art Models in Neural Abstractive

Text Summarization", IEEE Access, vol. 9, pp. 13248-13265, 2021.

[10] S. Sivakumar and R. Rajalakshmi, "Context-aware Sentiment Analysis with Attention-Enhanced Features

from Bidirectional Transformers", Soc. Netw. Anal. Min., vol. 12, no. 1, p. 104, 2022.

[11] R. Srivastava, P. Singh, K. P. S. Rana and V. Kumar, "A Topic Modeled Unsupervised Approach to

Single Document Extractive Text Summarization", Knowl.-Based Syst., vol. 246, p. 108636, 2022.
[12] P. Verma, A. Verma and S. Pal, "An Approach for Extractive Text Summarization Using Fuzzy

Evolutionary and Clustering Algorithms", Appl. Soft Comput., vol. 120, p. 108670, 2022.

[13] D. V. P. Kumar, S. S. Raj, P. Verma and S. Pal, "Extractive Text Summarization Using Meta-Heuristic
Approach", in FIRE (Working Notes), pp. 464-474, 2022.

[14] J. Cheng and M. Lapata, "Neural Summarization by Extracting Sentences and Words", arXiv preprint,

arXiv:1603.07252, 2016.
[15] W. Kryściński, B. McCann, C. Xiong and R. Socher, "Evaluating the Factual Consistency of Abstractive

Text Summarization", arXiv preprint, arXiv:1910.12840, 2019.

[16] D. Debnath, R. Das and P. Pakray, "Extractive Single Document Summarization Using an Archive-Based
Micro Genetic-2", In Proceedings of the 7th International Conference on Soft Computing & Machine

Intelligence (ISCMI), 2020, pp. 244-248.

[17] T. Bezdan et al., "Hybrid Fruit-Fly Optimization Algorithm with k-Means for Text Document Clustering",
Mathematics, vol. 9, no. 16, p. 1929, 2021.

[18] D. Debnath, R. Das and P. Pakray, "Single Document Text Summarization Addressed with A Cat Swarm

Optimization Approach", Appl. Intell., vol. 53, no. 10, pp. 12268-12287, 2023.
[19] S. P. Patil and R. Rautray, "SMATS: Single and Multi Automatic Text Summarization", Karbala Int. J.

Modern Sci., vol. 9, no. 1, p. 6, 2023.

[20] K. Svore, L. Vanderwende and C. Burges, "Enhancing Single-Document Summarization by Combining
Ranknet and Third-Party Sources", In Proceedings of the Joint Conference on Empirical Methods in

Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 2007,

pp. 448-457.
[21] S. Mandal, G. K. Singh and A. Pal, "Single Document Text Summarization Technique Using Optimal

Combination of Cuckoo Search Algorithm, Sentence Scoring and Sentiment Score", Int. J. Inf. Technol.,

vol. 13, no. 5, pp. 1805-1813, 2021.
[22] A. Jain, D. Yadav and A. Arora, "Particle Swarm Optimization for Punjabi Text Summarization", Int. J.

Oper. Res. Inf. Syst. (IJORIS), vol. 12, no. 3, pp. 1-17, 2021.
[23] S. H. Apandi, J. Sallim, R. Mohamed and N. Ahmad, "Data Pre-Processing of Website Browsing Records:

To Prepare Quality Dataset for Web Page Classification", JOIV: Int. J. Inf. Visual., vol. 8, no. 1,

pp. 239-246, 2024.
[24] M. Jaiswal and S. Das, "Detecting Spam E-Mails Using Stop Word TF-IDF and Stemming Algorithm

with Naïve Bayes Classifier on the Multicore GPU", Int. J. Electr. Comput. Eng., vol. 11, no. 4,

pp. 3168-3175, 2021.
[25] K. K. Mohbey and S. Tiwari, "Preprocessing and Morphological Analysis in Text Mining", Int. J.

Electron. Commun. Comput. Eng., vol. 2, no. 2, pp. 116-122, 2011.

[26] Z. Gou, Z. Huo, Y. Liu and Y. Yang, "A Method for Constructing Supervised Topic Model Based on
Term Frequency-Inverse Topic Frequency", Symmetry, vol. 11, no. 12, p. 1486, 2019.

[27] A. K. Singh and M. Shashi, "Vectorization of Text Documents for Identifying Unifiable News Articles",

Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 7, pp. 305-310, 2019.
[28] M. Dehghani, Z. Montazeri, E. Trojovská and P. Trojovský, "Coati Optimization Algorithm: A New Bio-

Inspired Metaheuristic Algorithm for Solving Optimization Problems", Knowl.-Based Syst., vol. 259,

p. 110011, 2023.
[29] V. Dalal and L. Malik, "Semantic Graph-Based Automatic Text Summarization for Hindi Documents

Using Particle Swarm Optimization", in Information and Communication Technology for Intelligent

Systems, Springer, pp. 284-289, 2018.

 Improving Extractive Text Summarization via Efficient Coati Algorithm for Single Document 551

[30] N. Saini, S. Saha, A. Jangra and P. Bhattacharyya, "Extractive Single Document Summarization Using
Multi-Objective Optimization: Exploring Self-Organized Differential Evolution, Grey Wolf Optimizer and

Water Cycle Algorithm", Knowl.-Based Syst., vol. 164, pp. 45-67, 2019.

[31] J. Rautaray et al., "SEQABC: Revolutionizing Single Document Extractive Text Summarization with
Quick Artificial Bee Colony", Nanotechnol. Percept., pp. 737-750, 2024.

[32] M. Mendoza, C. Cobos and E. León, "Extractive Single-Document Summarization Based on Global-Best

Harmony Search and A Greedy Local Optimizer", in Advances in Artificial Intelligence and Its
Applications, Springer, pp. 52-66, 2015.

[33] H. Zhang, P. S. Yu and J. Zhang, "A Systematic Survey of Text Summarization: From Statistical Methods

to Large Language Models", arXiv preprint, arXiv:2406.11289, 2024.

[34] D. Yadav, J. Desai and A. K. Yadav, "Automatic Text Summarization Methods: A Comprehensive

Review", arXiv preprint, arXiv:2204.01849, Mar. 2022.

[35] S. Mirjalili, S. M. Mirjalili and A. Lewis, "Grey Wolf Optimizer", Adv. Eng. Soft., vol. 69, pp. 46-61,
2014.

[36] D. Karaboga and B. Basturk, "A Powerful and Efficient Algorithm for Numerical Function Optimization:

Artificial Bee Colony (ABC) Algorithm", J. Glob. Optim., vol. 39, no. 3, pp. 459-471, 2007.
[37] G. Wang, S. Deb and L. Zhao, "A Multi-Colony Multi-Objective Particle Swarm Optimizer for Dynamic

Optimization Problems", Eng. Appl. Artif. Intell., vol. 62, pp. 3-15, 2017.

[38] S. Sharma, A. Verma and P. K. Shukla, "A Novel Glowworm Swarm Optimization Algorithm for Text
Document Summarization", Expert Syst. Appl., vol. 160, p. 113653, 2020.

[39] X. Yuan, Y. Xu, L. Gao and Y. Zhang, "A Quick Artificial Bee Colony Algorithm for Large-Scale

Numerical Optimization", Appl. Soft Comput., vol. 48, pp. 579-596, 2016.

