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Abstract. In the digital era, the rapid expansion of online information demands 

efficient automated text summarization techniques to extract key insights from large 

documents. This study introduces a novel single-document extractive summarization 

approach that utilizes Term Frequency-Inverse Topic Frequency (TF-ITF) for feature 

extraction and the Coati Optimization Algorithm (COA) for optimal sentence selection. 

COA enhances summarization performance by balancing precision and recall through 

an adaptive fitness function, improving the quality of extracted summaries. The 

proposed model is evaluated on DUC 2002, 2003, and 2005 datasets using ROUGE, 

BLEU, precision, recall, and F1-score metrics. Comparative analysis against state-of-

the-art optimization algorithms, including PSO, CSO, GWO, BCO, QABC, MCSO, and 

GLO, demonstrates that COA outperforms existing techniques, achieving higher recall 

and F1 scores while maintaining competitive precision. These findings establish COA 

as an effective optimization technique for enhancing automated text summarization. 

Key words: Term Frequency-Inverse Topic Frequency, Coati Optimization Algorithm, 

vectors, Single Document Text Summarization, Rouge scores, BLEU score 

1. INTRODUCTION 

The major aim of text summarization is to condense long written texts into a precise, 

concise and understandable format which highlights the most important details from the 

original source. By picking out important lines and incorporating all pertinent details 

from the source text, automatic text summarization creates summaries. In Natural 

Language Processing (NLP), summarization is a major challenge since it necessitates 
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thorough text analysis, including lexical and semantic analysis, in order to generate high-

quality summaries. The two primary methods of summarization are abstractive and 

extractive. Whereas abstractive summarization interprets and rewords the essential portions to 

produce the final summary, extractive summarization finds and immediately copies the most 

significant passages from the source material into the summary [1][2]. Creating a summary 

that successfully communicates the main ideas of the original text is the goal of abstractive 

summarization, which frequently involves merging words or phrases which are not found in 

the given text [3]. Conversely, extractive summarizing generates a summary solely from the 

original material by using the text's original words, structures, or phrases. Automated 

extractive text summarization is a valuable tool in education, as it efficiently extracts key 

elements without requiring manual effort or human intervention [4]. 

Depending on the type of the inputs, the documents can be divided into two categories: 

single-document and multi-document summarization. In contrast to multi-document 

summary, which entails summarizing a group of connected documents, this work 

concentrates on single-document text summarization, in which the input consists of a single 

document [5]. Summarization involves three key objectives: generating the summary from 

one or more documents, retaining essential information, and producing a concise summary 

[6]. For single-document systems, the summary is generated solely from that individual 

document. Four main extractive summarization techniques are commonly used, depending 

on the text: machine learning, meta-heuristics, statistical, and semantic methods [7][8]. In 

order to find near-optimal solutions for complicated problems, metaheuristic optimization 

algorithms use techniques modelled after natural processes, such as evolution or swarm 

activity, to explore the solution space. Coati Optimization, a metaheuristic approach, 

emulates the foraging behavior of coatis, balancing exploration and exploitation by 

simulating their adaptive and dynamic search strategies to find optimal solutions [9]. Recent 

advancements have focused on refining these models with attention mechanisms and fine-

tuning on large datasets to generate more accurate and context-aware summaries [10]. 

Regardless of previous summaries, the main goal is to quickly create one from a given text 

or collection of documents using a variety of methods and algorithms. The goal of 

metaheuristic algorithms in this context is to identify high-scoring phrases. These methods 

are employed in text summaries to choose the best or nearly best collection of sentences that 

create an understandable and instructive synopsis. Examples include genetic algorithms and 

other optimization methods [11][12][13]. An innovative optimization method that draws 

inspiration from coatis' natural behaviors is the Coati Optimization Algorithm (COA). COA 

provides a number of benefits for resolving global optimization issues, including the 

elimination of the need for parameter adjustments due to its lack of control parameters and its 

high effectiveness in addressing a big range of optimization problems in different scientific 

domains, including intricate high-dimensional issues. 

1.1. Contribution 

▪ An organized method for summarizing a single document that includes TF-ITF feature 

extraction and thorough text preprocessing, improving the accuracy and applicability 

of the summaries. 

▪ This paper introduces the innovative use of the COA for summary generation, 

optimizing vector-based processes with a unique fitness function, achieving greater 

efficiency compared to traditional methods. 
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▪ The study uses ROUGE scores, BLEU scores, accuracy, recall, and F-score metrics to 

statistically assess the efficacy of the COA on the DUC 2002, 2003, and 2005 datasets. 

It shows that the COA can generate clear and insightful summaries from complicated 

textual material. 

Structure of the paper: Section 1 provides an overview of text summarization and its 

various forms; Section 2 reviews the literature on document summarization using various 

methods and algorithms; Section 3 introduces the proposed model, methods, and COA; 

Section 4 covers the research findings and result analysis; and Section 5 concludes the study. 

2. RELATED WORKS 

While multi-document summarizing entails producing a summary from several papers, 

single-document summarization creates a summary from a single document. While it is 

possible to apply single-document summary techniques to multi-document summarization, 

summarizing several documents is far more difficult. This section examines previous attempts 

in the literature on text summarization and looks at several optimization techniques and 

algorithms that have been put forth for this aim. 

Cheng et al. [14] proposed a data-driven approach leveraging continuous sentence 

features and neural networks. They developed a hierarchical document-based framework 

to support single-document summarization. The models are trained with very big datasets 

large number of document-summary pairs, without relying on language annotations. Two 

types of models were created, focusing on word and phrase extraction. This approach enables 

the models to learn informativeness characteristics through continuous approximations, 

enhancing the summarization process. 

Kryściński et al. [15] proposed a model-based, weakly-supervised approach for detecting 

discrepancies and verifying factual consistency between source documents and generated 

summaries. Sentences from source texts are modified using rule-based transformations to 

create training data. The model is trained on three key tasks: 1) Assessing whether sentences 

retain factual consistency after translation; 2) Extracting a supporting span from the source 

documents that upholds the consistency assumption; and 3) Identifying any incongruent spans 

from the summary sentence. 

Debnath, D et al. [16] proposed an Archive-based Micro Genetic-2 Algorithm to tackle 

the multi-objective Extractive Single Document Summarization problem. The evaluation was 

conducted using the DUC-2001 and DUC-2002 datasets, and the results were compared with 

previous methods using ROUGE metrics.  

Timea Bezdan et al. [17] introduced a Hybrid FFO method that outperforms K-Means 

for text document clustering. The case study, which examined text documents with 

limited functionalities, demonstrated the effectiveness of that given approach. 

Debnath, D et al. [18] addressed a single-document extraction problem for automated 

text summarization and used Cat Swarm Optimization (CSO). CSO aims to produce 

useful, redundant-free summaries with ample coverage. Compared to the leading dataset 

techniques, ROUGE-1 and ROUGE-2 scores improved by 25% and 5%, respectively. 

Pati and Rautray et al. [19] employed the DUC 2003 dataset to showcase the superior 

performance of Cuckoo Search (CS) for single-document extractive summarization, 

comparing it with the Firefly Algorithm (FFA) and Ant Colony Optimization (ACO).  
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Svore et al. [20] introduced NetSum, a novel automated summarization method 

utilizing neural networks. In this approach, each sentence is analyzed based on a set of 

features that highlight its importance within the text. The method incorporates advanced 

features derived from Wikipedia entities and recent search query data.  

Mandal, S et al. [21] proposed a method combining sentiment analysis, language scoring, 

and Cuckoo Search (CS) computation. The approach uses sentence scoring techniques to 

evaluate phrases based on mathematical frameworks, and CS computation is then applied to 

select the most suitable phrases for generating the summary.  

Jain et al. [22] proposed using the PSO algorithm for text summarization in the Punjabi 

language. The search process is conducted by rapidly moving particles that update their 

positions and velocities at the end of each iteration. Throughout the generations, the algorithm 

continuously updates the personal best and global best solutions.  

Zhang et al. [33] proposed a comprehensive survey on text summarization, transitioning 

from statistical methods to large language models (LLMs). It reviewed advancements in 

benchmarking, modeling, and evaluation metrics, emphasizing the role of pre-trained 

language models (PLMs) and LLMs in improving summarization tasks. The study utilized 

various standard datasets to evaluate the techniques and provided insights into the latest trends 

and challenges. 

Yadav et al. [34] proposed an analysis of extractive and abstractive text summarization 

techniques to address information overload. The study explored standard datasets, evaluation 

metrics, and highlighted challenges in creating advanced summarizers. It reviewed techniques 

such as extractive and abstractive summarization and analyzed their effectiveness on 

widely used summarization datasets. 

Mirjalili et al. [35] proposed the Grey Wolf Optimizer (GWO), an optimization algorithm 

inspired by the hierarchical hunting mechanism of grey wolves. GWO has been applied in text 

summarization to enhance sentence selection based on relevance and informativeness. The 

algorithm effectively balances exploration and exploitation, leading to high-quality summaries. 

However, it may suffer from premature convergence in high-dimensional datasets. 

Karaboga et al. [36] introduced the Bee Colony Optimization (BCO) algorithm, which 

mimics the foraging behavior of honeybees to extract key sentences for summarization. 

This method effectively reduces redundancy and enhances informativeness by leveraging 

swarm intelligence. Nevertheless, its performance is highly dependent on parameter 

tuning, which can impact consistency across different datasets. 

Wang et al. [37] developed Multi-Colony Swarm Optimization (MCSO) for text 

summarization, where multiple cooperating colonies work together to extract meaningful 

sentences. This approach enhances the diversity and quality of generated summaries 

through multi-objective optimization. However, the increased computational complexity 

due to interactions among multiple colonies can be a drawback for large-scale document 

processing. 

Sharma et al. [38] proposed Glowworm Swarm Optimization (GLO) for extractive 

summarization. Inspired by glowworm luminescence, this algorithm dynamically selects 

relevant sentences based on a luciferin-based attraction mechanism. The adaptability of 

GLO ensures high-quality summaries with strong contextual relevance. However, it can 

face computational overhead when processing large document sets. 

Yuan et al. [39] introduced the Quick Artificial Bee Colony (QABC) algorithm, an 

enhanced version of the traditional BCO designed for faster convergence in optimization 

problems, including text summarization. By refining the search mechanism and reducing 
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unnecessary computations, QABC improves search efficiency and sentence selection 

speed. However, it still requires careful parameter tuning to maintain robustness across 

diverse datasets. 

Table 1 Existing research contains a range of optimization techniques 

Sl. 

no 

Author, 

Reference 

Dataset Methodology Advantage Disadvantage 

1 Cheng et al., 

[14] 

DUC 2002, 

Daily Mail news 

highlights corpus 

Encoding and 

attention-based 

extractor 

The approach 

leverages the power of 

neural networks for 

more effective 

summarization without 

requiring hand-crafted 

features 

Data Dependency, 

Relies on 

Extractive 

Summarization, 

Complexity 

2 Debnath D 

et al., [16] 

DUC 2002, DUC 

2001 

AMGA2 Efficient for extractive 

summarization with 

multi-objective 

optimization. 

Computationally 

expensive -

Performance 

depends on 

parameter tuning. 

3 Kryściński 

et al., [15] 

CNN/ 

DailyMail 

BERT Leverages pre-trained 

transformers for high-

quality abstractive 

summaries. 

Struggles with 

factual consistency 

in longer 

documents. 

4 TimeaBezda

n et al., [17] 

Text datasets 

 

FFA Good for feature 

selection, improving 

summary relevance 

and quality. 

Not suitable for 

highly dynamic or 

complex datasets. 

5 Debnath D 

et al., [18] 

DUC 2002, 

DUC 2001 

CSO Enhances coherence 

and accuracy in 

extractive 

summarization tasks. 

Limited 

generalization 

across diverse 

summarization 

datasets. 

6 Pati and 

Rautray, et 

al., [19] 

 

DUC 2003 ACO, FFA, and 

CSO 

Hybrid approach 

improves efficiency, 

accuracy, and feature 

optimization. 

Increased model 

complexity and 

resource 

requirements. 

7 Svore et al., 

[20] 

DUC 2002, DUC 

2003 

Rank Net 

learning 

algorithm 

Scalability, 

Relevance Ranking 

Generalization 

Issues, Potential 

for Information 

Overload 

8 Mandal S et 

al., [21] 

Kaggle dataset CSA Incorporation of 

Sentiment Analysis, 

Scalability, Feature 

Integration 

Generalizability 

Issues, Dataset 

Dependency, 

Computational 

Complexity 

9 Jain et al., 

[22] 

Punjabi datasets PSO Optimization 

Efficiency, Feature-

Based Scoring, 

Scalability 

Language 

Dependency, 

Limited Dataset, 

Lack of Semantic 

Understanding 
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10 Zhang et al., 

[33] 

Various 

summarization 

datasets 

Statistical, 

Deep Learning, 

and LLMs 

Offers a thorough 

historical and 

contemporary analysis 

of text summarization 

methods 

Does not propose 

new models or 

techniques and 

relies heavily on 

existing literature. 

11 Yadav et al., 

[34] 

Standard 

summarization 

datasets 

Text Rank, 

Seq2Seq 

Offers a comprehensive 

overview of state-of-the-

art methods, aiding 

researchers in 

understanding 

advancements in the 

field. 

Heavily relies on 

existing datasets 

and benchmarks, 

limiting novelty 

12 Mirjalili et 

al., [35] 

Standard 

benchmark 

datasets for 

optimization 

problems 

Grey Wolf 

Optimizer 

(GWO) 

Balances exploration 

and exploitation 

efficiently, leading to 

high-quality summaries 

May converge 

prematurely in 

complex, high-

dimensional 

problems 

13 Karaboga et 

al., [36] 

Various text 

datasets, 

including news 

articles 

BCO Reduces redundancy 

and enhances 

informativeness through 

swarm intelligence 

Performance highly 

dependent on 

parameter tuning 

14 Wang et al., 

[37] 

DUC datasets 

(DUC-2001, 

DUC-2002) 

MCSO Multi-objective 

optimization ensures 

diverse and high-quality 

summaries 

Increased 

computational 

complexity due to 

multiple colony 

interactions 

15 Sharma et 

al., [38] 

Scientific and 

news article 

datasets 

GLO Dynamically adjusts 

selection based on 

informativeness and 

context 

May struggle with 

large document sets 

due to 

computational 

overhead 

16 Yuan et al., 

[39] 

Summarization 

benchmark 

datasets 

QABC Improves search 

efficiency and sentence 

selection speed through 

refined search 

mechanisms 

Requires careful 

parameter tuning to 

maintain robustness 

across datasets 

Existing text summarization methods encounter several challenges, including difficulty in 

generalizing to various document structures and maintaining factual consistency between 

summaries and source texts. Techniques such as Genetic Algorithms and Firefly Algorithms 

often fall short in multi-objective optimization, while neural networks and sentiment 

analysis approaches may struggle to adapt to diverse text types and languages. 

Additionally, Particle Swarm Optimization-based methods may prove inadequate for 

handling complex summarization tasks effectively. The COA addresses these limitations 

by balancing exploration and exploitation, which enhances adaptability to various text 

types and structures. COA improves search efficiency for optimal summarization 

solutions and reduces reliance on extensive datasets, making it more effective in multi-

objective problems and improving overall summarization accuracy. 

The surge of vast electronic texts in the digital age has created a growing need for efficient 

automated text summarization methods to distill essential information succinctly. Current 
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extractive and abstractive approaches often struggle to accurately capture key content while 

maintaining readability and coherence. Moreover, many existing models depend on complex 

linguistic annotations and manual feature engineering, which can hinder scalability and 

adaptability across various text types. By investigating neural network-based methods and 

optimization algorithms, this study tries to address above issues and uplift the effectiveness 

and caliber of single-document summarization. The goal is to create strong frameworks that 

generate excellent summaries without the need for a lot of human input or language resources. 

3. PROPOSED METHOD 

The approach follows a structured workflow designed to generate concise and informative 

summaries effectively. The process begins with text preprocessing, including cleaning, 

tokenization, stop word removal, and lemmatization to standardize the content. In the feature 

extraction phase, words are transformed into vector representations, and sentence relevance is 

ranked using TF-IDF. Additional processing is applied to refine vector features. During 

summary generation, the COA selects the most informative sentences using a fitness function. 

The final summary is then evaluated using metrics such as ROUGE score, BLEU score, 

precision, recall, and F-score. These steps are visually represented in the improved Figure 1. 

 

Fig. 1 Flow Diagram of Single Document Summarization 

3.1. Text pre-processing 

This procedure, which comes before summary, entails transforming the original report into 

a more organized and controllable data format. To summarize individual documents, the DUC 
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2002, DUC 2003, and DUC 2005 databases are utilized. These datasets are widely 

recommended benchmarks in text summarization research. These datasets offer high-quality, 

manually curated summaries that ensure a rigorous evaluation of summarization techniques. 

While modern datasets like Reddit, the New York Times Annotated Corpus, or WikiNow are 

relevant for contemporary challenges, the DUC datasets remain a preferred choice due to their 

structured nature and established use in benchmarking. 

Segmenting sentences, tokenizing words, eliminating stop words, and lemmatizing 

words are important steps in this process. 

Cleaning data: To clean data, first identify and handle missing values by removing or 

imputing them. Next, duplicate entries are removed to ensure data consistency. Finally, 

text data is standardized by converting to lowercase and stripping whitespace. 

Sentence Segmentation: Sentence segmentation entails tokenizing the individual words 

that make up sentences. Punctuation, including commas, semicolons, question marks, 

colons, and periods is used to divide the message into sentences [23]. 

Word Tokenization: Tokenization divides sentence onto words according to grammar 

and blank spaces [23]. 

Stop Word Removal: These are those words that carry little to no significant meaning, 

such as conjunctions, articles, possessive words, pronouns, and relational terms. These 

words, like "is," "and," and "the," can negatively impact the efficiency of processing 

large tokens, making it essential to remove them from text during analysis. After dividing 

the text into paragraphs, these stop words are filtered out to improve the relevance of the 

remaining words [24]. 

Lemmatization: Lemmatization is the process of reducing words to their root words in 

order to lessen their redundancy [25]. 

The basic steps involved in text preprocessing steps are illustrated in figure 2 given below. 

 

Fig. 2 Overview of Text Preprocessing Steps 

3.2. Feature Extraction 

A numerical statistical technique called Term Frequency-Inverse Topic Frequency (TF-

ITF) is applied in NLP applications including data extraction and text mining. It enhances the 

traditional Bag of Words method for converting text into vectors by considering a word's 

significance within a specific document relative to other documents in the corpus. A word's 

TF-ITF score is calculated by multiplying two statistical components. The first, term 

frequency (TF), measures how important a word is within a particular document. The second, 
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inverse topic frequency (ITF), reflects how frequently the word appears across the entire 

corpus. As a result, words that occur frequently in all documents receive lower scores.  The 

TF-ITF output for each document is a high-dimensional sparse vector, where the number of 

non-zero elements correspond to the count of unique words in the text as shown in equn (1), 

(2), and (3) [26]. 

 ( )
     

 .     

frequency of term in the document
TF term

Total no of terms in the document
=  (1) 

 ( )
 .  

log
.       

Total no of topic
ITF term

no of topic with that terms in it
=  (2) 

 ( ) ( ) ( )TF ITF term TF term ITF term− =   (3) 

TF-ITF values range between [0,1] with ten-digit precision. Once these values are 

calculated, the terms are arranged in descending order. Each term is then paired with its 

respective value to create a new word scenario. This arrangement is crucial for analyzing 

the TF-ITF values of individual words, allowing for the examination of previously 

overlooked results. The significance of a phrase is determined by calculating the TF-ITF 

value of each word, and the overall importance of the phrase is derived from the combined 

value of all words, including the action word. The words are then listed chronologically in 

descending order of their importance. The TF-ITF technique follows the traditional TF-IDF 

principles, where word importance is determined based on document frequency. 

Essentially, TF-ITF is conceptually the same as TF-IDF, and we acknowledge that the 

standard term "Inverse Document Frequency (IDF)" should be used for consistency. 

Tf_ITF calculation with one example is shown through the given example. Consider a 

corpus with 5 topics, and a document containing the following words with respective 

frequencies:  

Term Frequency in Document Total Terms in Document Topics Containing Term 

“cancer” 4 100 3 

“scan” 2 100 2 

“deep” 1 100 5 

TF("cancer") =100/4=0.04 

TF("scan") =100/2=0.02 

TF("deep") =100/1=0.01 

ITF("cancer") = log (5/3)=0.22 

ITF("scan") = log (5/2)=0.40 

ITF("deep") = log (5/5)=0.00 

TF_ITF("cancer") = 0.04×0.22=0.0088 

TF_ITF("scan") = 0.02×0.40=0.0080 

TF_ITF("deep") = 0.01×0.00=0.0000 

After computing these values, the terms are ranked in descending order of importance: 

1. "cancer" → 0.0088 

2. "scan" → 0.0080 

3. "deep" → 0.0000 
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3.3. Vectorization 

The phrases are now transformed into vectors in this stage. Each phrase is broken up 
into a list of separate words. Since every word in the collection has a TF-ITF score, it is 
allocated to them. The words' probable vector forms are listed in this list of TF-ITF scores. 
The algorithm then receives these vectors in order to process and produce an outcome [27]. 
In our proposed approach, words are represented using TF-ITF, a numerical statistical 
technique for feature extraction in text processing. Unlike word embeddings, which capture 
semantic relationships between words, TF-ITF focuses on statistical significance by 
determining a word’s importance within a document relative to a corpus. This means our 
method does not rely on contextual similarity or distributional semantics but instead 
emphasizes the frequency-based importance of words. Sentences are then represented as 
vectors of TF-ITF weights, allowing for effective text representation without requiring word 
embeddings. These TF-ITF-based vectors are then used as input for further processing in 
our vectorization stage, where each phrase is broken into separate words and assigned their 
respective TF-ITF scores. The resulting vectors are then optimized using the COA to 
enhance the performance of the model, ensuring effective parameter tuning for improved 
classification accuracy. 

By using the COA to choose hyperparameters such Learning Rate, Batch Size, Dropout 
Rate, and Embedding Dimension optimally, they improve the vectorization. This approach 
ensures efficient and effective parameter tuning. 

3.3.1. Hyper-parameter optimization using Coati Optimization Algorithm (COA) 

Coatis, also called coatimundis, belong to the Procyonidae family's Nasua and Nasuella 
genera, which belong to diurnal animal. Each coati has a long, non-prehensile tail used for 
balance and signalling, black paws, tiny ears, and a slender head with a flexible, elongated, 
somewhat upward-turned nose. The adult coatis can be as long as their body, measuring 
between 33 to 69 cm from top to bottom tip [28]. COATI optimization algorithm is used for 
improving extractive summarization rather than deep learning-based models. Unlike neural 
summarization models, which require large-scale training data and significant computational 
resources, COATI provides an efficient and interpretable optimization technique that 
enhances summarization outcomes without extensive learning-based mechanisms. 

The COATI optimization algorithm is inspired by coatis' natural hunting and escape 
behaviors. During the hunting phase, coatis search for food by exploring various locations, 
which mirrors the algorithm’s global search process—broadly exploring the solution space 
to identify optimal parameters. In the escape phase, coatis swiftly adjust their positions to 
evade predators, resembling the local search phase, where the algorithm fine-tunes its 
parameters for better optimization. By integrating these two strategies, COATI efficiently 
optimizes hyperparameters, enhancing extractive summarization performance. Hyper-
parameter optimization is the process of determining the best mix of vectorization hyper-
parameter settings to optimize performance on data in a reasonable quantity. This process is 
essential to vectorization capacity for precise result prediction. Most of this input text uses the 
hyperparameters' default values. The proposed model optimizes the hyperparameter utilizing 
the COA. The hyperparameter values for learning rate, batch size, and dropout rate are 
selected based on common practices to balance model performance and efficiency. The 

learning rate, typically ranging from  , is chosen to ensure stable convergence; 
too small a value slows learning, while too large a value can lead to instability. Batch sizes of 
16, 32, 64, 128, and 256 are used to balance computational efficiency and generalization, with 
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smaller sizes offering noisy but beneficial gradient updates, and larger sizes providing stable 
gradients but requiring more memory. The dropout rate, ranging from 0.1 to 0.5, helps prevent 
overfitting by randomly deactivating neurons during training, where lower values provide 
minimal regularization and higher values offer stronger regularization to ensure robust 
learning. These ranges are widely used because they offer flexibility in achieving an optimal 
model configuration. 

The COA is used to optimize these hyperparameters. The COA step-by-step procedure is 
explained below. 

Step 1: Initialization: The main idea behind this method is to catch the optimal 
hyperparameter. First, establish the problem's upper and lower boundaries, the variables' 
dimensionality D, the maximum number of iterations, and the Coati size N. LR, BS, DR, and 
ED are among the hyperparameters that make up each solution that the Coati represents. First, a 
selection is made at random. The following equation displays the initial solution format: 

  1 2, ,N NP S S S=  (4) 

Here, PN is the Nth solution or Coati’s position 

  , , ,i i
S LR BS DR ED=  (5) 

Step 2: Fitness calculation: After initialization, each solution's fitness is evaluated 
using the suggested AO2 technique. In this instance, the fitness function is used to define 
the classification accuracy. The most effective solution is one with the topmost fitness 
value. The fitness function is determined with the help of the equation: 

 
TP TN

Fitness Max
TP TN FP FN

+ 
=  

+ + + 
 (6) 

Step 3: Updating using COA: COA utilizes 2 distinct techniques known as the attacking 
and hunting strategy on iguanas and process of escaping from predators. 

Strategy 1: Hunting and attacking strategy on iguana 

Coatis moves around in the search space as a result of this strategy, demonstrating the 

COA's ability to do global research within the problem-solving domain. 

 ( )1 1

, , ,: . ( . )P P

i i j i j j i jS S S r Iguana I S= + −  (7) 

After reaching the floor, the iguana is placed at random around the search area. Coats 
on the ground move in the search space based on this random placement, where N is the 
number of coatis. 

 : .( ), 1,2, ,
j

G G
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The update mechanism accepts the new position that is determined for each coati 
when it raises the value of the target function; otherwise, the coati remains in its original 
location. This update need is intended for i = 1, 2, . . . , N. 
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Here Si
P1 represents the newly calculated location for the ith coati, while Si,j

P1 denotes 

its jth measurement, Fi
P1 is the value of its objective function. The Iguana indicates the 

location of the best performing member in search region, with Iguana representing its jth 

dimension.Iguanaj
G refers to the jth measurement at this randomly chosen position, while 

FIguana
G represents the value of the objective function at this location. 

Strategy 2: The act of running away from a predator 

Because of the maneuvers it has made in this technique, Coatis’position is secure with 

relation to its present position, which implies that the COA can be employed in local 

search. 

 , ,  1,2, ,
j jlocal local

j j

lz lz
lz uz where t T

t t
= = =  (12) 

 ( )2 2

, ,: (1 2 ). .( .( ))P P local local local local
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The newly found and determined position is found to be appropriate if it raises the 

objective function's value. 
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Here Si
P2 is the new position determined by using the second phase of COA for the ith 

coati, Si,j
P2 is the jth dimension, Fi

P2 is the outcome of its objective function,  

Step 4: Termination condition: Until the best hyper-parameter choice is achieved, 

the procedure is repeated. The selected hyperparameter value is applied to the improved 

vectorization. The COA pseudo-code is displayed in the table below. 

 

Fig. 3 Flowchart for COA 



 Improving Extractive Text Summarization via Efficient Coati Algorithm for Single Document 545 

 

The proposed method utilizes a classification-based approach for text summarization, 

where each sentence is classified as either part of the summary or not. This classification 

is performed using a neural network, and to ensure optimal performance, the Coati 

Optimization Algorithm (COA) is employed for hyperparameter tuning. Specifically, 

COA optimizes key hyperparameters such as learning rate, batch size, dropout rate, and 

embedding dimension, which significantly impact the model’s accuracy and efficiency. 

The optimization process begins with the initialization of a population of Coatis, where 

each represents a unique combination of hyperparameters. The fitness of each candidate 

solution is evaluated based on classification accuracy, and the positions of Coatis are 

updated using two strategies: the hunting and attacking strategy for global exploration 

and the escape from predators strategy for local refinement. This iterative process 

continues until the best set of hyperparameters is identified, which is then applied to the 

neural network model. As a result, while COA does not directly perform summarization, 

it plays a crucial role in enhancing the neural network’s ability to accurately classify 

sentences, thereby improving the overall quality of the generated summary. 

4. RESULT AND DISCUSSION 

The findings show that the COA outperforms current optimization algorithms in 

producing succinct and insightful summaries, as evidenced by higher ROUGE and BLEU 

scores. The COA's potential as a potent tool for automatic text summaries is highlighted 

in the debate, which also highlights how well it extracts important information from 

documents while maintaining summary quality. A computer with an Intel (R) Core (TM) 

i5 4570s CPU running at 2.90 GHz, 8GB of RAM, Windows 64-bit, and Python was used 

for the experiments. 

4.1. Dataset Description 

In order to evaluate automated text summarizers, the dataset contains a variety of 

document collections as well as human-generated summaries. Each dataset contains 

single-document summaries with varying file sets (50, 30, and 50 sets, respectively) and 

differing numbers of files per set (12, 20, and 25). The type of documents ranges from 

human-written queries with summaries (DUC 2002), news articles with summaries (DUC 

2003), to queries with five reference summaries (DUC 2005). These datasets are sourced 

from duc.nist.gov or TREC, with summaries containing average word counts of 112, 101, 

and 109, respectively.  

4.2. Evaluation Metrics 

It has chosen many metrics to gauge how well change-proneness prediction models 

are doing. They have selected such as ROUGE score, BLEU score, precision, recall, and 

F-score. The study compares the performance of the COA with existing state-of-the-art 

optimization algorithms such as PSO [29], CSO, GWO [30], Quick Artificial Bee colony 

optimization algorithm (QABC) [31], Modified cat swarm optimization algorithm 

(MCSO), Greedy local optimizer (GLO) [32]. 
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Recall 

Recall is a performance indicator that quantifies the percentage of pertinent 

information that is successfully extracted from the source text in machine learning tasks 

such as text summarization. It is computed as follows equation (15): 

 
TP

recall
TP FN

=
+

 (15) 

Precision 

A performance parameter called precision is used to assess how accurately 

information is obtained in machine learning activities such as text summarization. It is 

computed as follows equation (16): 

 
TP

precision
TP FP

=
+

 (16) 

F1-score 

A statistic called the F1-score is used to assess how well a summarization model 

balances recall and accuracy. The F1-score assigns equal weight to accuracy and recall by 

taking the harmonic mean of these two criteria. It is computed as follows equation (17): 

 
2

1
2

TP
F Score

TP FP FN
− =

+ +
 (17) 

TP signifies the true positive, FP the false positive, TN the true negative, and FN the false 

negative. 

ROUGE 

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) ratings were first 

introduced and have subsequently become widely recognized measures for assessing text 

summarization systems. The degree of overlap between machine-generated and human-

written summaries is used to measure summarization quality in equation (18). 
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

 
 (18) 

BLEU 

The produced summary's word count is measured by BLEU (Bilingual Evaluation 

Understudy) in comparison to a reference summary in equation (19), (20), 
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Figure 4(a) presents ROUGE scores across three metrics—F-Measure, Precision, and 

Recall—highlighting performance for ROUGE-1, ROUGE-2, and ROUGE-L. In the 

chart, F-Measure is represented in blue, Recall in green, and Precision in red. The 

outcomes unequivocally show how effective the suggested method is in comparison to 

alternative strategies. The performance metrics of several methods on the single-

document 2002 dataset are shown in Figure 4(b). The suggested method performs better 

than the others, especially when considering the F1-score of 0.51. All metrics show that 

the PSO and GWO techniques perform poorly. Overall, the proposed approach proves to 

be more effective than the other methods evaluated. 

 

Fig. 4 Single-Document DUC 2002 dataset(a): Rouge-1, Rouge-2, Rouge-L results and 

(b) Evaluation metrics of proposed work with current techniques 

ROUGE-1, ROUGE-2, and ROUGE-L scores for various techniques on the single-

document 2003 dataset are shown in Figure 5(a). 

 

Fig. 5 Single-Document DUC 2003 dataset (a): comparison of proposed approach with 

existing methods using Rouge-1, Rouge-2, Rouge-L metrics (b): Analysis of 

Performance Metrics for Proposed work and Existing methods. 
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In all measures, the suggested technique excels, especially in ROUGE-1. The proposed 

methodology outperforms PSO and CSO in Recall and F-Measure, demonstrating its efficacy. 

Figure 5(b) compares Performance metrics like BLEU score, Precision, Recall, and F1-score 

for the same dataset. The proposed technique again beats alternatives with an F1-score of 

0.78. In comparison, PSO and GWO lag in Precision and Recall. 

 

Fig. 6 Single-Document DUC 2005 dataset (a): Rouge-1, Rouge-2, Rouge-L scores 

between the proposed approach and existing methods. (b) Evaluation of performance 

metrics for the proposed method compared to existing approaches. 

ROUGE-1, ROUGE-2, and ROUGE-L scores for different approaches on the single-

document 2005 dataset are compared in Figure 6(a). The approach with the highest scores 

in all criteria excels in ROUGE-1 and ROUGE-L. The graph also shows Precision, Recall, 

and F-Measure, proving the technique works. The suggested algorithm outperforms PSO and 

CSO in Recall and F-Measure, proving its superiority. Figure 6(b) compares BLEU, 

Precision, Recall, and F1-score for the same dataset. All other methods fail to match the 

proposed method's 0.92 F1-score. PSO and GWO score lower in BLEU and Precision. 

Table 2 compares the suggested model's performance in detail. 

Table 2 Comparative analysis of the proposed model 

Dataset → DUC 

2002 

   DUC 

2003 

   DUC 

2005 

   

Techni 
ques ↓ 

BLEU Preci-
sion 

Re 
call 

F1 
score 

BLEU Preci-
sion 

Re 
call 

F1 
score 

BLEU Preci-
sion 

Re 
call 

F1 
score 

PSO 0.15 0.27 0.54 0.42 0.20 0.28 0.65 0.42 0.15 0.27 0.54 0.42 

CSO 0.19 0.28 0.65 0.40 0.15 0.29 0.67 0.42 0.19 0.28 0.65 0.40 
GWO 0.16 0.25 0.69 0.39 0.19 0.23 0.69 0.39 0.16 0.25 0.69 0.19 

BCO 0.15 0.27 0.76 0.43 0.20 0.25 0.76 0.42 0.15 0.27 0.76 0.43 

MCSO 0.17 0.24 0.80 0.38 0.18 0.24 0.78 0.39 0.17 0.24 0.80 0.38 
GLO 0.19 0.26 0.73 0.41 0.17 0.28 0.77 0.41 0.19 0.26 0.73 0.41 

QABC 0.16 0.23 0.74 0.36 0.16 0.26 0.72 0.38 0.21 0.29 0.71 0.39 

Proposed 0.29 0.35 0.92 0.51 0.22 0.30 0.78 0.41 0.26 0.34 0.91 0.49 

The proposed approach is evaluated against state-of-the-art optimization techniques, 

including PSO, CSO, GWO, BCO, MCSO, GLO, and QABC, using the DUC 2002, 

2003, and 2005 datasets. Performance is assessed based on BLEU, precision, recall, and 

F1 score. The results indicate that our method surpasses existing techniques, particularly 
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in recall, achieving the highest values across all datasets—0.92 for DUC 2002, 0.78 for 

DUC 2003, and 0.91 for DUC 2005—demonstrating its effectiveness in preserving essential 

content. Additionally, it attains the highest BLEU score of 0.29 on DUC 2002, outperforming 

alternative methods, which range between 0.15 and 0.21. The F1 scores are also among the 

highest, peaking at 0.51 on DUC 2002, reflecting a well-balanced trade-off between precision 

and recall. However, while our approach excels in recall and F1 score, methods such as CSO 

and GLO achieve slightly comparable precision values, particularly in DUC 2003. This 

suggests that although our model retrieves a larger proportion of relevant sentences, further 

refinement may help reduce redundancy. Moreover, the computational complexity of COA 

warrants further investigation compared to other optimization techniques. Despite these 

considerations, the findings confirm that the proposed method significantly improves 

summarization performance, positioning it as a competitive alternative to existing state-

of-the-art approaches. 

5. CONCLUSION 

The development of automated text summarization algorithms is crucial for efficiently 

extracting key information from large textual datasets, addressing the challenge of information 

overload in the digital era. This study introduces a systematic approach to single-document 

summarization by transforming words into vector representations and leveraging TF-ITF to 

assess sentence importance. The summarization process is further optimized using the Coati 

Optimization Algorithm (COA), which fine-tunes hyperparameters to enhance sentence 

ranking. Experimental results on benchmark datasets, including DUC 2002, 2003, and 2005, 

demonstrate that the COA-based approach outperforms state-of-the-art optimization 

techniques such as PSO, CSO, GWO, BCO, QABC, MCSO, and GLO, achieving higher 

recall and F-score values. By effectively refining sentence selection and improving 

vectorization, COA contributes to generating more informative and coherent summaries. The 

key contributions of this study include the integration of TF-ITF with COA for enhanced 

sentence ranking, a comprehensive comparative analysis with multiple optimization 

techniques, and the optimization of hyperparameters to improve summarization performance. 

Future work will focus on extending this approach to multi-document summarization and 

exploring deep learning-based hybrid models to further enhance summary quality. 
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