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Abstract. In this paper, the Jacobi elliptic function (JEF) expansion method is applied 

to the system of equations governing nematic liquid crystals with a cubic-quintic 

nonlinearity. Solutions that are first order polynomials of the JEFs for the wave 

function and second order for the angle function are obtained. The solutions impose 

constraints on only two parameters and include a wide range of functions. Both 

solitary and traveling wave solutions are possible, as well as solutions both with and 

without chirp. 
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1. INTRODUCTION 

Nonlinearities in optics are studied perhaps more than most other nonlinear system as 

there is a pressing need to support application in optical communications [1]. In particular, 

nonlinear behavior may be well controlled and defined by different kinds of optical 

materials such as nematic liquid crystals (NLCs) that have been recently produced and 

studied [1, 2]. Nematic liquid crystals are extremely versatile materials with a large range of 

practical uses in modern photonics [1]. They are an important system in nonlinear optics as 

they allow the study of many nonlinear phenomena at low power due to a very large 

nonlinear response via the light-induced reorientation of the NLC molecules [2], in 

particular the study of spatial solitons, which when propagating through NLCs are also 

known as nematicons [3]. The study and modeling of the behavior of nematicons, in 

particular finding the exact solutions describing their form, has numerous potential practical 

applications, such as optical information processing [4], molding of optical waveguides [5], 

beaming and control of the so-called random lasers [6] and many others [7,8].  
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NLCs are generally described by a pair of interconnected nonlinear differential 

equations describing the time evolution of the wave function of light and the angular 

function which describes the tilt of the molecules of the crystal [9]. There are several 

forms of nonlinearity which can occur in the second equation determining the angular 

function. The most common form of nonlinearity studied is the third-order nonlinearity, 

also known as the Kerr nonlinearity [9]. Several papers have produced solutions for the 

NLC system of equations (NLCSOE) with Kerr nonlinearity and basic solitary wave 

solutions have been obtained [10-12]. This paper will focus on the NLCSOE with the so-

called cubic-quintic nonlinearity.  

Cubic quintic nonlinearity is a form of nonlinearity where the third and fifth order 

nonlinearities compete against each other [13]. It has emerged as an important topic of 

study in nonlinear optics due to the possibility of stabilizing solitary wave solutions with 

multiple transverse dimensions due to the competing signs of nonlinearities [14]. Several 

papers have used various techniques, such as the trial equation method [15], the sinh-

Gordon expansion method [16] and others [9, 17-19] to find solutions for the NLCSOE 

with a cubic-quintic nonlinearity, often referred to in the papers as the parabolic law [17].  

Recently, there has been a lot of progress in applying the JEF expansion method to 

find solutions to the Nonlinear Schrodinger equation with various forms of nonlinearity 

[20-22], as well as the Gross-Pitaevskii equation [23-24]. The method has also successfully 

been applied to two-component systems such as the Davey-Stewartson equation [25] and the 

two-component NLSE [26]. The first application of the JEF expansion method on NLCs was 

made in [27] where solutions were found for the NLC system of equations with a third-order 

nonlinearity.  

In this work, we generalize the Jacobi elliptic function (JEF) expansion method that 

was developed in [22] and [27] to find exact solutions to the NLC system of equations 

(NLCSOE) for the cubic-quintic (CQ) nonlinearity. As in [27], we apply the principle of 

harmonic balance to both the wave function and the angular tilt and apply matching 

conditions to obtain the polynomial degrees of these two functions in terms of the JEF. 

These degrees will depend on the degree of the nonlinearity inside the liquid crystal and 

it turns out will differ from the degrees obtained in [27]. 

2. METHOD 

The NLCSOE for the CQ nonlinearity has the general form as follows [9]: 

 0,
2

t xxiu u pu


+ + =  (1) 

 
2 4

1 2 0xxcp lp u u + + + =  (2) 

where u is the wave function, p is the angle function determined by the orientation of 

NLCs, β is the diffraction parameter, χ is the coupling parameter, c and l are parameters 

describing the strength of the non-local response of the NLCs and α1 and α2 are 

parameters determining the strength of the nonlinear response to the propagating light. In 

the special case where the parameter c is equal to 0, the system of equations reduces to 

the standard cubic-quintic NLSE.   
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Following [22], the function u is split into the real and imaginary parts: 

 iBu Ae=  (3) 

where A is the amplitude and B is the phase of the solution. Plugging in the equations and 

splitting the real and imaginary parts we obtain: 

 (2 ) 0
2

t x x xxA A B AB


+ + =  (4) 

 2(2 ) 0
2

t xx xAB A AB AP


− + + + =  (5) 

 2 4

1 2 0xxcp lp A A + + + =  (6) 

We now assume the following forms for A and B: 

 1

1 1( ) ( ) ( ) ( )A f t F f t F −

−= +  (7) 

 ( ) ( )k t x t = +  (8) 

 2( ) ( ) ( ).B a t x b t x e t= + +  (9) 

where F is a Jacobi elliptic function satisfying the following differential equations: 

 
2

2 4 3

0 2 4 2 42
   and   2

dF d F
c c F c F c F c F

d d 
= + + = +  (10) 

where c0, c2 and c4 are coefficients that depend on the choice of the Jacobi elliptic function and 

the so-called JEF parameter M. For F=dn we have c0=M-1, c2=2-M and c4=-1, while for F=sn 

we have c0=1, c2=-(1+M), c4=M. The remaining parameters f1, f-1, k, ω, a, b and e are 

functions of time to be determined. We note that the phase contains the quadratic term a with 

respect to the transverse variable that is known as the chirp [20].  

We now apply the matching principle to find the needed degree of F in p. Since in Eq. 

(7), the highest degree of F is 3 in the term , the matching conditions indicate that the 

degree of AP should also be 3 and, therefore, the angle function p should be a second 

order function of F: 

 
2 2

2 0 2( ) ( ) ( )p g t F g t g t F −

−= + +  (11) 

The terms of odd degree are omitted because they add too many new equations without 

any benefit. It is worth noting that for the ordinary Kerr nonlinearity the matching 

conditions imposed second degree functions in F for both A and p [27]. 

We now plug Eqs. (7-9) and Eq. (11) into Eqs. (4-6) to obtain a polynomial function 

of F. Taking care to equate each coefficient of the polynomial to 0, we obtain a series of 

algebraic and ordinary differential equations: 

 0,   1, 1it if a f i+ = = −  (12) 

 
22 0,ta a + =  (13) 

 2 0,tb ab+ =  (14) 
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 2 0,tk ak+ =  (15) 

 0.t bk + =  (16) 

For the parameter e, we obtain a pair of equations that will have to be equivalent, i.e. 

matched, for the solution to be valid: 

 2 2

0 2 2

1 1
e 0,   1, 1.

2 2
t i i i i i if b f f g f g c f k i   −− − + + + = = −  (17) 

Finally, we obtain several additional constraits between parameters which can be thought 

of as integrability conditions: 

 2

2 2 0,   1, 1,i i i if g c f k i  ++ = = −  (18) 

 4 2

2 2 26 0,   1, 1,i i if cc g k i ++ = = −  (19) 

 
2 3 2

1 2 2 2 24 4 0  1, 1,i i i i if f f cc g k g l i  −+ + + = = −  (20) 

 2 2 2 2

1 1 1 2 1 1 0 2 4 2 02 6 2 2 0.f f f f cc g k cc g k g l − − −+ + + + =  (21) 

We now proceed to solve Eqs (12-21). Solutions to Eqs. (12-16) are obtained using 

standard techniques and are as follows: 

 
1

2
0 ,i if f =  (22) 

 
0 ,a a =  (23) 

 
0 ,b b =  (24) 

 
0 ,k k =  (25) 

 0 0 0
0

,
t

b k dt   = −   (26) 

where 0
0

1

1 2
t

a dt



=

+   is the so-called chirp function [17]. In the absence of chirp, i.e.    

a0 = 0, we have η = 1. 

Without loss of generality, we can now assume f1 ≠ 0. For f-1 = 0, we obtain g-2 = 0 

from Eq. (17) for i = -1. From solving Eqs. (18)-(21), we obtain: 

 
2

4

2 ,
c k

g




−
=  (27) 

 
4

4

2 4

1

6
,

cc k

f





=  (28) 

 
2

24

1 22

1

(4 ),
c k

cc k l
f





= +  (29) 

 
4

0 4

0

2
.

l

cc c k
g




=  (30) 
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For f-1 ≠ 0, from matching the two equations for e in Eq. (17), we obtain: 

 1 2 1 2

1 1

f g f g

f f

− −

−

=  (31) 

and therefore since: 

 
2

4

2 ,
c k

g




−
=  (32) 

 
2

0

2 ,
c k

g



−

−
=  (33) 

we obtain: 

 01

1 4

,   1.
cf

f c

− = =   (34) 

The formula for α2 is the same as in Eq. (28). The remaining formulas are: 

 ( )
2

24

1 2 0 42

1

4 ( 6 ) ,
c k

ck c c c l
f





= − +  (35) 

 
2 2 0

2

0

2

4 4

4

0 0

2
(1 7 ) 4 .

l

cc c
c

k
g c c l

c
k

c





  
= + − −    

  

 (36) 

As can be seen, the solutions impose constraints on only two parameters,  and , 

while the remaining parameters β, χ, c and l, are completely arbitrary. This allows for a 

wide range of flexibility in constructing our solutions. Finally, the formulas for e in both 

cases will be complicated and dependent on the form of β, χ, c and l chosen. 

3. RESULTS 

We now present the solutions we obtained with this method. We will first select F=dn 

for our Jacobi elliptic function. This function is convenient because the reciprocal 

function F=nd doesn’t contain singularities, thus allowing us to obtain novel nonsingular 

solutions for non-zero ϵ.  

In Fig. 1a we see a standard bright solitary wave solution. The position can be altered by 

changing ω0 and the extent of oscillations can be controlled by changing b0. We see in Fig. 

1c that the NLC acts as a wave guide for the signal. In Figs 1b and d we see the effects of 

the chirp function. The chirp function will deform the solution in the transverse direction 

and introduce oscillations in the amplitude. Solitary waves with such oscillations in 

amplitude are often called breathers. Since c0=0 for M=1, from Eq. (34) we have f-1=0 and 

therefore we do not have any solutions for M=1 which combine F=dn and F=nd. 
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Fig. 1 Bright solitary wave solutions to the NLCSOE as a function of k0x and t for F=dn, β(t) 

= β0cos(Ωt) and M=1. Graphs (a), (b) depict the square of the angle function |u|2 and 

graphs (c), (d) depict the angle function p. The values of the parameters are:                    

β0 = Ω = k0 = b0 = f10 = l = c = χ = 1, ω0 = e0 = ϵ = 0 and (a),(c): a0 = 0, (b),(d): a0 = 0.2. 

     

     

Fig. 2 Traveling wave solutions to the NLCSOE as a function of k0x and t for M=0.9,     
a0 = 0. Graphs (a), (b), (c) depict the square of the angle function |u|2 and graphs 
(d), (e), (f) depict the angle function p. We have for (a),(d): ϵ = 0, , (b),(e): ϵ=1, 
(c),(f): ϵ=-1. All the other parameters are the same as in Fig. 1. 
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In Fig. 2, we see the periodic, so-called traveling wave, solutions to the NLCSOE. For 

M<1, the JEF no longer produces a solitary wave but a periodic wave structure. We see 

that both the wave and the angle functions (Figs 2a and 2d) become periodic in the 

transverse direction. In Figs 2b, c, e and f we see the effects of a non-zero value of ϵ. We 

see that the overall effect of combining F=dn and F=nd is to double the periodicity of the 

solutions. The variation of the angle functions also becomes more prominent in the 

longitudinal direction. Solutions in Fig 2b and Fig 2c are qualitatively alike except for the 

shift in the overall background amplitude due to the sign of ϵ. The forms of the angle 

function p are, however, far more complicated and the two solutions in Fig 2e and Fig 2f 

are quite different from each other. 

     

     

Fig. 3 Traveling wave solutions to the NLCSOE with chirp as a function of k0x and t for 

M=0.9, a0 = 0.2. All the other parameters are the same as in Fig. 2. 

In Fig. 3 we see the effects of chirp on the traveling wave solutions. The wave fronts 

in Figs 3a, b and c are stretched out in the transverse direction and no longer periodic. 

The more one deviates from an equilibrium point which is near the axis, the more 

extreme the stretching of the wave front. We also note that the solutions in Fig 3b and Fig 

3c are no longer qualitatively alike due to the disruption of symmetry caused by the chirp 

function. In Fig 3d we see the effect of chirp on the angle function. One can clearly see the 

orientation of the wave crests change with the change in the transverse variable. This is less 

noticeable in Figs 3e and f where there is a strong background component coming from g0. 

Finally, in Fig 4, we see the dark soliton solutions to the NLCSOE where we have 

used the JEF F=sn. The standard dark solitary wave solution is shown in Fig 4a. We note 

the periodic structure of the angle function in Fig 4b in the presence of the background 

with almost a small deviation from it that produces the dark solitary wave. In Fig 4b we 

see that the background of the solution is affected by the chirp. There is a similar effect 

on the angle function in Fig 4d of pushing the wave to one side as in Figs 3d, e and f. 

Lastly, we see an example of the traveling wave solution for the dark solitary wave in 
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Figs 4c and f. We see, unlike F=dn in Fig 2a, that F=sn reaches 0 and therefore including 

non-zero ϵ would produce singularities. We see the structure in Fig 2d that produced a 

dark solitary wave now repeated periodically in Fig 2f. 

     

     

Fig. 4 Dark solitary wave solutions to the NLCSOE as a function of k0x and t for F=sn. 

All the other parameters for (a), (b), (d), (e) are respectively the same as in Fig. 

1(a), (b), (c) and (d). All the other parameters for (c) and (f) are respectively the 

same as in Fig 2(a) and (d). 

4. DISCUSSION 

We now compare the presently obtained results with the previous results obtained in 

other papers. In [9], the authors apply a simple ansatz to obtain the basic A=sech solution 

for the amplitude corresponding to the bright solitary wave for M=1. In [16], the sinh-

Gordon expansion method is applied and various forms of hyperbolic trigonometric 

functions are obtained for the wave function, although it has to be mentioned that the 

form for the angle function is not necessarily related to the wave function. In [17], the 

exp(-φ) method is applied and a couple of solutions are obtained, usually in the form of a 

fraction with a complicated denominator. In [18], the so-called simple equation method is 

applied. Solutions for the amplitude of the form tanh and coth are obtained as well as 

various ratios of exponential functions. In [19], two solutions are obtained based on the 

F=tan and the F=tanh function.  

In [28], the Lie point symmetry method is applied to the dual-power law nonlinearity 

which reduces to the cubic-quintic nonlinearity for n=1 and several solutions related to 

the csch, sec and cos functions are obtained. In [29], the W-shaped solutions, which occur 

in the case of Kerr nonlinearity [27], are studied using the general exponential rational 

function method and some solutions for the case of the parabolic nonlinearity are 

obtained. The exponential rational functions that are used to construct both the wave and 

angle functions are ratios of either exponential or trigonometric functions. In [30], the 
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Kudryashov’s approach and the tanh–coth technique are used to construct solutions for 

various nonlinearities, including parabolic nonlinearity. Finally, in [15] large classes of 

solutions are obtained although typically they also involve complicated expressions in the 

denominator, usually some form of a function plus constant terms. Several solutions 

involving hyperbolic trigonometric functions are obtained and there is even one mention 

of the Jacobi sn function squared, albeit in one such denominator.  

There are several advantages to the methods in this paper. First, the method is 

conceptually simple and doesn’t require many complicated parameters like in the other 

approaches. Second, the method works for arbitrary functions of β, χ, c, l, α1 and α2 with 

respect to time, whereas the previous papers treat these functions as constant parameters. 

This allows greater flexibility in the study of various NLC systems, especially those that 

employ dispersion management. We note that our method is completely applicable to the 

case where β, χ, c, l, α1 and α2 are arbitrary constants in the case of no chirp. The only 

difference in this case is that constraints are then imposed on k and f1 via Eqs (28)-(29). 

Third, the JEFs are extremely flexible functions, containing both solitary and periodic 

waves. By varying the choice of the JEF and the parameter M, many different qualitative 

forms of solutions can be obtained. Finally, no previous paper covers solutions with 

chirp, which is an important phenomenon in understanding pulse propagation.  

Here we will briefly discuss the limitations of the method. First, the method is limited 

by the forms of functions that satisfy Eq. (10). The functions satisfying (10) either have a 

solitary wave or are periodic. Modeling multiple, but finite, number of waves is difficult 

with this method. Second, as mentioned before, the method is not applicable for a 

completely arbitrary set of parameters, but does have two constraints. Finally, the form of 

the free parameter e in the phase is complicated and needs to be calculated for each set of 

functions individually because the form of the differential equations in (17) will greatly 

differ based on the forms of β, χ, c and l. Nevertheless, for most practical applications 

only the amplitude of u is needed. 

5. CONCLUSION 

We applied the Jacobi elliptic function expansion method to the NLC system of 

equations with a cubic quintic nonlinearity and obtained abundant classes of solutions to 

the system. Both solitary and traveling wave solutions were obtained, as well as solutions 

that contain chirp. In particular, the second derivative of the angle function allowed the 

wave function to have a better match with the degree of nonlinearity in the system. In 

addition, the fact that there are only two constraints in the system, allow systems of NLCs 

to be flexibly tuned to allow the propagation of the wave function through them. This 

could potentially have many applications in the fields of photonics and nonlinear optics.  

There are many potential systems to which this method can further be applied, including 

two-component NLC systems and NLC systems with different forms of nonlinearity, 

especially the so-called septic (seventh order) nonlinearity. 
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