
FACTA UNIVERSITATIS  

Series: Electronics and Energetics Vol. 27, No 3, September 2014, pp. 411 - 424 

DOI: 10.2298/FUEE1403411D 

IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS 

BASED AI CONCEPTS TO THE SMART GRID  

Marko Dimitrijević, Miona Andrejević Stošović, Jelena Milojković, 

Vančo Litovski  

Faculty of Electronic Engineering, University of Niš, Serbia  

Abstract. ICT and energy are two economic domains that became among the most 

influential to the growth of modern society. These, in the same time, due to exploitation 

of natural resources and producing unwanted effects to the environment, represent a 

kind of menace to the eco system and the human future. Implementation of measures to 

mitigate these unwanted effects established a new paradigm of production and 

distribution of electrical energy named smart grid. It relies on many novelties that 

improve the production, distribution and consumption of electricity among which one 

of the most important is the ICT. Among the ICT concepts implemented in modern smart 

grid one recognizes the artificial intelligence and, specifically the artificial neural 

network. Here, after reviewing the subject and setting the case, we are reporting some of 

our newest results aiming at broadening the set of tools being offered by ICT to the smart 

grid. We will describe our result in prediction of electricity demand and characterization 

of new threats to the security of the ICT that may use the grid as a carrier of the attack. 

We will use artificial neural networks (ANNs) as a tool in both subjects. 
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1. INTRODUCTION 

In our recent studies we addressed the problem of interaction of the ICT and energy 

sector including the specific interrelation through the subject of security [1, 2]. Most of 

the claims reported were later on confirmed in the literature as, for example, in [3, 4, 5, 

6]. It is our intention here to report on some aspects of these interrelations and, via some 

new case studies, to demonstrate how much the modern energy distribution system may 

be supported by ICT. In particular, we intend to emphasize the potential role of the 

artificial intelligence in improving the implementation of the new emerging concepts of 

production, consumption and distribution of electricity. 

The ICT industry plays a vital role in the global economy and is a major driver of 

growth and development [3]. Several of the most transformative economic trends (e.g., 

social media, big data, multi-channel retail, etc.) involve the use of ICT.  
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In addition to its positive implications for economic growth, ICT‟s greenhouse gasses 

(GHG) abatement potential must also be considered [3]. The ICT industry accounted for 

1.9% of total global GHG emissions in 2011, which is significantly less than its overall 

contribution to GDP. Nonetheless, this is a significant amount of emissions that the 

industry must address, especially as we expect even faster adoption of ICT in the future. 

However, in the last several years there have been promising strides toward decreasing 

the growth rate of ICT emissions. 

Early on, sustainable ICT focused on green ICT initiatives that minimize the ecological 

impact of the development, management, use, and disposal of computing resources. That is 

named the first wave of sustainable ICT [7]. Green ICT tends to be product-oriented and 

mostly focused on reducing energy costs and carbon emissions for data centres and desktops. 

Several studies were reported on the energy footprint of computers and data centres [8, 9, 

10]. As concerns about ICT‟s impact on the environment have risen, these issues have 

become limiting factors in determining the feasibility of deploying new ICT systems, even 

though processing power is widely available and affordable.  

On the other side the electric power sector went through revolutionary transformations 

that include deregulation, use of alternative energy sources, and introduction of ICT. At 

the distribution level, the new requirements call for the development of: 

 distribution grids accessible to distributed generation (DG) and renewable energy 

sources (RESs), either self-dispatched or dispatched by local distribution system 

operators, 

 distribution grids enabling local energy demand management interacting with the 

users through smart metering systems, and  

 distribution grids that benefit transmission dynamic control techniques and overall 

level of power security, quality, reliability, and availability. 

The key technology supposed to fulfil these requirements today is named smart grid. 

Smart grids and smart power systems in the energy sector can have major impacts on 

improving energy distribution and optimizing energy usage [11].  

Defining the smart grid in a concise way is not an easy task as the concept is relatively 

new and as various alternative components build up a smart grid. Some authors even 

argue that it is “too hard” to define the concept [12]. Looking at different definitions 

reveals that the smart grid has been defined in different ways by different organizations 

and authors. Here is one of them: “A „smart grid‟ is a set of software and hardware tools 

that enable generators to route power more efficiently, reducing the need for excess 

capacity and allowing two-way, real time information exchange with their customers for 

real time demand side management (DSM). It improves efficiency, energy monitoring and 

data capture across the power generation and transmission and distribution network [13]”. 

The need of implementation of AI within the smart grid was recognized by the 

professional and scientific community [5,14]. For example, the work in [15] surveys some 

of the most relevant applications of ANN techniques to the field of energy systems. These 

applications range from a wide variety of purposes such as, modeling solar energy heat-up 

response [16], prediction of the global solar irradiance [17], adaptive critic design [18], or 

even for security issues as reviewed in [19]. The idea behind these applications is based on 

learning how system performances can be related to certain input values, for instance, how 

weather conditions (solar or wind) determine the energy output that can be expected [20].  

In the past decades ANNs have emerged as a technology with a great promise for 

identifying and modeling data patterns that are not easily discernible by traditional 
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methods. A comprehensive review of ANN use in forecasting may be found in [21]. 

Among the many successful implementations we may mention [22, 23, 24]. 

Applications of ANNs for security purposes were discussed in [5, 6]. 

Putting all together, at this moment, one may state that the AI concepts and especially 

ANNs may be implemented in the following aspects of the life of modern distributed 

energy resources.   

 Various forecasting tasks, like renewable energy forecasting, storage forecasting and 

demand forecasting, that need intelligent rules. We will address this issue later on. 

 Protection. Being by nature fault tolerant, the ANNs are most likely a very good 

means for localizing the faults within a micro grid and in the same time to be 

capable to isolate it in case of a fault in the main grid. 

 Intelligent diagnosis of equipment in micro grid. ANNs are a better option for 

diagnosing faults in electrical equipment for the following reasons: 

 They can interpolate from previous learning and give a more accurate response 

to unseen data, making them better at handling uncertainty. 

 They are fault tolerant, so they handle corrupt or missing data more effectively. 

 They are good non-linear function approximators by nature, making them 

better at equipment diagnostics. 

 They are more suitable for extracting the relationship between input and output 

in fault detection and diagnosis applications. 

 Demand side management. It appears that demand-side management technologies 

that simply rely on reacting to control or price signals will not be enough. Rather, 

what is necessary are more sophisticated approaches that are truly adaptive to the 

state of the grid, that are able to learn the correct response given any particular 

situation, and that can look ahead and predict both supply and demand trends in 

the near future, in order to prepare for future reductions in available supply, or to 

make the most effective use of supply when it is available. 

 Intelligent data processing including data-mining. The main challenge to be 

tackled in the smart grid comes from the vast amount of information involved in it. 

In contrast to traditional grids, in which the consumption metering information was 

only retrieved monthly, smart grids present a new scenario in which all the 

interconnected nodes are gathering information about many different matters, and not 

only consumption (i.e. real-time prices, peak loads, network status, power quality 

issues, etc.) [25]. In this sense, one of the main challenges for computational 

intelligence is how to intelligently manage such an amount of information so that 

conclusions and inferences can be drawn to support the decision making process.  

 Security. Here we see the grid as a highly interconnected vulnerable communication 

network being exposed to all kinds of malicious cyber attacks such as eavesdropping, 

tempering and even jeopardizing the physical structure of the system. 

The two case studies we are reporting here are interrelated by the fact that they both 

use artificial neural networks to improve the performance of the grid since the one 

(prediction) may be seen as a base for protection of the grid from overload while the 

second is related to profiling the loads connected to the grid and protect them of misuse. 

In addition, both solutions rely on the measured data generated by modern metering 

systems [AMI/AMR][26, 27]. 

The paper is organized as follows. In the second paragraph we will give a brief review 

on the ANNs and the structures we are using for interpolation and extrapolation. Then, in 
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the third paragraph the implementation of ANNs in load prediction related to next day 

peak-load forecasting will be given. Note, the method implemented here is genera in the 

sense that we have application to other types of load prediction such as short, medium, 

and long term. The implementation of the very same ANN structures to the new 

eavesdropping method related to the profiling of the loads (in this case a computer) to 

grid, will be described in the fourth paragraph.  
 

2.  A SHORT REVIEW OF THE METHODS OF ANN IMPLEMENTATION 
 

We will first briefly introduce the feed-forward neural networks that will be used as a 

basic structure for prediction throughout this paper. 
 

 

Fig. 1 A fully connected feed-forward ANN 

 

The network is depicted in Fig. 1. It has only one hidden layer, which has been proven 

sufficient for this kind of problem [28]. Indices: in, h, and o, in this figure, stand for input, 

hidden, and output, respectively. For the set of weights, w(k, l), connecting the input and 

the hidden layer we have: k=1,2,..., min, l=1,2,..., mh, while for the set connecting the hidden 

and output layer we have: k=1,2,...mh, l=1,2,..., mo. The threshold is here denoted as θx,r, 

r=1,2,..., mh or mo, with x standing for h or o, depending on the layer. The neurons in the 

input layer are simply distributing the signals, while those in the hidden layer are 

activated by a sigmoidal (logistic) function. Finally, the neurons in the output layer are 

activated by a linear function. The learning algorithm used for training is a version of the 

steepest-descent minimization algorithm [29]. The initialization problem was solved 

according to literature [30]. The number of hidden neurons, mh, is of main concern. To get it 

we applied a procedure that is based on proceedings given in literature [28, 31, 32].  

For prediction purposes we developed two structures [33]. The first one was named 

Time controlled recurrent (TCR). It is depicted in Fig. 2. The second was named Feed-

forward accommodated for prediction (FFAP). Its structure is depicted in Fig. 3. Later on, 

these two structures were further elaborated as discussed in the succeeding paragraph. It is 

worth mentioning that, in our opinion, for deterministic forecasting one always needs at 

least two predictions being supportive to each other. Since no knowledge of the forecasting 

outcome is available, the second prediction is only means to corroborate the first one. 

Having in mind, however, that both predictions carry the same uncertainty, we decided for 

the best final prediction to accept the average of the two. 
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Fig. 2 Time controlled recurrent (TCR) ANN 

 

 

Fig. 3 The feed-forward accommodated for prediction (FFAP) structure 

3. PREDICTION OF PEAK-LOAD AT SUBURBAN LEVEL 

Electric load prediction is essential for power generation and operation [34]. It is vital 

in many aspects such as providing price effective generation, system security, and planning. 

Among others, it enables: scheduling fuel purchases, scheduling power generation, planning 

of energy transactions, and assessment of system safety [35]. The load forecast errors imply 

high extra costs: if the load is underestimated one has extra costs caused by the damages 

due to lack of energy or by overloading system elements; if the load is overestimated, the 

network investment costs overtake the real needs, and the fuel stocks are overvalued, 

locking up capital investment. In a smart grid context, prediction allows for developing 

computationally efficient learning algorithms that can accurately predict both the prosumers‟ 

(produce/consumer) consumption and generation profiles (instead of only the usage 

profile for a consumer) as well as the price of electricity in real time in order to inform 

profitable trading decisions. Given this, a number of researchers have suggested that more 

sophisticated tariffs, such as real-time pricing (RTP) or spot pricing (where the price per 

kWh of electricity consumed is different for each half-hour and is provided to the consumer a 

day, or a few hours, ahead of time), in conjunction with more sophisticated „agents‟ that 

can autonomously respond to these price signals, would avoid this [36].  

Consequently, the quality of load forecasts has greatly influenced the economic planning 

in areas such as generation capacity, purchasing fuel, assessing system‟s security, maintenance 

scheduling, and energy transmission [37].  
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The power load value is determined by several environmental and social factors. Seasonal 

and daily profiles are the most apparent influential. Temperature and air humidity are the 

primary parameters determining the energy consumption generally and especially in urban 

residential areas. Working times, holidays, and weekends are characterized by specific load 

profile. Environmental disasters, sudden increase of large loads or outages, and important social 

events are further complicating the load-time function. All together, the load curve is a 

nonlinear function of many variables that map themselves into it in an unknown way.  

In the next, our newest results in the application of artificial neural networks (ANNs) 

for prediction of daily peak loads at suburban level will be presented. 

3.1. Problem formulation 

We took data for the implementation of our method from the UNITE 1999 competition 

file [38]. The task was: given the peak values for the previous days, predict the peak-load 

value for the next day.  

According to studies of the behaviour of the consumers, in general, one may expect 

the peak-value to happen at about 19.00 hours. There are some exceptions but these are 

not influencing the general method we implement. When speaking about the very peak-

value one may recognize a regular periodicity with, unfortunately, some exceptions. Fig. 4 

represents the daily peak-value for one month (April 1997) extracted from [38]. Note the 

difficulty to recognize the periodicity of the phenomenon. 

 

Fig. 4 The daily peak-value for one month (April 1997) extracted from [38] 

The problem may be stated as follows. Given the series (tk, f(tk)), k=1,2, ....n , where tk, 

is the time instant – namely day in the calendar, f(tk) the peak-value at that day, and k the 

counter, the last known peak-value is at the n-th day. Our task is to predict the peak-value 

at the (n+1)st day.  

For the purpose of prediction in the subject of electricity we developed two ANN 

structures named ETCR and EFFAP [39] which we implement simultaneously. The idea 

is the following: when predicting one is making a step into the dark. If one wants to have 

any confidence in the prediction one has to have at least two predictions that support each 

other. Then, since both are of equal importance, instead of accepting one of them the 

average is calculated and stated as final result. We will give some rudimentary description 

of ETCR and EFFAP ANNs in the next. 
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For the verification of the method we undertook the task to predict the daily peak-

values in May 1997 and to compare with the data given by the UNITE 1999 competition. 

3.2. The ETCR solution 

The ETCR ANN structure tailored for the application at hand is depicted in Fig. 5. 

The name stands for Extended Time Controlled Recurrent. It is a recurrent ANN with two 

feed-back loops. The first one is feeding back the peak-values of the most recent days 

while the second is feeding back the peak values from two previous weeks but of the same 

day in the week as the one to be predicted. In this way we implement two principles. First, 

we claim that only the most recent values have influence to the current value and there is 

no need for a huge amount of useless data. Second, one has to exploit the pseudo-periodic 

behaviour of the consumers since same days in the week have similar load profile. The 

ETCR is supposed to approximate the function: 

 1 2 3 4 7 14( , , , , , , )i i i i i iiy f i y y y y y y       (1) 

where the samples are the daily-peak values. When progressing in time i will raise its 

value by one. 

  

Fig. 5 ETCR: Extended time controlled 

recurrent according to (1) 

Fig. 6 The Extended feed forward 

accommodated for prediction (EFFAP) 

according to (2) 

As for the first test of the method we predicted the peak-value for April 30. 1997 what 

according to the UNITE 1999 was 609 kW. The resulting ANN had 7 input terminals, 2 

output terminals, and 5 neurons in the hidden layer. After bringing a proper excitation we 

got as a prediction y={625.3241}, what is depicted in Table 1. 

3.3. The EFFAP solution 

The EFFAP ANN tailored for the application at hand is depicted in Fig. 6. The name 

stands for Extended Feed Forward Accommodated for Prediction. It is a feed forward 

ANN with three inputs one of them being the time i, while the rest are the peak-values 

from the previous weeks. There are five outputs each of them supposed to learn the same 
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function but shifted in time for one day. The following set of functions approximates the 

phenomenon: 

 1 2 3 6 131{ , , , , ,} ( , , )i i i i i iiy y y y y i y y      f . (2) 

Of course, this network is approximating the very same function as the ETCR does but 

in a different manner. 

As a result for April 30
th

 1997, the EFFAP ANN obtained after training had 3 input 

neurons, 5 output neurons, and 5 neurons in the hidden layer. After proper excitation the 

following prediction was obtained y= {653.2675}. The result is again depicted in Table 1. 

 

Table 1 Prediction of the peak-value consumption at April 30
th

 1997 of the UNITE data 

No. 
Expected 

value 
ETCR % EFFAP % 

Average 

value of the 

prediction 

% 

Number of 

hidden neurons 

ETCR EFFAP 

1 609 625.3241 2.68 653.2675 7.27 639.2958 4.975 5 5 

 

3.4. Overall solution 

As stated above, the final solution to the prediction problem in our method is obtained 

by averaging the ETCR and the EFFAP predictions. It is shown in Table 1, too. It is 

encouraging. 

To get a complete picture about the capabilities of the method we made a prediction 

for every day in May 1997. Our first partial results were published in [40] while here we 

are giving complete results for the whole month as shown in Fig. 4. These allow for real 

evaluation of the properties of the method.  

By inspection of Fig. 7 we conclude that the method proposed may be implemented for 

prediction of the peak-load at suburban level. The largest discrepancies between the actual 

and the predicted values are lower than 17% even in the worst case. In 22 out of 30 days the 

error was lower than 10%, while in 12 out of 30 days the error was lower than 5%. 

 

Fig. 7 Error of prediction (y-axis) as a function of the day in the month May 1997 (x-axis) 
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4. A VERY SPECIFIC VIEW TO THE SECURITY 

Within the research of the behaviour of computers from the power consumption point 

of view [10], different software packages were implemented in order to create the energy 

profile of the computer under different “loading” conditions. We noticed, however, that 

not only the power consumed, but the THD was dependent on the application running 

within the PC. So, Table 2 contains all harmonics generated by one personal computer 

(DELL Optiplex 980, Intel Core i7 CPU @ 2.8GHz, 4GB RAM, 500GB HDD) under different 

working conditions. Approximately 50 harmonics were observed in a sample (200ms, 

10000 samples) of a grid current. Since even harmonics have incomparably smaller values 

than the odd ones, in Table 2 only the DC, the main, and the odd harmonics are presented. 

Fig. 8. illustrates two columns of Table 2. 

Table 2. Odd harmonics extracted from one string measurement  

in eight different states of the workstation 

Harm. 

No. 

Off  

 

 

(1) 

Idle  

 

 

(2) 

Video  

 

 

(3) 

CPU 

Arithmetic  

 

(4) 

GPU 

Rendering  

 

(5) 

Multi-

Media 

CPU  

(6) 

Physical 

Disks  

 

(7) 

File 

System 

Benchmark 

(8) 

DC -0.55 -0.84 1.3 -0.52 -0.68 -1.3 -0.23 -0.51 

1 89.7 400.26 475.4 785.73 747.73 394.33 381.54 411.72 

3 3.05 47.9 54.03 34.6 35.84 47.79 48.05 47.73 

5 8.55 23.18 23.52 28.7 28.42 22.83 23.53 24.14 

7 8.94 11.41 12.3 17.43 16.77 9.74 6.96 9.61 

9 3.08 9.19 7.7 10.12 9.26 9.17 8.63 9.5 

11 8.76 6.17 7.24 12.27 11.13 6.12 5.36 5.53 

13 2.77 1.4 1.73 6.01 5.81 1.99 2.49 2.96 

15 6.28 9.81 12.19 5.98 6.84 9.32 9.94 8.92 

17 4.81 3.66 5.1 8.91 9.9 5.6 3.76 3.71 

19 0.69 4.16 5.05 5.74 5.68 3.3 5.75 7.31 

21 0.92 7.39 6.52 4.89 5.12 6.65 5.55 5.29 

23 0.62 5.17 7.15 6.06 7.19 5.55 4.56 4.3 

25 0.53 4.12 6.2 5.86 4.63 4.6 5.2 4.76 

27 0.94 5.18 8.31 2.29 1.28 4.2 3.07 6.35 

29 0.62 6.61 6.35 2.94 4.3 5.85 4.93 6.26 

31 0.54 4.89 3.64 2.54 3.61 4.98 3.96 5.16 

33 1.08 7.58 5.23 4.48 3.67 7.84 8.2 7.34 

35 0.47 3.98 2.72 1.71 1.59 4.27 4.17 2.94 

37 0.45 2.61 2.09 0.51 0.93 2.98 3.19 2.2 

39 0.58 3.9 2.83 2.94 3.55 3.97 4.7 2.81 

41 0.54 1.29 0.97 1.26 0.56 1.54 0.96 1.11 

43 0.24 1.28 0.46 1.24 0.67 1.39 1.24 1.82 

45 0.27 1.91 0.85 1.44 1.79 2.2 1.93 1.77 

47 0.39 0.94 0.98 0.34 0.48 0.55 0.9 1.03 

49 0.21 0.36 0.53 1.95 1.78 0.7 1.34 0.95 
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Fig. 8 Measured odd harmonics in two cases: physical disc drive active and CPU loaded 

by arithmetic computations. The first harmonic is omitted for convenience 

Question is: What would this table have to do with security? 

There are many security issues related to the grid. Among them the most vulnerable 

subsystem, looking from the ICT point of view, is the advanced metering infrastructure 

(AMI). While it could bring significant benefits, it is potentially subject to security violations 

such as tampering with software in the meters, eavesdropping on its communication links, or 

abusing the copious amount of private data the new meters are able to collect. In addition to 

securing market sensitive data from competitors, information systems for the power grid 

need to defend against to malicious attacks [41] that intend to harm the power grid as a 

whole. The more comprehensive an information system becomes, the greater the consequences 

of a successful attack and thus the need for security measures increases. 

One of the ways of eavesdropping a home, an office, or a company is monitoring the 

power consumption and creating an energy profile of the subject [42]. Having this information 

a large number of malicious actions can be undertaken such as burglaries and other damaging 

security breaches. Here we expose an additional way of eavesdropping where the harmonic 

structure of the current drawn from the grid is base for information on the activities within 

a home or an office. The problem will be illustrated on the example depicted in Table 2. 

Here the PC is taking the role of the whole which is supervised. We will show in the next 

how one can precisely find the state in which the computer is, based on measurements of the 

supply current taken by its AC/DC converter from the grid. Note, in the example depicted in 

Table 2, power factor correction was applied within the converter. 

While there are several possibilities that allow information to be extracted from Table 

2 about the state in which the computer is, here we will use ANNs. 

An ANN was trained to create a response recognizing which one of the sets of harmonics 

of Table 2 is present at its input. Its structure is depicted in Fig. 9. To simplify, for the proper 

vector of harmonics, the corresponding output of the ANN was forced to unity while the rest 

of the outputs were kept at zero. In other words, it was trained to recognize which software 

was running within the computer. Full success was achieved meaning, after training, the 

ANN was classifying perfectly. 
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Fig. 9 Artificial neural network that eavesdrops the personal computer based on 

information on harmonics in its mains current 

To make the problem harder, i.e. to introduce the possible variations due measurement 

errors, we transformed Table 2 so that every entry was recalculated by the formula 

 [1 (2 1) 0.025]newx x rnd      , (3) 

where rnd is a pseudo-random number with uniform distribution within the [0,1] segment. 

In other words a “noise” of amplitude (peak-to-peak) as large as 5% of the harmonic 

value was added as “measurement disturbance”. Again, as can be seen from Table 3, 

excellent classification was obtained.  

Table 3 Responses of the ANN to noisy input data 

ANN‟s 

Output→ 

Input 

vector↓ 

Off Idle Video CPU 

Arithmetic 

GPU 

Rendering 

Multi-

Media CPU 

Physical 

Disks 

File 

System 

Benchmark 

(1) 0.94189 -0.00826428 -4.98446e-05 0.0596502 0.00545632 -2.68923e-05 0.00254522 0.00128351 

1 0 0 0 0 0 0 0 

(2) -0.100789 0.936809 -6.30066e-05 0.107029 -0.00390563 -4.56815e-05 0.0353001 0.0301201 

0 1 0 0 0 0 0 0 

(3) 0.0747284 -0.0347075 1.00742 -0.0946782 0.0368009 6.60139e-06 0.0172143 -0.00950488 

0 0 1 0 0 0 0 0 

(4) 0.0530374 -0.00513355 -3.01133e-05 0.94394 0.00599003 4.07148e-06 -0.00314594 0.0039932 

0 0 0 1 0 0 0 0 

(5) -0.0714551 0.141341 0.000249561 0.347383 0.694706 2.93044e-05 -0.0165517 -0.0935344 

0 0 0 0 1 0 0 0 

(6) -0.0390391 -0.068559 -2.64327e-05 0.0464038 -0.0182126 0.994595 0.0357881 0.0513166 

0 0 0 0 0 1 0 0 

(7) 0.0221675 -0.0245939 -7.75624e-06 -0.0287134 0.0235965 -8.00252e-07 1.01758 -0.010466 

0 0 0 0 0 0 1 0 

(8) 0.0524894 -0.0178626 -6.26366e-05 -0.0587603 0.0177179 1.40437e-06 0.00103932 1.00386 

0 0 0 0 0 0 0 1 
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Finally, eight new sets of “harmonics” were created artificially by permutations within 

the rows in Table 2 and the newly created columns were used as excitation to the ANN. 

None succeeded to deceive the network.  

To conclude, there are robust classification mechanisms whose implementation may 

give to a malicious attacker, having a sophisticated tool based on current monitoring, an 

opportunity to monitor every activity within a computer and, in general, a data centre or 

similar. Note, the spectrum of a current taken by a household is not much more 

complicated than the one of the computer since the main consumers in the household are 

linear loads and do not generate additional harmonics. From that point of view, we 

consider our method applicable to a broader list of situations then just a computer. 

5. CONCLUSION 

The modern electricity distribution system gradually evolves into a very large and 

very complex structure in which ICT is getting more and more important role. It is 

nowadays most frequently referred to as smart grid. There is almost unlimited number of 

possible applications of ICT subsystems within the smart grid and one is not to say that 

smart grid is a fixed structure whose capabilities are finally set. A special offer of the ICT 

to the smart grid is artificial intelligence and particularly the artificial neural networks. 

Here we represent our attempts to contribute to the development of the smart grid toward 

an advanced, reliable and secure system. The case studies reported are part of the same 

project since the same methodology is implemented and they are considering two 

important and interrelated aspects: the profiling of the load and the protection of the grid.  

In particular, we discussed some of the most recent results produced within the 

Laboratory for Electronic Design Automation at the University of Niš, Serbia, which are 

related to load prediction at suburban level, and a new way of cyber-attack to the ICT 

connected to the grid. Both results are based on our own methodology of measurements 

and own concepts of implementation of ANNs.  

As for the load prediction it is worth mentioning that the results reported are part of a 

set of implementation of our concept to short term [43], medium term [40], and long term 

[44] prediction of electricity loads. When appropriate, e.g. short term prediction, real-time 

implementation of the prediction was implemented [39]. The results related to the 

profiling the computer looking at it from the grid, however, are brand new and will be 

further elaborated and implemented to more complex computer loads such as data centres 

or company networks.  
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