
FACTA UNIVERSITATIS  
Series: Electronics and Energetics Vol. 38, No 4, December 2025, pp. 581 - 603 

https://doi.org/10.2298/FUEE2504581C 

© 2025 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND 

Invited paper  

OVERVIEW OF DIGITAL IMAGE FORGERY DETECTION 

Petar Čisar1,2 

1University of Criminal Investigation and Police Studies, Zemun-Belgrade, Serbia 
2John von Neumann University, GAMF - Faculty of Engineering and Computer Science, 

Kecskemét, Hungary 

ORCID iD: Petar Čisar  https://orcid.org/0000-0001-8009-3347 

Abstract. Digital image forgery detection is a vital area of research in digital 

forensics, aiming to authenticate visual content in the face of increasingly sophisticated 

manipulation techniques. This paper presents a comprehensive overview of the field, 

integrating key concepts in its technical landscape. The categorization of detection methods 

typically includes active approaches that depend on embedded watermarks or signatures, 

and passive (blind) techniques that analyze the image content itself without prior 

information. Underlying these are various detection principles, such as identifying 

inconsistencies in pixel patterns, compression artifacts, illumination, and sensor noise. 

The paper explores the specific characteristics of detection techniques, analyzing their 

strengths and limitations. Pixel-based and statistical methods offer efficiency for copy–

move and splicing detection but often lack robustness under compression or scaling. 

Frequency-domain methods and physics-based analysis provide deeper insights, but 

they can be computationally intensive or sensitive to environmental conditions. The 

evaluation of detection models is crucial, relying on diverse datasets, realistic 

manipulation scenarios, and adversarial robustness testing. Effective evaluation 

metrics include accuracy, precision, recall, F1-score, AUC-ROC and IoU, which 

collectively assess classification and localization performance. 

The deep learning approach in forgery detection has significantly advanced the field, 

with convolutional neural networks and transformer-based models learning complex 

tampering artifacts. However, challenges persist in forgery detection, including 

evolving manipulation methods, dataset limitations, explainability concerns, and 

vulnerability to adversarial attacks. Finally, the authors discuss trends and future 

directions, such as self-supervised learning, multimodal forensic integration, domain 

adaptation, and real-time detection frameworks, paving the way for more resilient and 

scalable forensic tools. 
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1. INTRODUCTION 

In an era characterized by the exponential growth of digital media, images play an 

integral role in communication, journalism, social media, scientific research, and legal 

evidence. The ease of image acquisition, manipulation, and dissemination has drastically 

increased with the availability of powerful editing tools such as Adobe Photoshop, GIMP, 

and AI-powered generative models like GANs (Generative Adversarial Networks). 

Although these tools offer creative flexibility and have numerous legitimate applications, 

they also pose significant risks to the authenticity and reliability of visual information. 

Image forgery refers to the intentional alteration of an image to deceive viewers or 

convey false information. These manipulations can range from simple edits, such as contrast 

adjustment or object removal, to complex tampering involving seamless integration of objects 

or synthetic generation of entire scenes. As such forgeries become increasingly convincing, 

the need for robust and reliable image forgery detection techniques becomes imperative to 

ensure the integrity of digital images in critical fields such as forensics, journalism, law 

enforcement, and cybersecurity. 

1.1. Challenges in image forgery detection 

Detecting image forgery presents several technical and practical challenges. One 

major challenge is the high visual quality of modern editing tools, which can produce 

visually seamless forgeries that are nearly impossible to detect with the naked eye. 

Additionally, the wide variety of manipulations occurring at the pixel, structural, or 

semantic levels and across different formats and compression types adds to the complexity. 

The lack of ground truth is another significant hurdle, as there are limited publicly available 

datasets containing both authentic and manipulated image pairs, making training and 

evaluation difficult. Furthermore, common image-processing operations, such as compression, 

resizing, and the addition of noise, can obscure signs of manipulation. Lastly, adversarial 

techniques, particularly those involving adversarial networks, can generate content 

specifically designed to deceive detection systems. 

1.2. Objectives of the paper 

This paper aims to explore and elaborate various methods for image forgery detection 

through several key objectives. First, it seeks to classify and define different types of 

image forgeries along with their distinguishing characteristics. It then surveys existing 

approaches and algorithms used in forgery detection, covering both traditional techniques 

and those based on deep learning. 

The central aim addressed in this paper is to analyze the characteristics of different 

techniques for detecting image forgeries, with a focus on choosing the most appropriate 

method for a given case. 

The paper also describes the process of evaluating detection models using appropriate 

datasets and performance metrics. Finally, it discusses the limitations of current techniques 

and proposes potential directions for future research. 

1.3. Structure of the paper 

The remainder of this paper is structured to ensure a coherent progression from the 
foundational concepts to the evaluation and discussion of image-forgery detection methods. 
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After the introduction, Section 2 presents a review of related work, categorizing existing 
approaches into traditional signal-based methods, transform-domain techniques, and deep 
learning-based frameworks, with an emphasis on their development and key contributions. 

Section 3 introduces the core concepts of digital image forgery detection, including the 
taxonomy of manipulation types and an overview of detection strategies. It establishes the 
theoretical basis for understanding how various techniques operate in practice. 

Section 4 provides a detailed analysis of the specific characteristics of different detection 
methods, examining their strengths, limitations, and applicability to various tampering 
scenarios. This section also highlights comparative insights across different methodological 
categories. 

Section 5 describes the experimental evaluation framework used to assess the performance 
of detection models. It outlines the datasets, evaluation metrics, and robustness testing 
procedures used to ensure the reliability and generalization of the results. 

Section 6 focuses on the deep learning approach, elaborating on the architecture and 
training of neural models, as well as their ability to capture complex forgery patterns. 
Special attention is given to the challenges of explainability and dataset dependency. 

Section 7 discusses the open challenges in the field, including issues of generalization, 
adversarial robustness, and the detection of subtle or small-scale manipulations. 

Section 8 explores emerging research trends and future directions, such as multimodal 
forensics, universal detection models, and blockchain-based provenance solutions that 
aim to improve trust and transparency in digital media. 

Finally, Section 9 concludes the paper by summarizing the main findings and highlighting 
the implications of the reviewed approaches for the development of more resilient and 
interpretable image forgery detection systems. 

2. RELATED WORK 

Digital forensics and digital image forgery detection are closely interconnected fields 
that contribute significantly to the identification, analysis, and presentation of digital 
evidence, particularly in the context of cybercrime. Digital image forgery detection, as a 
subfield of digital forensics, focuses on identifying manipulations within visual content, 
which are increasingly exploited in online fraud, misinformation, and other illicit activities. 
As described in [1], digital forensics provides the tools and techniques to examine digital 
traces and support legal processes, including image content. Furthermore, the paper [2] 
emphasizes the importance of structured science-based procedures in forensic investigations, 
which are also applicable to the detection of inconsistencies in images. Additionally, the study 
[3] highlights the growing relevance of multimedia analysis as a direction of development 
in digital forensics. Together, these references demonstrate that image forgery detection is 
an essential component of modern digital forensics, providing critical insights and evidence 
in both investigative and judicial contexts. 

The field of image forgery detection has evolved significantly over the past two 
decades, with researchers developing various techniques to identify and localize tampered 
regions in digital images. The related work can be broadly categorized into three main 
areas: traditional (signal-based) methods, transform-domain and physics-based approaches, 
and recent deep learning-based methods. 

The paper [4] provides foundational information on early approaches to image forgery 
detection, complementing the broader categorization and evaluation strategies discussed 
in this overview. 
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Traditional methods operate primarily in the spatial domain and are based on identifying 

inconsistencies in pixel patterns, noise, and statistical artifacts. Techniques such as block-

based and keypoint-based copy-move forgery detection have been explored using DCT [5], 

PCA [6], Zernike moments [7], SIFT [8], SURF [9] and ORB [10]. Post-processing steps 

such as RANSAC [11] enhance the robustness of these methods. Splicing detection 

leverages CFA interpolation inconsistencies [12], JPEG artifacts [13], and PRNU (Photo 

Response Non-Uniformity) analysis [14]. Error Level Analysis (ELA) also offers intuitive 

visual cues for JPEG manipulation [15]. 

Transform-domain methods use frequency analysis to identify subtle manipulations. 

DCT and DWT have been widely applied to detect double compression and frequency 

inconsistencies [16], [17]. PRNU-based analysis in the frequency domain, introduced by 

[14], remains a fundamental method for device identification. Geometric and illumination-

based methods provide complementary insights, especially for splicing detection [18], [19]. 

Techniques for analyzing light source direction [20], shadow geometry [21], and perspective 

inconsistencies [22] improve explainability and analysis of scene-level consistency. 

The introduction of CNNs revolutionized forgery detection. Supervised architectures 

such as MesoNet [23], ManTra-Net [24], and TamperNet [25] have demonstrated high 

performance on standard benchmarks. Transformer-based models [26], multi-scale and 

attention mechanisms [27], and segmentation models such as U-Net [28] further enhance 

tampering localization. NoisePrint [29] exemplifies noise-based CNNs, while XceptionNet 

[30] and other architectures have been proven effective in GAN-generated forgery detection. 

Hybrid models that combine metadata, illumination, and semantic cues offer greater resilience 

[25], [31]. 

Standard datasets such as CASIA [32], Columbia [33], CoMoFoD [34], and 

FaceForensics++ [30] are used for training and benchmarking. Evaluation metrics include 

F1-score, IoU, and AUC-ROC [35]. Recent work highlights challenges in cross-dataset 

generalization and robustness against adversarial manipulation [36]. 

Emerging trends include explainable AI for forensic reasoning [37], domain adaptation 

[38], zero-shot detection [39], and multimodal analysis [40]. Blockchain-based provenance 

tracking [41] and universal detection frameworks [42] aim to tackle real-world applicability 

and content authentication. 

Furthermore, the paper [43] on how image enhancement techniques influence facial 

detection highlights the impact of image pre-processing, an important consideration in the 

reliability of modern forgery detection processes. 

3. IMAGE FORGERY DETECTION 

Image forgery detection involves the identification of digital images tampered or 

manipulated to ensure their authenticity. Tampering can involve adding, removing, or 

altering content in an image. With the rise of powerful editing tools, detecting forged images 

has become increasingly important in fields such as journalism, forensics, and legal 

investigations. 

3.1. Categorization of detection methods 

In image forgery detection, traditional methods typically involve analyzing visual or 
statistical inconsistencies in the spatial domain, such as abrupt changes in pixel values, 
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noise patterns, or texture irregularities. These methods are effective for detecting common 
manipulations like copy-move or splicing. 

On the other hand, examines the image in a frequency or transformed space using 
techniques like discrete cosine transform (DCT), discrete wavelet transform (DWT), or 
Fourier transform. This approach can reveal hidden artifacts or anomalies introduced by 
forgery that are not easily visible in the spatial domain, such as inconsistencies in compression 
or edge artifacts. Transform-domain methods are particularly useful for detecting subtle 
manipulations and post-processing operations. 

There are two main categories of image forgery detection techniques. Active methods rely 
on embedded information, such as watermarks or digital signatures added at the time of image 
capture. Any modification to the image disrupts this information, making it easier to detect 
tampering. However, this method requires prior preparation and cannot be used for images 
without embedded data. Passive (blind) methods do not require prior information and are 
more commonly used. They analyze inconsistencies within the image itself, such as copy-
move forgery detection, splicing detection, image retouching detection and compression 
artifact analysis (detects tampering through inconsistencies in JPEG compression). 

Copy-move forgery (CMF) refers to a manipulation technique in which a region 
within an image is copied and pasted to another location within the same image to 
conceal or duplicate elements. This technique is often used to hide objects or create false 
repetition, as shown in Fig. 1. 

 

Fig. 1 Copy-move forgery (a) original image, b) forged image, c) detection of the CMF 

region) [44] 

Splicing, also known as image composition, involves combining two or more images 
to create a single forged image. This method often alters the semantics of the image by 
introducing external elements, as shown in Fig. 2. 

   
(a) (b) (c) 

Fig. 2 Image splicing (a) image used in splicing, and (b) image used in splicing, (c) spliced 

image [45] 
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Retouching refers to subtle modifications made to enhance or diminish certain 

features in an image, often for aesthetic or misleading purposes. This technique is 

commonly used in advertising and social media platforms.  

Additionally, emerging technologies such as GANs have introduced a new class of 

image forgeries known as deepfakes, which can generate highly realistic yet entirely 

fabricated images. Modern approaches also use machine learning and deep learning 

techniques, such as convolutional neural networks (CNNs), to learn features of authentic 

and tampered images, offering high accuracy and automation. 

The following figure shows a general overview of image forgery methods. 

 

Fig. 3 Overview of image forgery methods [46] 

3.1.1. Signal-based (traditional) methods 

Taking into account the different detection principles, multiple categories and methods 

can be distinguished. Signal-based (traditional) methods are oriented towards pixel-level 

and statistical analysis. Copy-move detection can be realized using different methods. 

Block-based methods split the image into blocks and extract features (DCT, PCA (Principal 

Component Analysis), Zernike moments), followed by matching similar blocks. Keypoint-

based methods detect keypoints (Scale-Invariant Feature Transform (SIFT), Speeded Up 

Robust Feature (SURF), Oriented FAST, and Rotated BRIEF (ORB)) and match feature 

descriptors. Post-processing typically includes the RANSAC (Random Sample Consensus) 

method for removing geometrically inconsistent matches and filtering. 

Splicing detection focuses on identifying signs of double compression, indicating that 

the region was saved separately before being pasted into the target image. These signs 

can include inconsistent noise patterns, JPEG blocking artifacts, and different color filter 

array (CFA) interpolation artifacts. 

ELA is a passive digital image forensics technique used in image forgery detection, 

particularly effective for identifying manipulated or spliced regions in JPEG images. The 

process involves recompressing the image and measuring the local error caused by 

compression. Inconsistent error levels across different areas of the image can indicate 

tampered regions. 
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3.1.2. Transform-domain analysis 

Transform-domain analysis is dominantly focused on the frequency domain and 

transformed space. DCT/DWT-based features detect inconsistencies in frequency 

content: JPEG artifacts, double compression, etc. PRNU extracts the PRNU ‘fingerprint’ 

of the sensor; inconsistencies betray tampering. Missing/altered PRNU patterns suggest 

splicing or replacement. CFA interpolation pattern detection detects inconsistencies in 

demosaicing artifacts and is useful for camera-origin authentication. 

3.1.3. Deep learning-based methods 

In image forgery detection, deep learning methods have emerged as powerful tools 

capable of automatically learning complex features from data without the need for 

handcrafted rules. Techniques such as CNNs are widely used to detect subtle inconsistencies 

in texture, edges, or patterns that may indicate tampering. These models can be trained on 

large datasets of authentic and forged images to distinguish between manipulated and 

original content. Deep learning approaches often outperform traditional methods, 

especially in detecting sophisticated forgeries like those created by GANs, though they 

may require substantial data and computational resources. The goal of deep learning-

based methods is to learn spatial and semantic patterns that indicate manipulation without 

hand-crafted features. 

Supervised CNN-based methods involve training CNNs on labeled data that distinguish 

between forged and authentic regions or images. Notable example architectures include 

TamperNet, MesoNet, and ManTra-Net, which uses a spatial pyramid structure. These models 

can also incorporate segmentation networks such as U-Net to accurately localize tampered 

regions within an image. The features used by these models are typically learned directly from 

raw pixel data but can also be extracted from frequency or gradient domains to improve 

detection accuracy. 

Multiscale and attention-based networks are designed to combine global context, such 

as overall scene consistency, with local anomalies like blending artifacts. These networks 

use attention layers to focus on potentially suspected regions, particularly edges and junctions 

where tampering is more likely to occur. Recently, transformer-based architectures, such as 

those built on the Swin Transformer, have been gaining popularity for their effectiveness 

in capturing both local and global features in image forgery detection. 

Noise- and artifact-based detection using CNNs focuses on identifying inconsistencies 

in camera-specific noise patterns. One prominent approach is NoisePrint, where a 

convolutional neural network is trained to extract unique noise residuals for each camera 

model. By analyzing these residuals, the method can detect inconsistencies in noise levels 

between tampered and genuine regions, revealing potential forgeries. 

GAN detection focuses on identifying images that have been altered or entirely 

generated by generative adversarial networks, such as StyleGAN or DeepFakes. This 

approach relies on recognizing feature-level inconsistencies, including spectral artifacts, 

the absence of natural sensor noise, or other statistical anomalies that distinguish generated 

content from real images. A well-known example is the use of XceptionNet, which has been 

effectively applied to DeepFake detection tasks. 
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3.1.4. Hybrid and specialized techniques 

In image forgery detection, hybrid and specialized techniques integrate multiple methods 

to enhance detection accuracy and reliability. Hybrid approaches often combine spatial, 

transform-domain, and deep learning techniques to capture both low-level artifacts and high-

level features. Specialized techniques focus on specific clues that may indicate tampering, for 

example, metadata analysis inspects embedded file information for inconsistencies, 

illumination analysis checks for unnatural lighting or shadows, and semantic analysis 

evaluates the logical coherence of scene elements. These methods are especially useful for 

detecting sophisticated or subtle forgeries that may evade conventional detection techniques. 

There are different hybrid & specialized techniques. Metadata analysis involves 

examining inconsistencies in EXIF (Exchangeable Image File Format) data, such as the 

camera model, GPS coordinates, and timestamp. This method also includes comparing 

the metadata information with the actual visual content of the image to identify potential 

signs of manipulation or forgery. 

Illumination analysis focuses on detecting the direction of light, the behavior of 

shadows, and inconsistencies in reflections within an image. It is particularly useful for 

splicing detection, as mismatched lighting between different regions can indicate that 

elements have been artificially inserted. 

Geometric constraints involve analyzing perspective inconsistencies, such as through 

vanishing point analysis, to identify signs of image manipulation. This approach also 

includes evaluating the object size in relation to the estimated camera focal length, where 

mismatches may indicate tampering. 

Semantic inconsistencies are detected by applying scene understanding techniques 

that analyze objects, humans, and the overall context within an image. For example, an 

object that appears to be floating in the air or that does not cast a shadow can indicate 

manipulation or forgery. 

4. SPECIFIC CHARACTERISTICS OF DETECTION TECHNIQUES 

This chapter elaborates the strengths and limitations of various techniques typical for 

certain methods. 

4.1. Pixel-level (passive) methods 

Pixel-level methods operate directly on the image content, without relying on any 

embedded data or prior knowledge about the source. As passive techniques, they analyze 

statistical and structural inconsistencies at the pixel level to reveal signs of tampering. 

These methods are widely used in digital forensics due to their noninvasive nature and 

applicability to images from unknown or untrusted sources. 

4.1.1. Noise and sensor pattern analysis 

Noise and sensor pattern analysis extracts the unique "fingerprint" of the image 

sensor, known as the photo-response non-uniformity (PRNU), which is specific to each 

individual camera. Inconsistencies in this pattern can betray tampering and are often used 

as forensic evidence. 
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One of the key strengths of PRNU-based analysis is its ability to provide a unique 

camera fingerprint, capable of identifying the source camera even among devices of the 

same model. This technique is passive, meaning that it does not require any prior 

modification or watermarking of the image; analysis can be performed post-capture. It is 

also robust to common processing, since PRNU patterns typically survive standard 

operations such as compression, resizing, and mild filtering. The method is particularly 

effective for tampering detection, since the absence or distortion of the expected PRNU 

pattern can reveal image forgeries, including splicing or localized edits. Moreover, PRNU 

analysis is widely validated and has become a well-established and trusted technique in 

the field of digital forensics. 

However, the method also has certain limitations. It can be weak in small regions, as a 

sufficient number of pixels is needed to estimate a reliable PRNU pattern; therefore, 

small splices may escape detection. Additionally, PRNU is vulnerable to post-processing; 

operations such as rescaling, heavy compression, or denoising may degrade or 

completely remove the signal. The technique performs best when a reference image from 

the same camera is available, and in its absence, detection performance may degrade. 

Finally, there is a risk of false positives, especially when similar PRNU patterns appear 

on different devices of the same model, which can mislead the detection system. 

4.1.2. CFA interpolation artifacts 

CFA interpolation artifacts detect anomalies in the regular pattern produced by the 

Bayer filter during the demosaicing process. These patterns are generally stable and 

device specific, which makes them useful in forensic analysis to identify tampered or 

manipulated regions within an image. 

One of the primary strengths of this method is its ability to assist in the detection of 

image tampering. Because CFA artifacts follow a predictable pattern, any inconsistencies 

introduced by editing or splicing are likely to disrupt that regularity. It also supports 

camera consistency verification, since demosaicing patterns are often unique to specific 

camera models, allowing investigators to check whether the image is consistent with the 

claimed capture device. 

Like PRNU, CFA-based detection is a passive and non-invasive approach, requiring 

no prior image modification or embedded data. It is particularly well-suited for forensic 

scenarios where the original capture context is unknown. Furthermore, it enables forgery 

localization, as altered regions typically distort the interpolation pattern, making it 

possible to identify edited areas with relatively fine granularity. An additional advantage 

is its effectiveness on JPEG images. Despite the lossy nature of JPEG compression, CFA 

artifacts often remain intact, allowing the analysis of images shared online or stored in 

compressed formats. 

However, the method has limitations. It is sensitive to pre-processing; actions such as 

re-mosaicing, interpolation, or heavy filtering may erase or alter the CFA traces, reducing 

their reliability. The technique is also model-specific, as different cameras and even 

different RAW-to-JPEG conversion pipelines use varying demosaicing algorithms, which 

can limit the general applicability of generic detectors. Lastly, there is a potential for a high 

false alarm rate, since certain genuine image characteristics, such as high-ISO noise or 

naturally textured regions, may mimic irregularities typically associated with tampering. 
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4.1.3. JPEG compression artifacts (double compression) 

JPEG compression artifact analysis focuses on identifying signs of double compression, 

which typically occurs when an image has been edited and subsequently saved again. This 

process leaves behind quantization inconsistencies and block-level traces, particularly within 

the 8×8 DCT grid, that may indicate tampering. 

One of the main strengths of this method is its ability to support tampering detection, as 

recompression often introduces subtle artifacts that are not present in original images. 

Moreover, it allows for forgery localization by detecting anomalies at the level of compression 

blocks, thereby highlighting regions where editing and re-saving have taken place. 
An additional advantage is that it does not require an original image. The method 

operates passively and works directly on the suspect file, which is especially valuable in 
cases where the unedited original is unavailable. It is also effective in web and social 
media images, as compression artifacts are frequently preserved even after online 
distribution. Furthermore, this approach is model-free, meaning it does not depend on 
device-specific characteristics such as sensor or demosaicing patterns. This makes it 
suitable for a broad range of images, even when camera metadata is missing or unreliable. 

Despite these strengths, JPEG artifact analysis has certain limitations. It assumes a 
JPEG processing pipeline, so it is not applicable to PNG, RAW, or other non-JPEG 
formats. If a forger performs global recompression of the entire image after editing, the 
distinctive double-compression artifacts may disappear completely. Furthermore, the 
method often relies on alignment with the original 8×8 block grid; even a slight shift in 
the recompression grid can obscure evidence of tampering, making detection unreliable. 

4.2. Format-based methods 

Format-based methods exploit the structure of image encoding and file metadata to 

detect signs of manipulation. Rather than analyzing visual content directly, these techniques 

focus on compression artifacts, error patterns, and inconsistencies in embedded metadata that 

may indicate tampering. 

4.2.1. Error Level Analysis (ELA) 

Error Level Analysis (ELA) is a passive forensic technique that works by recompressing 
an image at a known JPEG quality level and visualizing the resulting error values block-by-
block. Regions that have been altered typically exhibit different error intensities compared to 
the rest of the image. These differences can then be highlighted and visually inspected to 
identify potential tampering. 

Among its key strengths, ELA supports tampering detection by exposing areas with 
an inconsistent compression history, which may indicate editing or splicing. The method 
is also visual and intuitive, producing a heatmap-like output in which suspicious regions 
appear visually distinct, allowing even users without deep technical expertise to interpret 
the results. ELA is fast and easy to apply, requires minimal computational resources and 
is readily available through common forensic software or online platforms. 

Another advantage of ELA is that it operates without needing camera-specific 
information or embedded metadata, which is useful when such data is unavailable or has 
been removed. It is also widely adopted as a first-pass analysis tool within forensic 
workflows, helping analysts identify regions of interest for a more in-depth examination 
using other techniques. 
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However, ELA has several limitations. It is fundamentally qualitative rather than 

quantitative, functioning as a visual aid rather than a precise measurement tool. As such, 

it can be difficult to automate and may be prone to subjective interpretation. The method 

is also highly sensitive to parameters, especially the choice of recompression quality, 

which can significantly affect the results and lacks standardization. Finally, ELA is 

ineffective against global recompression. If a forger saves the entire image uniformly at 

the same compression level after manipulation, the distinguishing artifacts that ELA 

depends on may be completely masked. 

4.2.2. Format fingerprint & metadata analysis 

Format fingerprint and metadata analysis focuses on examining embedded EXIF/IPTC 

metadata and comparing the structural ‘footprint’ of an image file with known patterns 

associated with specific devices or editing software. Discrepancies or inconsistencies in these 

data can serve as strong indicators of manipulation. 

This method enables the identification of devices and software, as metadata often 

includes details about the camera model, firmware version, or editing application used to 

create or modify the image. It can also reveal that tampering clues, missing, inconsistent, 

or altered metadata fields, may suggest that the image has been changed after capture. In 

addition, timeline verification is possible by analyzing timestamps to detect suspicious 

gaps or inconsistencies in the image history. 

Another advantage is the applicability to batch analysis. Format fingerprints, such as 

the default EXIF tags associated with certain applications, can help to quickly identify 

groups of images processed by the same tool or source. Furthermore, this technique is 

noninvasive and fast, requiring no modification to the image content and allowing 

efficient examination of large datasets. 

However, metadata analysis has several limitations. It is easily stripped or forged; any 

user can edit or remove metadata fields without altering pixel-level content. This leads to 

a high false negative rate, especially when forgers are aware of forensic practices and 

take steps to preserve plausible metadata. Additionally, metadata analysis is not sufficient 

on its own to confirm tampering. It may raise suspicion, but it cannot localize specific 

altered regions or provide visual proof of manipulation. 

4.3. Geometry- and physics-based methods 

Geometry- and physics-based methods in digital forgery detection rely on understanding 

the physical and spatial properties of the real world. These methods offer several distinct 

strengths. 

One of the key advantages is their independence from content. Geometry- and physics-

based techniques are robust to image semantics; unlike deep learning or statistical methods, 

they do not rely on the scene content or specific training data. Instead, they use universal 

physical principles that make them applicable to a wide variety of image types. 

Another major strength is explainability. These methods produce easily understandable 

results, such as inconsistencies in shadows, reflections, or perspective. This interpretability 

makes them especially valuable in forensic and legal contexts where clear visual evidence is 

essential. 

They are also effective in the detection of sophisticated forgeries. Manipulations that 

involve object insertion, removal, or relocation often fail to preserve physical consistency, 



592 P. ČISAR 

such as lighting direction, perspective alignment, or depth cues. Geometry and physics-based 

methods can detect such inconsistencies. 

In terms of generalization, these methods do not require large training sets. Since they 

rely on physical models rather than learned representations, they can function effectively 

even when data are scarce, unlike many deep learning techniques. 

Another benefit is their versatility in all modalities. Geometry-based principles, such 

as structure-from-motion or shadow geometry, can be applied to both still images and 

video content, making these methods broadly applicable in various forensic contexts. 

Finally, these methods are often complementary to other detection approaches. They 

can be used synergistically with data-driven or statistical forgery detectors. For example, 

a neural network might detect suspicious regions, while a geometry-based method can 

confirm inconsistencies in shadows or vanishing points, strengthening the overall 

reliability of forensic analysis. 

4.3.1. Illumination inconsistency 

Illumination analysis checks that lighting direction, shadows, and specular highlights 

across the scene are mutually consistent. This technique can reveal when objects have 

been inserted or modified without regard for the existing light conditions. 

However, it has certain limitations. It often requires an approximate knowledge of the 3D 

geometry or light source positions, which may not always be available. The method assumes 

relatively uniform lighting, so it may not perform well in outdoor scenes or in environments 

with mixed lighting conditions. Furthermore, if a forger applies global adjustments, such as 

brightness or contrast corrections, apparent inconsistencies may be masked. 

4.3.2. Perspective and shadow geometry 

Perspective and shadow geometry analysis ensures that object proportions, vanishing 

points, and shadow projections follow coherent geometric rules. This is particularly 

useful in identifying content that has been artificially inserted or altered. 

Its limitations include the need for manual intervention, as automatic vanishing-point 

estimation can be unreliable in cluttered or low-texture regions. This method may 

struggle with small or subtle splices, where pasted objects produce negligible geometric 

distortion. Additionally, it typically assumes planar surfaces; irregular or curved shapes 

can violate the assumptions required for consistent geometric modeling. 

4.4. Copy-move and splicing detection 

4.4.1. Copy-move (self-similarity) detection 

Copy-move detection identifies duplicated patches within the same image using block 

matching or keypoint clustering. It is particularly effective in detecting cloning 

operations, in which parts of the image are copied and placed elsewhere to conceal or 

replicate objects. Since this method relies solely on internal similarities within the image, 

it does not require any external reference. 

This technique enables forgery location to be precise by highlighting regions involved 

in the copy-move operation. Many algorithms are designed to tolerate slight changes, 

such as rotation, scaling, or compression between copied regions, making them robust to 
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minor modifications. Moreover, it is applicable across various image types and can 

function even when metadata or other forensic cues are missing. 

Despite its advantages, this method struggles with non-exact copies. If the forger 

applies geometric transformations like rotation, scaling, or non-rigid warping, simple 

block matching may fail to align the altered patches. Furthermore, the exhaustive search 

required to compare all possible regions can lead to high computational costs, 

necessitating a trade-off between speed and accuracy. Highly textured regions, such as 

foliage or brick walls, can also produce a large number of false positives due to natural 

repetition. 

4.4.2. Splicing detection through local features 

Splicing detection using local features, such as SIFT, SURF, or other descriptors, 

focuses on identifying clusters of anomalous keypoints that deviate from the global image 

statistics. This method is sensitive to local inconsistencies in texture, lighting, noise, or 

edges, which often indicate that the content has been inserted from another source. 

In addition to detecting inconsistencies, the method allows for precise forgery 

localization by identifying the exact regions where external content was introduced. It is 

robust to global transformations, such as scaling, rotation, or color adjustments, which 

enhances its reliability under various post-processing conditions. Since it is a passive 

technique, splicing detection via local features does not require the original or reference 

image, nor any embedded metadata. It is also versatile and performs well across different 

types of visual content, including natural scenes, portraits, and complex backgrounds, 

especially in cases where traditional forensic signals (such as PRNU) are weak or missing. 

However, this approach may be less effective in low-textured areas where few 

keypoints are generated, making it difficult to locate tampered regions. Post-processing 

effects, such as blurring or added noise, can further reduce the repeatability of keypoints, 

allowing splices to go undetected. Additionally, if the inserted content comes from a 

source image taken with a similar camera model, the feature distributions may overlap, 

making it hard to distinguish between new and original content. 

4.5. Deep-learning-based methods 

4.5.1. End-to-end CNN detectors 

End-to-end CNN detectors train convolutional networks to spot statistical anomalies, 

such as tampered edges or inconsistent noise within a supervised setting. One of the key 

strengths of these methods is automatic feature learning. CNNs can learn complex 

forensic features directly from the data, without needing hand-crafted rules or manual 

feature extraction. 

These detectors offer high detection accuracy. When trained on large and diverse 

datasets, CNNs often outperform traditional techniques in identifying a wide range of 

manipulations, including splicing, copy-move, and deepfakes. Their versatility and 

scalability allow the same architecture to be adapted for multiple forensic tasks such as 

image forgery detection, manipulation localization, or even source attribution. 

CNN-based systems are also robust to multiple types of manipulation. They are 

capable of handling subtle or complex changes in geometry, noise patterns, or lighting 
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inconsistencies. Many of these systems are designed to produce tampering maps, which 

makes it possible to localize manipulated regions at the pixel or patch level. 

However, these methods have limitations. Their performance is highly dependent on 

the quality and diversity of the training data. If novel or unseen tampering techniques are 

introduced, the network may not detect them. CNNs are also at risk of overfitting; they 

may inadvertently learn dataset-specific artifacts, such as particular compression settings, 

instead of generalizable forgery cues. Another notable challenge is explainability. Due to 

their black-box nature, CNNs can be difficult to interpret; analysts may struggle to 

understand why a specific region was flagged, which can be problematic in forensic and 

legal contexts where clear evidence is required. 

4.5.2. GAN-based forgery detectors 

GAN-based forgery detectors are specialized networks designed to identify traces of 

GAN synthesis or deepfake generation. Their primary strength lies in being specifically 

trained to detect artifacts and patterns that are unique to GAN-generated content, 

including those produced by models such as StyleGAN or Deepfakes. 

These detectors are highly sensitive to subtle artifacts. They can detect minute 

inconsistencies in texture, facial features, or statistical image properties, artifacts that are 

often missed by traditional methods. Moreover, with proper retraining, GAN detectors 

can adapt to evolving GAN architectures, maintaining their effectiveness over time. 

Some models offer pixel-level localization by generating heatmaps or binary masks that 

highlight manipulated regions within an image or video. 

GAN detectors analyze both visual and statistical cues. They can detect perceptual 

anomalies such as unnatural eye rendering or inconsistent backgrounds, as well as 

frequency domain irregularities or missing sensor noise patterns. 

Despite their strengths, GAN-based detectors are part of an ongoing arms race. As 

generative models become more sophisticated and produce fewer artifacts, existing 

detectors must be continuously re-trained to keep up with them. Furthermore, dataset 

imbalance presents a challenge, obtaining representative and balanced sets of ‘real’ 

versus “fake” images can be difficult, and biases in training data may affect performance. 

GAN detectors also have a limited scope. They are highly effective against synthetic 

content but may not detect traditional splicing or copy-move operations performed using 

standard image editing tools. 

4.6. Hybrid and fusion approaches  

Hybrid and fusion approaches combine multiple cues, pixel artifacts, metadata, geometry, 

CNN outputs, to improve the robustness and accuracy of image forgery detection systems. 

One of the main strengths of these approaches is improved accuracy. By integrating 

several forensic techniques, such as PRNU, CFA, metadata analysis, and deep learning, 

overall performance is enhanced, and the rate of false positives is reduced. These systems 

are also robust to various manipulations, allowing them to detect a wide variety of 

forgeries, including splicing, copy-move, and GAN-generated images, by leveraging the 

complementary strengths of individual methods. 

Another significant advantage is the availability of complementary evidence. Fusion 

approaches can integrate multiple types of visual, statistical, and structural information, 

providing more convincing and reliable forensic conclusions. Their adaptability to complex 
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cases makes them especially useful in real-world scenarios involving sophisticated tampering 

techniques, where a single method may fail. Moreover, hybrid systems offer flexibility and 

scalability. Their modular design allows for easy extension and customization, allowing the 

incorporation of new detectors or algorithms as manipulation techniques evolve. 

However, hybrid systems also present several limitations. Their complexity makes them 

more difficult to tune and validate. Setting appropriate weights and thresholds for combining 

modules can be non-trivial. They are also resource-intensive, as running multiple detection 

pipelines in parallel increases computation time and memory consumption. Additionally, error 

compounding can occur. Mistakes or uncertainties in one module can influence the results of 

others, potentially amplifying false positives or false negatives in the overall output. 

5. EVALUATION OF THE DETECTION MODEL 

Evaluating a detection model involves a systematic procedure to measure how 

effectively the model can identify manipulated (forged) or tampered images. Evaluation 

is crucial to understand the performance, robustness, and generalizability of the model. 

The evaluation procedure consists of the following basic steps: 

▪ Pre-processing and prediction - These steps begin by preprocessing the test images, 

which may include steps such as resizing and normalization. These processed images 

are then passed through the trained model. The model outputs an image-level label 

(e.g., real or fake) and, for localization models, a forgery mask indicating the 

manipulated regions. 

▪ Post-processing - This phase involves applying thresholds to the prediction scores, 

such as using 0.5 for binary classification. If necessary, the predicted masks are further 

refined using techniques such as morphological operations. 

▪ Metric computation - Metric computation involves comparing the model's output 

with ground truth labels or masks. Performance metrics are calculated for each image 

and then aggregated using statistical measures such as mean or median. 

Several approaches are used in the evaluation process. 

Robustness and generalization tests - Robustness and generalization tests assess the 

model's performance under various challenging conditions. In cross-dataset evaluation, the 

model is tested on a dataset different from the one on which it was trained to evaluate its 

ability to generalize. Under adversarial conditions, factors such as compression, blur, resizing, 

and noise are introduced to observe how the model's performance degrades. To test forgery-

type generalization, the model is evaluated on manipulation techniques it has not seen during 

training; for example, a model trained on copy-move forgeries might be tested on splicing. 

Qualitative evaluation - Qualitative evaluation involves visually inspecting the 

predicted masks and overlaying them on the original images to assess their accuracy. This 

process helps identify false positives and false negatives. Tools such as Grad-CAM or 

attention maps can also be used to interpret which parts of the image the model focuses 

on during prediction. 

Benchmarking and comparison - A model under examination can be compared 

against baseline models (traditional or deep learning), state-of-the-art methods, and human 

performance (in some studies). 

Statistical significance - Statistical significance is assessed using techniques such as t-

tests, Wilcoxon tests, or bootstrapping to ensure that observed performance improvements are 
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not due to chance. Additionally, confidence intervals are calculated for performance metrics to 

provide a measure of reliability. 

Example tools for evaluation include Scikit-learn, which is used for classification 

metrics, OpenCV and NumPy, which are useful for pixel-level comparisons, MATLAB, 

which supports traditional forensics evaluations, and TensorBoard or Weights & Biases, 

which are commonly employed for visualizations. 

5.5.1. Example usage in experiments 

When evaluating an image forgery detection model, the approach depends on the type 

of model and the aspect being assessed. For classification models, it is important to use 

image-level metrics such as accuracy, F1-score, and AUC. In the case of segmentation 

models, metrics such as IoU, Dice coefficient, and pixel-wise precision and recall should 

be used. To assess robustness, tests should be conducted under various transformations, 

including resizing, compression, and rotation, followed by a re-evaluation of the relevant 

metrics. 

Choosing the right evaluation metric depends on the task (detection vs. localization) 

and the dataset characteristics (balanced vs. imbalanced, single vs. multi-type forgeries). 

Robust evaluation using multiple metrics ensures that an algorithm is not only accurate, 

but also reliable and generalizable across various conditions. 

Table 1 Choosing the appropriate metric depending on the task 

Task Preferred metrics 

Image classification accuracy, precision, recall, F1, AUC 

Region localization IoU, Dice, pixel precision/recall 

Boundary analysis boundary IoU, Hausdorff distance 

 

Summary of common challenges across methods 

1. Post-processing resilience - Re-compression, filtering, resizing, and color 

adjustments are the forger’s first defense, and they blunt most detectors. 

2. Generalizability - Many methods are tailored to specific cameras, compression 

pipelines, or editing tools. Adapting to new scenarios requires retraining or retuning. 

3. Explainability vs. automation - Highly automated ‘black-box’ detectors (e.g. 

deep learning) trade interpretability for throughput. However, forensic experts 

need clear and visualizable evidence. 

4. Small-scale forgeries - Tiny splices, subtle object insertions, or minor retouching 

often fall below the detection threshold of both pixel- and feature-based methods. 

In practice, a multicue, analyst-in-the-loop workflow where automated flags are 

corroborated by human inspection of image regions, metadata, and scene context, 

remains the most reliable strategy for real-world forensic applications. 

5.5.2 Evaluation metrics 

In image forgery detection, evaluating the performance of detection algorithms 

requires the use of appropriate evaluation metrics. These metrics assess how well a 

method can identify tampered images (image-level detection) or localize manipulated 

regions (pixel-level localization). 
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1. Image-level evaluation metrics - These metrics are used when the goal is to classify 

an entire image as either authentic or forged. 

Accuracy is the ratio of correctly classified images (both authentic and forged) to the total 

number of images. 

 
TP TN

accuracy
TP TN FP FN

+
=

+ + +
 (1) 

where: 

▪ TP: True Positives (forged images correctly identified) 

▪ TN: True Negatives (authentic images correctly identified) 

▪ FP: False Positives (authentic images wrongly marked as forged) 

▪ FN: False Negatives (forged images wrongly marked as authentic) 

 

Limitation: Can be misleading in imbalanced datasets. 

 

Precision, the proportion of predicted forged images that are truly forged. 

 
TP

precision
TP FP

=
+

 (2) 

Significance: High precision means fewer false alarms. 

 

Recall (sensitivity or true positive rate) - the proportion of actual forged images that 

were correctly identified. 

 
TP

recall
TP FN

=
+

 (3) 

Significance: High recall indicates that the method detects most of the forgeries. 

 

F1-score - the harmonic mean of precision and recall. 

 1 2
precision recall

F
precision recall


= 

+
 (4) 

Significance: Balances the trade-off between precision and recall. 

 

ROC (Receiver Operating Characteristic) curve and AUC (Area Under Curve) 

 

ROC curve - A plot of the true positive rate (TPR) against the false positive rate 

(FPR) at various threshold settings. 

AUC - Represents the area under the ROC curve. A higher AUC indicates better 

model performance. 

Significance - AUC close to 1.0 indicates excellent classification ability; 0.5 indicates 

random guessing. 

 

2. Pixel-level evaluation metrics - Used when the goal is localizing tampered regions 

within the image, often evaluated using binary masks (ground truth vs. predicted forgery 

regions). 
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a. Pixel accuracy, the ratio of correctly classified pixels to the total number of pixels. 

 
 

 
 

correct pixels TP TN
pixel accuracy

total pixels TP TN FP FN

+
= =

+ + +
 (5) 

Limitation: Like image-level accuracy, can be misleading in cases where the majority 

of pixels are unaltered. 

b. IoU (Intersection over Union) / Jaccard index measures the overlap between the 

predicted and ground truth tampered regions. 

 
A B TP

IoU
A B TP FP FN


= =

 + +
 (6) 

Range: 0 (no overlap) to 1 (perfect overlap) 

Significance: Standard metric for evaluating localization performance. 

c. Dice coefficient (a.k.a. Sørensen-Dice index or F1 score for pixels) - a similarity 

measure between the predicted and actual tampered regions. 

 
2 2

2

A B TP
Dice

A B TP FP FN

 
= =

+ + +
 (7) 

Range: 0 to 1. 

Significance: More sensitive to small overlaps than IoU. 

d. Boundary-based metrics 

Used in fine-grained localization (e.g., detecting edges of tampered regions). 

▪ Boundary IoU - Evaluates the overlap near the boundaries of forged regions. 

▪ Hausdorff distance - Measures the maximum distance between the predicted and 

ground truth region boundaries. 

3. Confusion matrix - A confusion matrix provides a detailed breakdown of 

classification results. It contains four entries (TP, FP, TN, FN), helps visualize errors and 

biases in classification, and is useful for both image-level and pixel-level evaluation. 

Table 2 Confusion matrix in forgery detection 

 Predicted authentic Predicted forged 

Actual authentic TN FP 

Actual forged FN TP 

6. DEEP LEARNING APPROACH IN FORGERY DETECTION 

The principle of detecting digital image forgery using deep learning involves training 

a neural network to distinguish between authentic and tampered images based on subtle 

patterns. This principle consists of the following phases: 
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1. Input image - A potentially forged digital image is input into the system. 
2. Feature extraction - CNN analyzes the image to extract important features such as 

textures, edges, and inconsistencies. These features can capture noise patterns, compression 
artifacts, lighting mismatches, and pixel-level anomalies. 

3. Classification - The extracted features are fed into a classifier layer (often part of 
the same deep learning model), which determines whether the image or parts of it are 
forged or authentic. 

4. Output - The system produces a label (e.g. ‘forged’ or “authentic”) and often a 
forgery map, highlighting damaged regions within the image. 

The deep learning process leverages the ability to detect subtle cues that are invisible 
to the human eye or traditional forensic techniques. 

Forgery detection using this approach consists of a data preparation phase and a 
model training phase: 

1. Dataset preparation - Dataset preparation generally consists of the following two 
phases: 

a) Datasets selection – The different datasets can be used to verify forgery detection, 
such as: CASIA (v1.0, v2.0 – contains tampered and authentic images), Columbia 
Uncompressed Dataset, Coverage Dataset, NIST Nimble Challenge Dataset, Deepfake/Celeb-
DF/FaceForensics++ (for facial manipulations). 

These datasets typically contain authentic images (unaltered), forged images (with 
splicing, copy-move, inpainting, deepfakes, etc.), ground truth masks (in pixel-level 
detection datasets, indicating manipulated regions). 

b) Data splitting – Data splitting involves dividing the dataset into training, validation, and 
test sets, commonly using ratios such as 70/15/15 or 80/10/10. To prevent data leakage, it is 
important to ensure that forgeries and their corresponding original images are kept within the 
same split. 

2. Model training - Model training involves using training data to fit the model. To 
enhance robustness, data augmentation techniques such as flipping, scaling, and adding 
noise are applied. Depending on the specific task, whether it requires localization or 
classification, the model is trained using either pixel-level or image-level labels. 

 
Fig. 3 Detection of copy-move forgery – deep learning model [47] 
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7. CHALLENGES IN FORGERY DETECTION 

One of the primary challenges is the emergence of high-quality forgeries, particularly 

those generated by GANs, which can often evade traditional pixel-level or statistical 

detection methods. Another difficulty lies in the balance between realism and subtlety: 

retouching and minor edits may be imperceptible without contextual clues, making them 

hard to identify. 

Generalization remains a significant issue, as models trained on specific datasets often 

struggle to perform effectively in unseen scenarios. Furthermore, post-processing techniques 

such as compression, resizing, and blurring can degrade forensic signals, further complicating 

detection. 

The rise of multi-modal fakes, which combine image, audio, and video elements as seen in 

deepfake pipelines, introduces added complexity to the detection task. Lastly, adversarial 

examples pose a growing threat, as some manipulations are deliberately crafted to bypass 

forensic algorithms and avoid detection. 

8. TRENDS & FUTURE DIRECTIONS 

One major trend in image forensics is the development of universal forensic models. 

The goal is to create a single model capable of detecting multiple types of forgeries, such as 

splicing, GAN-generated content, and image retouching, through unified representation 

learning. 

Another emerging area is zero-shot and few-shot detection, which leverages techniques 

like contrastive learning or domain adaptation to identify manipulations the model has not 

seen during training. 

Multimodal forensics is also gaining prominence. This approach combines consistency 

checks across different media types, such as image, video, audio, and text. Deepfake 

detection, in particular, increasingly relies on multimodal evidence to identify manipulation. 

Explainable forensics is becoming essential, with tools being developed to justify their 

predictions, for example, indicating why a certain region of an image was flagged as fake. 

This improves trust and transparency, especially in high-stakes fields like journalism and 

law enforcement. 

Finally, blockchain and provenance tracking are being explored as solutions to ensure 

the authenticity of content. These involve embedding verifiable provenance chains into 

digital media. Notable examples include initiatives like the Coalition for Content Provenance 

and Authenticity (C2PA) and Project Origin. 

9. CONCLUSIONS 

Digital image forgery detection is a rapidly evolving field driven by the increasing 

sophistication and accessibility of manipulation tools. This paper provides a comprehensive 

overview of the current landscape that includes traditional, transform-domain, deep 

learning, and hybrid approaches to detect image forgeries. Through categorization and 

analysis of detection principles, it is demonstrated how different techniques target various 

manipulation types, including copy-move, splicing, retouching, and GAN-generated 

content, each with distinct strengths and limitations. 
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Traditional signal-based methods remain valuable for their interpretability and 

efficiency, especially in scenarios with known forensic signatures, such as compression 

artifacts or sensor noise patterns. However, they often struggle with subtle or heavily post-

processed forgeries. Transform-domain methods add robustness against some manipulations 

but are sensitive to environmental and image-specific factors. 

Deep learning has made substantial progress, particularly in detecting complex forgeries 

and automatically learning high-level patterns. However, its effectiveness depends heavily on 

the availability and quality of training data, and its black-box nature raises challenges in 

forensic explainability. Hybrid approaches, which integrate cues from multiple forensic 

domains, appear especially promising for improving robustness and generalization. 

Evaluation of forgery detection methods remains critical and multifaceted. Performance 

must be assessed not only through standard classification and localization metrics but also 

through rigorous testing under real-world conditions and adversarial scenarios. This ensures 

that detection systems maintain reliability beyond the controlled datasets. 

Despite the advances, several challenges persist: the arms race with increasingly 

realistic GAN forgeries, the need for models to generalize across domains, and the 

importance of explainability in forensic settings. Future work should prioritize universal 

and explainable forensic models, improved dataset diversity, and real-time or multimodal 

detection systems. Integrating blockchain-based provenance tracking and advancing 

forensic transparency will also be key to maintaining trust in digital visual content. 

In summary, image forgery detection is moving toward more resilient, scalable, and 

explainable systems, an imperative step in safeguarding the integrity of digital imagery in 

an era dominated by AI-generated and edited media. 
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