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Abstract. In an overview of Horizontal Current Bipolar Transistor (HCBT) 
technology, the state-of-the-art integrated silicon bipolar transistors are described 
which exhibit fT and fmax of 51 GHz and 61 GHz and fTBVCEO product of 173 GHzV that 
are among the highest-performance implanted-base, silicon bipolar transistors. HBCT 
is integrated with CMOS in a considerably lower-cost fabrication sequence as 
compared to standard vertical-current bipolar transistors with only 2 or 3 additional 
masks and fewer process steps. Due to its specific structure, the charge sharing effect 
can be employed to increase BVCEO without sacrificing fT and fmax. Moreover, the 
electric field can be engineered just by manipulating the lithography masks achieving 
the high-voltage HCBTs with breakdowns up to 36 V integrated in the same process 
flow with high-speed devices, i.e. at zero additional costs. Double-balanced active 
mixer circuit is designed and fabricated in HCBT technology. The maximum IIP3 of 
17.7 dBm at mixer current of 9.2 mA and conversion gain of -5 dB are achieved. 

Key words: BiCMOS technology, Bipolar transistors, Horizontal Current Bipolar 
Transistor, Radio frequency integrated circuits, Mixer, High-voltage 
bipolar transistors. 

1. iNTRODUCTiON 

in the highly competitive wireless communication markets, the RF circuits and 
systems are fabricated in the technologies that are very cost-sensitive. in order to 
minimize the fabrication costs, the sub-10 GHz applications can be processed by using the 
high-volume silicon technologies. it has been identified that the optimum solution might 
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Abstract. A new extended Green-Sasao hierarchy of families and forms with a new sub-
family for multiple-valued Reed-Muller logic is introduced. Recently, two families of bi-
nary canonical Reed-Muller forms, called Inclusive Forms (IFs) and Generalized Inclu-
sive Forms (GIFs) have been proposed, where the second family was the first to include 
all minimum Exclusive Sum-Of-Products (ESOPs). In this paper, we propose, analogous-
ly to the binary case, two general families of canonical ternary Reed-Muller forms, called 
Ternary Inclusive Forms (TIFs) and their generalization of Ternary Generalized Inclusive 
Forms (TGIFs), where the second family includes minimum Galois Field Sum-Of-Prod-
ucts (GFSOPs) over ternary Galois field GF(3). One of the basic motivations in this work 
is the application of these TIFs and TGIFs to find the minimum GFSOP for multiple-val-
ued input-output functions within logic synthesis, where a GFSOP minimizer based on 
IF polarity can be used to minimize the multiple-valued GFSOP expression for any given 
function. The realization of the presented Shannon-Davio (S/D) trees using Universal 
Logic Modules (ULMs) is also introduced, where ULMs are complete systems that can 
implement all possible logic functions utilizing the corresponding S/D expansions of mul-
tiple-valued Shannon and Davio spectral transforms.

Key words: Canonical Forms, Galois Field Forms, Green-Sasao Hierarchy, Inclusive 
Forms, Multiple-Valued Logic, Shannon-Davio Trees, Ternary Logic, 
Universal Logic Modules.
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Abstract

A new extended Green-Sasao hierarchy of families and forms with a new sub-

family for multiple-valued Reed-Muller logic is introduced. Recently, two families

of binary canonical Reed-Muller forms, called Inclusive Forms (IFs) and Gener-

alized Inclusive Forms (GIFs) have been proposed, where the second family was

the first to include all minimum Exclusive Sum-Of-Products (ESOPs). In this pa-

per, we propose, analogously to the binary case, two general families of canon-

ical ternary Reed-Muller forms, called Ternary Inclusive Forms (TIFs) and their

generalization of Ternary Generalized Inclusive Forms (TGIFs), where the second

family includes minimum Galois Field Sum-Of-Products (GFSOPs) over ternary

Galois field GF(3). One of the basic motivations in this work is the application

of these TIFs and TGIFs to find the minimum GFSOP for multiple-valued input-

output functions within logic synthesis, where a GFSOP minimizer based on IF

polarity can be used to minimize the multiple-valued GFSOP expression for any

given function. The realization of the presented Shannon-Davio (S/D) trees using

Universal Logic Modules (ULMs) is also introduced, where ULMs are complete

systems that can implement all possible logic functions utilizing the corresponding

S/D expansions of multiple-valued Shannon and Davio spectral transforms.

Keywords 1. Canonical Forms, Galois Field Forms, Green-Sasao Hierarchy, Inclusive

Forms, Multiple-Valued Logic, Shannon-Davio Trees, Ternary Logic, Universal Logic

Modules.

1 Normal Galois Forms

Reed-Muller-like spectral transforms [1-18] have found a variety of useful applica-

tions in minimizing Exclusive Sum-Of-Products (ESOP) and Galois field SOP (GF-

SOP) expressions, creation of new forms, binary and spectral decision diagrams, reg-

ular structures, besides the well-known uses in digital communications, digital signal
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Table 1: Number of product terms needed to realize some arithmetic functions using various

expressions.

Function PPRM FPRM GRM ESOP SOP

adr4 34 34 34 31 75

log8 253 193 105 96 123

nrm4 216 185 96 69 120

rdm8 56 56 31 31 76

rot8 225 118 51 35 57

sym9 210 173 126 51 84

wgt8 107 107 107 58 255

and image processing, and fault detection and testing [1-9, 12-14, 16, 17, 19, 20, 21].

The method of generating the new families of multiple-valued Shannon and Davio

spectral transforms is based on the fundamental multiple-valued Shannon and Davio

expansions. Dyadic families of discrete transforms; Reed-Muller and Green-Sasao hi-

erarchy, Walsh, Arithmetic, Adding and Haar transforms and their generalizations to

multiple-valued transforms, have also found important applications in digital system

design and optimization [1, 6, 19, 7-18, 20-31].

Normal canonical forms play an important role in the synthesis of logic circuits

which includes synthesis, testing and optimization [1, 9, 12-15, 17, 21, 22, 26, 27, 31,

32]. One can observe that by going, for example, from Positive Polarity Reed-Muller

(PPRM) form to the Generalized Reed-Muller (GRM) form, less constraints are im-

posed on the canonical forms due to the enlarged set of polarities that one can choose

from. The gain of more freedom on the polarity of the canonical expansions will pro-

vide an advantage of obtaining Exclusive-Sum-Of-Product (ESOP) expressions with

less number of terms and literals, and consequently expressing Boolean functions us-

ing ESOP forms will produce on average expressions with less size as if compared to

Sum-Of-Product (SOP) expressions for example. Table 1 illustrates these observations

[1]. The main algebraic structure which is used in this work for developing the canon-

ical normal forms is the Galois field (GF) algebraic structure, which is a fundamental

algebraic structure in the theory of algebra [1, 12, 13, 17, 22, 29, 33, 34]. The impor-

tance of GF for logic synthesis results from the fact that every finite field is isomorphic

to a Galois field. In general, the attractive properties of GF-based circuits, such as the

high testability of such circuits, are mainly due to the fact that the GF operators exhibit

the Cyclic Group, also known as Latin Square, property.

In binary, for example, GF(2) addition gate, the EXOR, has the cyclic group prop-

erty. The cyclic group property can be explained, for example, using the three-valued

(ternary) GF operators as shown in Figures 1(a) and 1(b), respectively. Note that in

any row and column of the addition table in Figure 1(a), the elements are all different,

which is cyclic, and that the elements have a different order in each row and column.

Another cyclic group can be observed in the multiplication table; if the zero elements

are removed from the multiplication table in Figure 1(b), then the remaining elements

form a cyclic group.

Reed-Muller normal forms have been classified using the Green-Sasao hierarchy [1,

10, 12, 13, 17], where the Green-Sasao hierarchy of families of canonical forms and

corresponding decision diagrams is based on three generic expansions; Shannon, pos-
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Figure 1: Third radix Galois field addition and multiplication tables: (a) addition and (b) multi-

plication.

itive Davio and negative Davio expansions. The two-valued Shannon, positive Davio

and negative Davio expansions are given as follows, respectively:

f (x1,x2, . . . ,xn) = x̄1 · f0(x1,x2, . . . ,xn)⊕ x1 · f1(x1,x2, . . . ,xn)

=
[

x̄1 x1

]

[

1 0

0 1

][

f0

f1

]

,
(1)

f (x1,x2, . . . ,xn) = 1 · f0(x1,x2, . . . ,xn)⊕ x1 · f2(x1,x2, . . . ,xn)

=
[

1 x1

]

[

1 0

1 1

][

f0

f1

]

,
(2)

f (x1,x2, . . . ,xn) = 1 · f1(x1,x2, . . . ,xn)⊕ x̄1 · f2(x1,x2, . . . ,xn)

=
[

1 x̄1

]

[

0 1

1 1

][

f0

f1

]

,
(3)

where f0(x1,x2, . . . ,xn) = f (0,x2, . . . ,xn) = f0 is the negative cofactor of variable x1,

f1(x1,x2, . . . ,xn) = f (1,x2, . . . ,xn) = f1 is the positive cofactor of variable x1, and

f2(x1,x2, . . . ,xn) = f (0,x2, . . . ,xn)⊕ f (1,x2, . . . ,xn) = f0 ⊕ f1. In addition, an arbi-

trary n-variable function f (x1, . . . ,xn) can be represented using PPRM expansion as [2,

31]:

f (x1,x2, . . . ,xn) =a0 ⊕ a1x1 ⊕ . . .⊕anxn ⊕a12x1x2 ⊕a13x1x3 ⊕an−1,nxn−1xn⊕

. . .⊕ a12...nx1x2 . . .xn.
(4)

For each function f , the coefficients ai in Equation (4) are determined uniquely, so

PPRM is a canonical form. For example, if we use either only the positive literal or

only the negative literal for each variable in Equation (4) we obtain the Fixed Polarity

Reed-Muller (FPRM) form.

The good selection of different permutations using Shannon and Davio expansions

- like other expansions such as Walsh and Arithmetic expansions - as internal nodes

in decision trees (DTs) and diagrams (DDs) will result in DTs and DDs that represent

the corresponding logic functions with smaller sizes in terms of the total number of

hierarchical levels used, and the total number of internal nodes needed.

In general, a literal can be defined as any function of a single variable. Basis func-

tions in the general case of multiple-valued expansions are constructed using these
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literals. Galois field Sum-Of-Products expansions can be performed utilizing variety

uses of literals. For example, one can use K-Reduced Post literal (K-RPL) to produce

K-RPL GFSOP, Generalized (Post) literal (GL) to produce GL GFSOP, and Universal

literal (UL) to produce UL GFSOP.

Example 1. Figure 2 demonstrates several literal types, where one proceeds from the

simplest literal in Figure 2(a) (i.e., RPL) to the most complex universal literal in Figure

2(c). For RPL in Figure 2(a), a value K is produced by the literal when the value of

the variable is equal to a specific state, and in this particular example a value of K = 1

is generated by the 1-RPL when the value of variable x is equal to certain state where

this state here equals to one. The GL in Figure 2(b) produces a value of radix for a

set of distinct states. One notes that, in contrast to the other literals, UL in Figure 2(c)

can have any value of the logic system at distinct states, and thus UL has the highest

complexity among the different types of literals.
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Figure 2: An illustrating example of the different types of literals over an arbitrary five-radix

logic: (a) 1-Reduced Post Literal (1-RPL), (b) Generalized (Post) Literal (GL), and (c)

Universal Literal (UL).

Since K-RPL GFSOP is simpler from implementation point of view than GL or

UL, we will perform all the GFSOP expansions utilizing the 1-RPL GFSOP. Let us

define 1-RPL [1, 17] as:
ix = 1 iff x = i else ix = 0. (5)

For example {0x, 1x, 2x} are the zero, first, and second polarities of the 1-RPL,

respectively. Also, let us define the ternary shifts over variable x as {x,x′,x′′} as the

zero, first and second shifts of the variable x respectively, i.e., x = x+ 0, x′ = x+ 1

and x′′ = x+ 2, and x can take any value in the set {0,1,2}. We chose to represent

the 1-Reduced Post Literals in terms of shifts and powers, among others, because of

the ease of the implementation of powers of shifted variables in hardware as will be

seen in Section 3 within Universal Logic Modules (ULMs) for the production of RPL.

The fundamental Shannon expansion over GF(3) for a ternary function with a single

variable is shown in Theorem 1.

Theorem 1. Shannon expansion over GF(3) for a function with a single variable is:

f = 0x f0 +
1x f1 +

2x f2, (6)

where f0 is cofactor of f with respect to variable x of value 0, f1 is cofactor of f with

respect to variable x of value 1, and f2 is cofactor of f with respect to variable x of

value 2.
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Proof. From Equation (5), if we substitute the values of the 1-RPL in Equation (6),

we obtain the following {x = 0 ⇒ fx=0 = f0,x = 1 ⇒ fx=1 = f1,x = 2 ⇒ fx=2 = f2}
which are the cofactors of variable x of values {0,1,2}, respectively.

Example 2. Let f (x1,x2) = x′1x2 +x′′2x1. Then, using Figure 1, the ternary truth vector

with the variable order {x1,x2} is F = [0,2,1,1,2,0,2,2,2]T . Using Equation (6), we

obtain the following GF(3) Shannon expansion f (x1,x2) =
0x1

1x2 + 2 · 0x1
2x2 + 2 ·

1x1
0x2 +2 · 1x1

1x2 +2 · 1x1
2x2 +

2x1
0x2 +2 · 2x1

2x2.

By using the addition and multiplication over GF(3) utilizing Figure 1, the 1-RPL

which is defined in Equation (5) is related to the shifts of variables over GF(3) in terms

of powers as follows:

0x =2(x)2 +1, (7)

0x =2(x′)2 +2(x′), (8)

0x =2(x′′)2 + x′′, (9)

1x =2(x)2 +2(x), (10)

1x =2(x′)2 + x′, (11)

1x =2(x′′)2 +1, (12)

2x =2(x)2 + x, (13)

2x =2(x′)2 +1, (14)

2x =2(x′′)2 +2(x′′). (15)

After the substitution of Equations (7) - (15) in Equation (6), and after the minimization

of the terms according to the GF operations in Figure 1, one obtains the following

Equations:

f =1 · f0 + x · (2 f1 + f2)+2(x)2( f0 + f1 + f2), (16)

f =1 · f2 + x′ · (2 f0 + f1)+2(x′)2( f0 + f1 + f2), (17)

f =1 · f1 + x” · (2 f2 + f0)+2(x′′)2( f0 + f1 + f2). (18)

Equations (6) and (16) - (18) are the ternary fundamental Shannon and Davio ex-

pansions for a single variable, respectively. These Equations can be re-written in the

following matrix-based forms as shown in Equations (19) - (22). We observe that

Equations (19) - (22) are expansions for a single variable, but these expansions can be

recursively generated for arbitrary number of variables N using the Kronecker product

- also called the tensor product - analogously to the binary case [1, 17].
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Figure 3: Two-valued nodes: (a) Shannon, (b) positive Davio, (c) negative Davio, and (d) gener-

alized Davio where a ∈ {a,a′}.

variable, that is one tree level, Figure 4 represents the expansion nodes for ternary

Shannon, Davio and generalized Davio (D), respectively.
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Figure 4: Ternary nodes for ternary decision trees: (a) Shannon, (b) Davio0, (c) Davio1, (d)

Davio2, and (e) generalized Davio (D) where x ∈ {x,x′,x′′}.

In correspondence to the binary S/D trees, one can produce ternary S/D trees. To

define the ternary S/D trees, we define the generalized Davio node over ternary Galois

radix as shown in Figure 4(e). Our notation here is that (x) corresponds to the three

possible shifts of the variable x as follows:

x ∈ {x,x′,x′′}, over GF(3). (28)

Definition 1. The ternary tree with ternary Shannon and ternary generalized Davio

nodes, that generates other ternary trees, is called ternary Shannon-Davio (S/D) tree.

Utilizing the definition of ternary Shannon in Figure 4(a) and ternary generalized

Davio in Figure 4(e), we obtain the ternary Shannon-Davio trees (ternary S/D trees)

for two variables as shown in Figure 5. From the ternary S/D DTs shown in Figure

5, if we take any S/D tree and multiply the second-level cofactors (which are in the

TDT leaves) each by the corresponding path in that TDT, and sum all the resulting

cubes (terms) over GF(3), we obtain the flattened form of the function f , as a certain

GFSOP expression. For each TDT in Figure 5, there are as many forms obtained for

the function f as the number of possible permutations of the polarities of the variables

in the second-level branches of each TDT.

Definition 2. The family of all possible forms obtained per ternary S/D tree is called

Ternary Inclusive Forms (TIFs).

The numbers of these TIFs per TDT for two variables are shown on top of each

S/D TDT in Figure 5. By observing Figure 5, we can generate the corresponding

flattened forms by two methods. A classical method, per analogy with well-known

binary forms, would be to create every transform matrix for every TIF S/D tree and

then expand using that transform matrix. A better method is to create one flattened
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In correspondence to the binary S/D trees, one can produce ternary S/D trees. To

define the ternary S/D trees, we define the generalized Davio node over ternary Galois

radix as shown in Figure 4(e). Our notation here is that (x) corresponds to the three

possible shifts of the variable x as follows:

x ∈ {x,x′,x′′}, over GF(3). (28)

Definition 1. The ternary tree with ternary Shannon and ternary generalized Davio

nodes, that generates other ternary trees, is called ternary Shannon-Davio (S/D) tree.

Utilizing the definition of ternary Shannon in Figure 4(a) and ternary generalized

Davio in Figure 4(e), we obtain the ternary Shannon-Davio trees (ternary S/D trees)

for two variables as shown in Figure 5. From the ternary S/D DTs shown in Figure

5, if we take any S/D tree and multiply the second-level cofactors (which are in the

TDT leaves) each by the corresponding path in that TDT, and sum all the resulting

cubes (terms) over GF(3), we obtain the flattened form of the function f , as a certain

GFSOP expression. For each TDT in Figure 5, there are as many forms obtained for

the function f as the number of possible permutations of the polarities of the variables

in the second-level branches of each TDT.

Definition 2. The family of all possible forms obtained per ternary S/D tree is called

Ternary Inclusive Forms (TIFs).

The numbers of these TIFs per TDT for two variables are shown on top of each

S/D TDT in Figure 5. By observing Figure 5, we can generate the corresponding

flattened forms by two methods. A classical method, per analogy with well-known

binary forms, would be to create every transform matrix for every TIF S/D tree and

then expand using that transform matrix. A better method is to create one flattened

108

An Extended Green - Sasao Hierarchy of Canonical Ternary Galois Forms ...

S

a’ a

(  )a

PD

1 a

(  )b

ND

1 a’

D

1 a

(   )d(  )c

Figure 3: Two-valued nodes: (a) Shannon, (b) positive Davio, (c) negative Davio, and (d) gener-

alized Davio where a ∈ {a,a′}.

variable, that is one tree level, Figure 4 represents the expansion nodes for ternary

Shannon, Davio and generalized Davio (D), respectively.

S

0
x

1
x

2
x

(a)

D0

1 x
2

(b)

D2

1

(d)

D

1

(e)

D1

1 ( ’)x
2 ( ’’)x

2
( )x

2

(c)

x xx’ x’’

Figure 4: Ternary nodes for ternary decision trees: (a) Shannon, (b) Davio0, (c) Davio1, (d)

Davio2, and (e) generalized Davio (D) where x ∈ {x,x′,x′′}.

In correspondence to the binary S/D trees, one can produce ternary S/D trees. To

define the ternary S/D trees, we define the generalized Davio node over ternary Galois

radix as shown in Figure 4(e). Our notation here is that (x) corresponds to the three

possible shifts of the variable x as follows:

x ∈ {x,x′,x′′}, over GF(3). (28)

Definition 1. The ternary tree with ternary Shannon and ternary generalized Davio

nodes, that generates other ternary trees, is called ternary Shannon-Davio (S/D) tree.

Utilizing the definition of ternary Shannon in Figure 4(a) and ternary generalized

Davio in Figure 4(e), we obtain the ternary Shannon-Davio trees (ternary S/D trees)

for two variables as shown in Figure 5. From the ternary S/D DTs shown in Figure

5, if we take any S/D tree and multiply the second-level cofactors (which are in the

TDT leaves) each by the corresponding path in that TDT, and sum all the resulting

cubes (terms) over GF(3), we obtain the flattened form of the function f , as a certain

GFSOP expression. For each TDT in Figure 5, there are as many forms obtained for

the function f as the number of possible permutations of the polarities of the variables

in the second-level branches of each TDT.

Definition 2. The family of all possible forms obtained per ternary S/D tree is called

Ternary Inclusive Forms (TIFs).

The numbers of these TIFs per TDT for two variables are shown on top of each

S/D TDT in Figure 5. By observing Figure 5, we can generate the corresponding

flattened forms by two methods. A classical method, per analogy with well-known

binary forms, would be to create every transform matrix for every TIF S/D tree and

then expand using that transform matrix. A better method is to create one flattened

108



52 A. N. Al-RAbADi  An Extended Green - Sasao Hierarchy of Canonical Ternary Galois Forms and Universal logic Modules 53

An Extended Green - Sasao Hierarchy of Canonical Ternary Galois Forms ...

Proof. From Equation (5), if we substitute the values of the 1-RPL in Equation (6),

we obtain the following {x = 0 ⇒ fx=0 = f0,x = 1 ⇒ fx=1 = f1,x = 2 ⇒ fx=2 = f2}
which are the cofactors of variable x of values {0,1,2}, respectively.

Example 2. Let f (x1,x2) = x′1x2 +x′′2x1. Then, using Figure 1, the ternary truth vector

with the variable order {x1,x2} is F = [0,2,1,1,2,0,2,2,2]T . Using Equation (6), we

obtain the following GF(3) Shannon expansion f (x1,x2) =
0x1

1x2 + 2 · 0x1
2x2 + 2 ·

1x1
0x2 + 2 · 1x1

1x2 + 2 · 1x1
2x2 +

2x1
0x2 +2 · 2x1

2x2.

By using the addition and multiplication over GF(3) utilizing Figure 1, the 1-RPL

which is defined in Equation (5) is related to the shifts of variables over GF(3) in terms

of powers as follows:

0x =2(x)2 +1, (7)

0x =2(x′)2 +2(x′), (8)

0x =2(x′′)2 + x′′, (9)

1x =2(x)2 +2(x), (10)

1x =2(x′)2 + x′, (11)

1x =2(x′′)2 +1, (12)

2x =2(x)2 + x, (13)

2x =2(x′)2 +1, (14)

2x =2(x′′)2 +2(x′′). (15)

After the substitution of Equations (7) - (15) in Equation (6), and after the minimization

of the terms according to the GF operations in Figure 1, one obtains the following

Equations:

f =1 · f0 + x · (2 f1 + f2)+2(x)2( f0 + f1 + f2), (16)

f =1 · f2 + x′ · (2 f0 + f1)+2(x′)2( f0 + f1 + f2), (17)

f =1 · f1 + x” · (2 f2 + f0)+2(x′′)2( f0 + f1 + f2). (18)

Equations (6) and (16) - (18) are the ternary fundamental Shannon and Davio ex-

pansions for a single variable, respectively. These Equations can be re-written in the

following matrix-based forms as shown in Equations (19) - (22). We observe that

Equations (19) - (22) are expansions for a single variable, but these expansions can be

recursively generated for arbitrary number of variables N using the Kronecker product

- also called the tensor product - analogously to the binary case [1, 17].
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The recursive generation using the Kronecker product for arbitrary number of vari-

ables can be expressed formally as in the following forms for ternary Shannon (S) and

Davio (D0,D1,D2) expansions, respectively:

f =
N
�

i=1

�

0xi
1xi

2xi

�

N
�

i=1

[S][�F ], (23)

f =
N
�
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1 xi x2
i

�
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�

i=1

[D0][�F ], (24)
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�
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1 x′i (x′i)
2
�

N
�

i=1

[D1][�F ], (25)

f =
N
�

i=1

�

1 x′′i (x′′i )
2
�

N
�

i=1

[D2][�F ]. (26)

Analogously to the binary case, we can have expansions that are mixed of Shan-

non (S) for certain variables and Davio (D0,D1,D2) for the other variables. This will

lead, analogously to the binary case, to the Kronecker Ternary Decision Trees (TDTs).

Moreover, mixed expansions can be extended to include the case of Pseudo Kronecker

TDTs [17].

2 New Multiple-Valued S/D Trees and Their Canonical

Galois SOP Forms

Economical and highly testable implementations of Boolean functions, based on Reed-

Muller (AND-EXOR) logic, play an important role in logic synthesis and circuit de-

sign. The AND-EXOR circuits include canonical forms which are expansions that

are unique representations of a Boolean function. Several large families of canonical

forms: Fixed polarity Reed-Muller (FPRM) forms, generalized Reed-Muller (GRM)

forms, Kronecker (KRO) forms and pseudo-Kronecker (PSDKRO) forms, referred to
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as the Green-Sasao hierarchy, have been described [1, 10, 17]. Because canonical fam-

ilies have higher testability and some other properties desirable for efficient synthesis,

especially of some classes of functions, they are widely investigated. A similar ternary

version of the binary Green-Sasao hierarchy can be developed, where this hierarchy

can find applications in minimizing Galois field Sum-Of-Product (GFSOP) expres-

sions which are expressions in the Sum-Of-Product form that uses the additions and

multiplications of arbitrary radix Galois field, and can be used for the creation of new

forms, decision diagrams and regular structures.

The current state-of-the-art minimizers of Exclusive Sum-Of-Product (ESOP) ex-

pressions are based on heuristics and give the exact solution only for functions with

a small number of variables. For example, a formulation for finding exact ESOP was

given [11], and an algorithm to derive minimum ESOP for 6-variable function was

provided [25]. Because GFSOP minimization is even more difficult, it is important to

investigate the structural properties and the counts of their canonical sub-families.

Two families of binary canonical Reed-Muller forms, called Inclusive Forms (IFs)

and Generalized Inclusive Forms (GIFs) were presented [1], where the second family

was the first to include all minimum ESOPs (binary GFSOPs). In these forms, IF is the

form generated by the corresponding S/D tree and GIF is the form which is the union

of the various variable-based ordering IFs (cf. definitions and theorems of these forms

in the next subsection). In this paper, we propose, as analogous to the binary case,

two general families of canonical ternary Reed-Muller forms, called Ternary Inclusive

Forms (TIFs) and their generalization of Ternary Generalized Inclusive Forms (TGIFs),

where GFSOP minimizer based on these new forms can be used to minimize functional

GFSOP expressions and the second family of TGIFs includes minimum GFSOPs over

ternary Galois field. One of the motivations for this work is the application of these

TIFs and TGIFs to find minimum GFSOP for multiple-valued inputs multiple-valued

outputs within logic synthesis, where the corresponding S/D trees provide more general

polarity that contains GRM forms as a special case.

2.1 S/D Trees and their Inclusive Forms and Generalized Inclusive

Forms

Two general families based on the Shannon expansion and the generalized Davio ex-

pansion which are produced using the corresponding S/D trees are presented in this

subsection. These families are called the Inclusive Forms (IFs) and the Generalized In-

clusive Forms (GIFs). The corresponding expansions over GF(2) are shown in Figure

3, where Figure 3(d) shows the new node which is based on binary Davio expansions

called the generalized Davio (D) expansion (cf. Equation (28) for the more general

ternary case) that generates the negative and positive Davio expansions as special cases.

The S/D trees for IFs of two variables can be generated for variable order {a,b}
and for variable order {b,a} as well. The set of GIFs for two variables is the union of

these two order-based IFs, where the total number of the resulting GIFs is equal to:

#GIF = 2 · (#IFa,b)−#(IFa,b

⋂

IFb,a). (27)

The Galois-based Shannon and Davio ternary expansions (i.e., flattened forms) can

be represented in Ternary DTs (TDTs) and the corresponding varieties of Ternary DDs

(TDDs) according to the corresponding reduction rules that are used [1, 17]. For one
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sions which are expressions in the Sum-Of-Product form that uses the additions and

multiplications of arbitrary radix Galois field, and can be used for the creation of new

forms, decision diagrams and regular structures.

The current state-of-the-art minimizers of Exclusive Sum-Of-Product (ESOP) ex-

pressions are based on heuristics and give the exact solution only for functions with

a small number of variables. For example, a formulation for finding exact ESOP was

given [11], and an algorithm to derive minimum ESOP for 6-variable function was

provided [25]. Because GFSOP minimization is even more difficult, it is important to

investigate the structural properties and the counts of their canonical sub-families.

Two families of binary canonical Reed-Muller forms, called Inclusive Forms (IFs)

and Generalized Inclusive Forms (GIFs) were presented [1], where the second family

was the first to include all minimum ESOPs (binary GFSOPs). In these forms, IF is the

form generated by the corresponding S/D tree and GIF is the form which is the union

of the various variable-based ordering IFs (cf. definitions and theorems of these forms

in the next subsection). In this paper, we propose, as analogous to the binary case,

two general families of canonical ternary Reed-Muller forms, called Ternary Inclusive

Forms (TIFs) and their generalization of Ternary Generalized Inclusive Forms (TGIFs),

where GFSOP minimizer based on these new forms can be used to minimize functional

GFSOP expressions and the second family of TGIFs includes minimum GFSOPs over

ternary Galois field. One of the motivations for this work is the application of these

TIFs and TGIFs to find minimum GFSOP for multiple-valued inputs multiple-valued

outputs within logic synthesis, where the corresponding S/D trees provide more general

polarity that contains GRM forms as a special case.

2.1 S/D Trees and their Inclusive Forms and Generalized Inclusive

Forms

Two general families based on the Shannon expansion and the generalized Davio ex-

pansion which are produced using the corresponding S/D trees are presented in this

subsection. These families are called the Inclusive Forms (IFs) and the Generalized In-

clusive Forms (GIFs). The corresponding expansions over GF(2) are shown in Figure

3, where Figure 3(d) shows the new node which is based on binary Davio expansions

called the generalized Davio (D) expansion (cf. Equation (28) for the more general

ternary case) that generates the negative and positive Davio expansions as special cases.

The S/D trees for IFs of two variables can be generated for variable order {a,b}
and for variable order {b,a} as well. The set of GIFs for two variables is the union of

these two order-based IFs, where the total number of the resulting GIFs is equal to:

#GIF = 2 · (#IFa,b)−#(IFa,b

⋂

IFb,a). (27)

The Galois-based Shannon and Davio ternary expansions (i.e., flattened forms) can

be represented in Ternary DTs (TDTs) and the corresponding varieties of Ternary DDs

(TDDs) according to the corresponding reduction rules that are used [1, 17]. For one
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The recursive generation using the Kronecker product for arbitrary number of vari-

ables can be expressed formally as in the following forms for ternary Shannon (S) and

Davio (D0,D1,D2) expansions, respectively:
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Analogously to the binary case, we can have expansions that are mixed of Shan-

non (S) for certain variables and Davio (D0,D1,D2) for the other variables. This will

lead, analogously to the binary case, to the Kronecker Ternary Decision Trees (TDTs).

Moreover, mixed expansions can be extended to include the case of Pseudo Kronecker

TDTs [17].

2 New Multiple-Valued S/D Trees and Their Canonical

Galois SOP Forms

Economical and highly testable implementations of Boolean functions, based on Reed-

Muller (AND-EXOR) logic, play an important role in logic synthesis and circuit de-

sign. The AND-EXOR circuits include canonical forms which are expansions that

are unique representations of a Boolean function. Several large families of canonical

forms: Fixed polarity Reed-Muller (FPRM) forms, generalized Reed-Muller (GRM)

forms, Kronecker (KRO) forms and pseudo-Kronecker (PSDKRO) forms, referred to
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Shannon, Davio and generalized Davio (D), respectively.
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Figure 4: Ternary nodes for ternary decision trees: (a) Shannon, (b) Davio0, (c) Davio1, (d)

Davio2, and (e) generalized Davio (D) where x ∈ {x,x′,x′′}.

In correspondence to the binary S/D trees, one can produce ternary S/D trees. To

define the ternary S/D trees, we define the generalized Davio node over ternary Galois

radix as shown in Figure 4(e). Our notation here is that (x) corresponds to the three

possible shifts of the variable x as follows:

x ∈ {x,x′,x′′}, over GF(3). (28)

Definition 1. The ternary tree with ternary Shannon and ternary generalized Davio

nodes, that generates other ternary trees, is called ternary Shannon-Davio (S/D) tree.

Utilizing the definition of ternary Shannon in Figure 4(a) and ternary generalized

Davio in Figure 4(e), we obtain the ternary Shannon-Davio trees (ternary S/D trees)

for two variables as shown in Figure 5. From the ternary S/D DTs shown in Figure

5, if we take any S/D tree and multiply the second-level cofactors (which are in the

TDT leaves) each by the corresponding path in that TDT, and sum all the resulting

cubes (terms) over GF(3), we obtain the flattened form of the function f , as a certain

GFSOP expression. For each TDT in Figure 5, there are as many forms obtained for

the function f as the number of possible permutations of the polarities of the variables

in the second-level branches of each TDT.

Definition 2. The family of all possible forms obtained per ternary S/D tree is called

Ternary Inclusive Forms (TIFs).

The numbers of these TIFs per TDT for two variables are shown on top of each

S/D TDT in Figure 5. By observing Figure 5, we can generate the corresponding

flattened forms by two methods. A classical method, per analogy with well-known

binary forms, would be to create every transform matrix for every TIF S/D tree and

then expand using that transform matrix. A better method is to create one flattened
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form which is an expansion over certain transform matrix (i.e., certain TIF) and then

transform systematically from one form to another form without the need to create

all transform matrices from the corresponding S/D trees. This general approach can

lead to several algorithms of various complexities that generalize the existing binary

algorithms to obtain the corresponding forms such as FPRM, GRM and IF forms.

Example 3. Using the result of Example 2 for the expansion of f (x1,x2) in terms of

the ternary Shannon expansion (that resembles the S/D tree for Shannon nodes in both

levels):

f = 0x1
1x2 +2 · 0x1

2x2 +2 · 1x1
0x2 +2 · 1x1

1x2 +2 · 1x1
2x2 +

2x1
0x2 +2 · 2x1

2x2,

(29)

We can substitute any of Equations (7) - (15), or a mix of these Equations, to transform

one flattened form to another. For example, if we substitute Equations (7) and (11), we

obtain:

f =(2(x1)
2 +1)(2(x′2)

2 + x′2)+2(2(x1)
2 +1)2x2 +2(2(x′1)

2 + x′1)(2(x2)
2 +1)

+2(2(x′1)
2 + x′1)(2(x

′
2)

2 + x′2)+2(2(x′1)
2 + x′1) ·

2x2 +
2x1(2(x2)

2 +1)

+2 · 2x1
2x2,

(30)

By utilizing GF addition and multiplication operators from Figure 1, Equation (30) can

be transformed to:

f =(x1)
2(x′2)

2 +2(x1)
2(x′2)+2(x′2)

2 + x′2 +(x1)
2( 2x2)+2( 2x2)+2(x′1)

2(x2)
2

+(x′1)
2 +(x′1)(x2)

2 +2x′1 +2(x′1)
2(x′2)

2 +(x′1)
2(x′2)+ (x′1)(x

′
2)

2 +2x′1x′2

+(x′1)
2 · 2x2 +2(x′1)

2x2 +2( 2x1)(x2)
2 + 2x1 +2( 2x1)(

2x2).

(31)

Let us define, as one of possible definitions, the cost of the flattened form (expres-

sion) to be:

Cost = # Cubes (32)

Then, we observe that Equation (29) has the cost of seven, while Equation (31) has

the cost of 19. Thus, the inverse transformations applied to Equation (31) would lead

to Equation (29) and a reduction of cost from 19 to seven. Using the same approach,

we can generate a subset of possible GFSOP expressions (flattened forms). Note that

all of these GFSOP expressions are equivalent since they produce the same function in

different forms. Yet, as can be observed from Equation (31), by further transformations

of Equation (29) from one form to another, some transformations produce flattened

forms with a smaller number of cubes than the others. From this observation rises

the idea of a possible application of evolutionary computing using the S/D trees and

related transformations to produce the corresponding minimum GFSOPs. Analogous

to the binary case in Equation (27), the ternary GIFs can be defined as the union of

ternary IFs.

Definition 3. The family of forms, which is created as a union of sets of TIFs for all

variable orders, is called Ternary Generalized Inclusive Forms (TGIFs).
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form which is an expansion over certain transform matrix (i.e., certain TIF) and then

transform systematically from one form to another form without the need to create

all transform matrices from the corresponding S/D trees. This general approach can

lead to several algorithms of various complexities that generalize the existing binary

algorithms to obtain the corresponding forms such as FPRM, GRM and IF forms.

Example 3. Using the result of Example 2 for the expansion of f (x1,x2) in terms of

the ternary Shannon expansion (that resembles the S/D tree for Shannon nodes in both

levels):

f = 0x1
1x2 +2 · 0x1

2x2 +2 · 1x1
0x2 +2 · 1x1

1x2 +2 · 1x1
2x2 +

2x1
0x2 +2 · 2x1

2x2,

(29)

We can substitute any of Equations (7) - (15), or a mix of these Equations, to transform

one flattened form to another. For example, if we substitute Equations (7) and (11), we

obtain:

f =(2(x1)
2 +1)(2(x′2)

2 + x′2)+2(2(x1)
2 +1)2x2 +2(2(x′1)

2 + x′1)(2(x2)
2 +1)

+2(2(x′1)
2 + x′1)(2(x

′
2)

2 + x′2)+2(2(x′1)
2 + x′1) ·

2x2 +
2x1(2(x2)

2 +1)

+2 · 2x1
2x2,

(30)
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2 + x′2 +(x1)
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2(x2)
2

+(x′1)
2 +(x′1)(x2)

2 +2x′1 +2(x′1)
2(x′2)

2 +(x′1)
2(x′2)+ (x′1)(x

′
2)

2 +2x′1x′2

+(x′1)
2 · 2x2 +2(x′1)

2x2 +2( 2x1)(x2)
2 + 2x1 +2( 2x1)(

2x2).

(31)

Let us define, as one of possible definitions, the cost of the flattened form (expres-

sion) to be:

Cost = # Cubes (32)

Then, we observe that Equation (29) has the cost of seven, while Equation (31) has

the cost of 19. Thus, the inverse transformations applied to Equation (31) would lead

to Equation (29) and a reduction of cost from 19 to seven. Using the same approach,

we can generate a subset of possible GFSOP expressions (flattened forms). Note that

all of these GFSOP expressions are equivalent since they produce the same function in

different forms. Yet, as can be observed from Equation (31), by further transformations

of Equation (29) from one form to another, some transformations produce flattened

forms with a smaller number of cubes than the others. From this observation rises

the idea of a possible application of evolutionary computing using the S/D trees and

related transformations to produce the corresponding minimum GFSOPs. Analogous

to the binary case in Equation (27), the ternary GIFs can be defined as the union of

ternary IFs.

Definition 3. The family of forms, which is created as a union of sets of TIFs for all

variable orders, is called Ternary Generalized Inclusive Forms (TGIFs).
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form which is an expansion over certain transform matrix (i.e., certain TIF) and then

transform systematically from one form to another form without the need to create

all transform matrices from the corresponding S/D trees. This general approach can

lead to several algorithms of various complexities that generalize the existing binary

algorithms to obtain the corresponding forms such as FPRM, GRM and IF forms.

Example 3. Using the result of Example 2 for the expansion of f (x1,x2) in terms of

the ternary Shannon expansion (that resembles the S/D tree for Shannon nodes in both

levels):

f = 0x1
1x2 +2 · 0x1

2x2 +2 · 1x1
0x2 +2 · 1x1

1x2 +2 · 1x1
2x2 +

2x1
0x2 +2 · 2x1

2x2,

(29)

We can substitute any of Equations (7) - (15), or a mix of these Equations, to transform

one flattened form to another. For example, if we substitute Equations (7) and (11), we

obtain:

f =(2(x1)
2 +1)(2(x′2)

2 + x′2)+2(2(x1)
2 +1)2x2 +2(2(x′1)

2 + x′1)(2(x2)
2 +1)

+2(2(x′1)
2 + x′1)(2(x

′
2)

2 + x′2)+2(2(x′1)
2 + x′1) ·

2x2 +
2x1(2(x2)

2 +1)

+2 · 2x1
2x2,

(30)

By utilizing GF addition and multiplication operators from Figure 1, Equation (30) can

be transformed to:

f =(x1)
2(x′2)

2 +2(x1)
2(x′2)+2(x′2)

2 + x′2 +(x1)
2( 2x2)+2( 2x2)+2(x′1)

2(x2)
2

+(x′1)
2 +(x′1)(x2)

2 +2x′1 +2(x′1)
2(x′2)

2 +(x′1)
2(x′2)+ (x′1)(x

′
2)

2 +2x′1x′2

+(x′1)
2 · 2x2 +2(x′1)

2x2 +2( 2x1)(x2)
2 + 2x1 +2( 2x1)(

2x2).

(31)

Let us define, as one of possible definitions, the cost of the flattened form (expres-

sion) to be:

Cost = # Cubes (32)

Then, we observe that Equation (29) has the cost of seven, while Equation (31) has

the cost of 19. Thus, the inverse transformations applied to Equation (31) would lead

to Equation (29) and a reduction of cost from 19 to seven. Using the same approach,

we can generate a subset of possible GFSOP expressions (flattened forms). Note that

all of these GFSOP expressions are equivalent since they produce the same function in

different forms. Yet, as can be observed from Equation (31), by further transformations

of Equation (29) from one form to another, some transformations produce flattened

forms with a smaller number of cubes than the others. From this observation rises

the idea of a possible application of evolutionary computing using the S/D trees and

related transformations to produce the corresponding minimum GFSOPs. Analogous

to the binary case in Equation (27), the ternary GIFs can be defined as the union of

ternary IFs.

Definition 3. The family of forms, which is created as a union of sets of TIFs for all

variable orders, is called Ternary Generalized Inclusive Forms (TGIFs).
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form which is an expansion over certain transform matrix (i.e., certain TIF) and then

transform systematically from one form to another form without the need to create

all transform matrices from the corresponding S/D trees. This general approach can

lead to several algorithms of various complexities that generalize the existing binary

algorithms to obtain the corresponding forms such as FPRM, GRM and IF forms.

Example 3. Using the result of Example 2 for the expansion of f (x1,x2) in terms of

the ternary Shannon expansion (that resembles the S/D tree for Shannon nodes in both

levels):

f = 0x1
1x2 +2 · 0x1

2x2 +2 · 1x1
0x2 +2 · 1x1

1x2 +2 · 1x1
2x2 +

2x1
0x2 +2 · 2x1

2x2,

(29)

We can substitute any of Equations (7) - (15), or a mix of these Equations, to transform

one flattened form to another. For example, if we substitute Equations (7) and (11), we

obtain:

f =(2(x1)
2 +1)(2(x′2)

2 + x′2)+2(2(x1)
2 +1)2x2 +2(2(x′1)

2 + x′1)(2(x2)
2 +1)

+2(2(x′1)
2 + x′1)(2(x

′
2)

2 + x′2)+2(2(x′1)
2 + x′1) ·

2x2 +
2x1(2(x2)

2 +1)

+2 · 2x1
2x2,

(30)

By utilizing GF addition and multiplication operators from Figure 1, Equation (30) can

be transformed to:

f =(x1)
2(x′2)

2 +2(x1)
2(x′2)+2(x′2)

2 + x′2 +(x1)
2( 2x2)+2( 2x2)+2(x′1)

2(x2)
2

+(x′1)
2 +(x′1)(x2)

2 +2x′1 +2(x′1)
2(x′2)

2 +(x′1)
2(x′2)+ (x′1)(x

′
2)

2 +2x′1x′2

+(x′1)
2 · 2x2 +2(x′1)

2x2 +2( 2x1)(x2)
2 + 2x1 +2( 2x1)(

2x2).

(31)

Let us define, as one of possible definitions, the cost of the flattened form (expres-

sion) to be:

Cost = # Cubes (32)

Then, we observe that Equation (29) has the cost of seven, while Equation (31) has

the cost of 19. Thus, the inverse transformations applied to Equation (31) would lead

to Equation (29) and a reduction of cost from 19 to seven. Using the same approach,

we can generate a subset of possible GFSOP expressions (flattened forms). Note that

all of these GFSOP expressions are equivalent since they produce the same function in

different forms. Yet, as can be observed from Equation (31), by further transformations

of Equation (29) from one form to another, some transformations produce flattened

forms with a smaller number of cubes than the others. From this observation rises

the idea of a possible application of evolutionary computing using the S/D trees and

related transformations to produce the corresponding minimum GFSOPs. Analogous

to the binary case in Equation (27), the ternary GIFs can be defined as the union of

ternary IFs.

Definition 3. The family of forms, which is created as a union of sets of TIFs for all

variable orders, is called Ternary Generalized Inclusive Forms (TGIFs).
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Figure 3: Two-valued nodes: (a) Shannon, (b) positive Davio, (c) negative Davio, and (d) gener-

alized Davio where a ∈ {a,a′}.

variable, that is one tree level, Figure 4 represents the expansion nodes for ternary

Shannon, Davio and generalized Davio (D), respectively.
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Figure 4: Ternary nodes for ternary decision trees: (a) Shannon, (b) Davio0, (c) Davio1, (d)

Davio2, and (e) generalized Davio (D) where x ∈ {x,x′,x′′}.

In correspondence to the binary S/D trees, one can produce ternary S/D trees. To

define the ternary S/D trees, we define the generalized Davio node over ternary Galois

radix as shown in Figure 4(e). Our notation here is that (x) corresponds to the three

possible shifts of the variable x as follows:

x ∈ {x,x′,x′′}, over GF(3). (28)

Definition 1. The ternary tree with ternary Shannon and ternary generalized Davio

nodes, that generates other ternary trees, is called ternary Shannon-Davio (S/D) tree.

Utilizing the definition of ternary Shannon in Figure 4(a) and ternary generalized

Davio in Figure 4(e), we obtain the ternary Shannon-Davio trees (ternary S/D trees)

for two variables as shown in Figure 5. From the ternary S/D DTs shown in Figure

5, if we take any S/D tree and multiply the second-level cofactors (which are in the

TDT leaves) each by the corresponding path in that TDT, and sum all the resulting

cubes (terms) over GF(3), we obtain the flattened form of the function f , as a certain

GFSOP expression. For each TDT in Figure 5, there are as many forms obtained for

the function f as the number of possible permutations of the polarities of the variables

in the second-level branches of each TDT.

Definition 2. The family of all possible forms obtained per ternary S/D tree is called

Ternary Inclusive Forms (TIFs).

The numbers of these TIFs per TDT for two variables are shown on top of each

S/D TDT in Figure 5. By observing Figure 5, we can generate the corresponding

flattened forms by two methods. A classical method, per analogy with well-known

binary forms, would be to create every transform matrix for every TIF S/D tree and

then expand using that transform matrix. A better method is to create one flattened
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form which is an expansion over certain transform matrix (i.e., certain TIF) and then

transform systematically from one form to another form without the need to create

all transform matrices from the corresponding S/D trees. This general approach can

lead to several algorithms of various complexities that generalize the existing binary

algorithms to obtain the corresponding forms such as FPRM, GRM and IF forms.

Example 3. Using the result of Example 2 for the expansion of f (x1,x2) in terms of

the ternary Shannon expansion (that resembles the S/D tree for Shannon nodes in both

levels):

f = 0x1
1x2 + 2 · 0x1

2x2 + 2 · 1x1
0x2 +2 · 1x1

1x2 +2 · 1x1
2x2 +

2x1
0x2 +2 · 2x1

2x2,

(29)

We can substitute any of Equations (7) - (15), or a mix of these Equations, to transform

one flattened form to another. For example, if we substitute Equations (7) and (11), we

obtain:

f =(2(x1)
2 + 1)(2(x′2)

2 + x′2)+2(2(x1)
2 +1)2x2 +2(2(x′1)

2 + x′1)(2(x2)
2 +1)

+ 2(2(x′1)
2 + x′1)(2(x

′
2)

2 + x′2)+2(2(x′1)
2 + x′1) ·

2x2 +
2x1(2(x2)

2 +1)

+ 2 · 2x1
2x2,

(30)

By utilizing GF addition and multiplication operators from Figure 1, Equation (30) can

be transformed to:

f =(x1)
2(x′2)

2 + 2(x1)
2(x′2)+2(x′2)

2 + x′2 +(x1)
2( 2x2)+2( 2x2)+2(x′1)

2(x2)
2

+(x′1)
2 +(x′1)(x2)

2 + 2x′1 +2(x′1)
2(x′2)

2 +(x′1)
2(x′2)+ (x′1)(x

′
2)

2 +2x′1x′2

+(x′1)
2 · 2x2 + 2(x′1)

2x2 + 2( 2x1)(x2)
2 + 2x1 +2( 2x1)(

2x2).

(31)

Let us define, as one of possible definitions, the cost of the flattened form (expres-

sion) to be:

Cost = # Cubes (32)

Then, we observe that Equation (29) has the cost of seven, while Equation (31) has

the cost of 19. Thus, the inverse transformations applied to Equation (31) would lead

to Equation (29) and a reduction of cost from 19 to seven. Using the same approach,

we can generate a subset of possible GFSOP expressions (flattened forms). Note that

all of these GFSOP expressions are equivalent since they produce the same function in

different forms. Yet, as can be observed from Equation (31), by further transformations

of Equation (29) from one form to another, some transformations produce flattened

forms with a smaller number of cubes than the others. From this observation rises

the idea of a possible application of evolutionary computing using the S/D trees and

related transformations to produce the corresponding minimum GFSOPs. Analogous

to the binary case in Equation (27), the ternary GIFs can be defined as the union of

ternary IFs.

Definition 3. The family of forms, which is created as a union of sets of TIFs for all

variable orders, is called Ternary Generalized Inclusive Forms (TGIFs).
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form which is an expansion over certain transform matrix (i.e., certain TIF) and then

transform systematically from one form to another form without the need to create

all transform matrices from the corresponding S/D trees. This general approach can

lead to several algorithms of various complexities that generalize the existing binary

algorithms to obtain the corresponding forms such as FPRM, GRM and IF forms.

Example 3. Using the result of Example 2 for the expansion of f (x1,x2) in terms of

the ternary Shannon expansion (that resembles the S/D tree for Shannon nodes in both

levels):

f = 0x1
1x2 + 2 · 0x1

2x2 + 2 · 1x1
0x2 +2 · 1x1

1x2 +2 · 1x1
2x2 +

2x1
0x2 +2 · 2x1

2x2,

(29)

We can substitute any of Equations (7) - (15), or a mix of these Equations, to transform

one flattened form to another. For example, if we substitute Equations (7) and (11), we

obtain:

f =(2(x1)
2 + 1)(2(x′2)

2 + x′2)+2(2(x1)
2 +1)2x2 +2(2(x′1)

2 + x′1)(2(x2)
2 +1)

+ 2(2(x′1)
2 + x′1)(2(x

′
2)

2 + x′2)+2(2(x′1)
2 + x′1) ·

2x2 +
2x1(2(x2)

2 +1)

+ 2 · 2x1
2x2,

(30)

By utilizing GF addition and multiplication operators from Figure 1, Equation (30) can

be transformed to:

f =(x1)
2(x′2)

2 + 2(x1)
2(x′2)+2(x′2)

2 + x′2 +(x1)
2( 2x2)+2( 2x2)+2(x′1)

2(x2)
2

+(x′1)
2 +(x′1)(x2)

2 + 2x′1 +2(x′1)
2(x′2)

2 +(x′1)
2(x′2)+ (x′1)(x

′
2)

2 +2x′1x′2

+(x′1)
2 · 2x2 + 2(x′1)

2x2 + 2( 2x1)(x2)
2 + 2x1 +2( 2x1)(

2x2).

(31)

Let us define, as one of possible definitions, the cost of the flattened form (expres-

sion) to be:

Cost = # Cubes (32)

Then, we observe that Equation (29) has the cost of seven, while Equation (31) has

the cost of 19. Thus, the inverse transformations applied to Equation (31) would lead

to Equation (29) and a reduction of cost from 19 to seven. Using the same approach,

we can generate a subset of possible GFSOP expressions (flattened forms). Note that

all of these GFSOP expressions are equivalent since they produce the same function in

different forms. Yet, as can be observed from Equation (31), by further transformations

of Equation (29) from one form to another, some transformations produce flattened

forms with a smaller number of cubes than the others. From this observation rises

the idea of a possible application of evolutionary computing using the S/D trees and

related transformations to produce the corresponding minimum GFSOPs. Analogous

to the binary case in Equation (27), the ternary GIFs can be defined as the union of

ternary IFs.

Definition 3. The family of forms, which is created as a union of sets of TIFs for all

variable orders, is called Ternary Generalized Inclusive Forms (TGIFs).
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form which is an expansion over certain transform matrix (i.e., certain TIF) and then

transform systematically from one form to another form without the need to create

all transform matrices from the corresponding S/D trees. This general approach can

lead to several algorithms of various complexities that generalize the existing binary

algorithms to obtain the corresponding forms such as FPRM, GRM and IF forms.

Example 3. Using the result of Example 2 for the expansion of f (x1,x2) in terms of

the ternary Shannon expansion (that resembles the S/D tree for Shannon nodes in both

levels):

f = 0x1
1x2 + 2 · 0x1

2x2 + 2 · 1x1
0x2 +2 · 1x1

1x2 +2 · 1x1
2x2 +

2x1
0x2 +2 · 2x1

2x2,

(29)

We can substitute any of Equations (7) - (15), or a mix of these Equations, to transform

one flattened form to another. For example, if we substitute Equations (7) and (11), we

obtain:

f =(2(x1)
2 + 1)(2(x′2)

2 + x′2)+2(2(x1)
2 +1)2x2 +2(2(x′1)

2 + x′1)(2(x2)
2 +1)

+ 2(2(x′1)
2 + x′1)(2(x

′
2)

2 + x′2)+2(2(x′1)
2 + x′1) ·

2x2 +
2x1(2(x2)

2 +1)

+ 2 · 2x1
2x2,

(30)

By utilizing GF addition and multiplication operators from Figure 1, Equation (30) can

be transformed to:

f =(x1)
2(x′2)

2 + 2(x1)
2(x′2)+2(x′2)

2 + x′2 +(x1)
2( 2x2)+2( 2x2)+2(x′1)

2(x2)
2

+(x′1)
2 +(x′1)(x2)

2 + 2x′1 +2(x′1)
2(x′2)

2 +(x′1)
2(x′2)+ (x′1)(x

′
2)

2 +2x′1x′2

+(x′1)
2 · 2x2 + 2(x′1)

2x2 + 2( 2x1)(x2)
2 + 2x1 +2( 2x1)(

2x2).

(31)

Let us define, as one of possible definitions, the cost of the flattened form (expres-

sion) to be:

Cost = # Cubes (32)

Then, we observe that Equation (29) has the cost of seven, while Equation (31) has

the cost of 19. Thus, the inverse transformations applied to Equation (31) would lead

to Equation (29) and a reduction of cost from 19 to seven. Using the same approach,

we can generate a subset of possible GFSOP expressions (flattened forms). Note that

all of these GFSOP expressions are equivalent since they produce the same function in

different forms. Yet, as can be observed from Equation (31), by further transformations

of Equation (29) from one form to another, some transformations produce flattened

forms with a smaller number of cubes than the others. From this observation rises

the idea of a possible application of evolutionary computing using the S/D trees and

related transformations to produce the corresponding minimum GFSOPs. Analogous

to the binary case in Equation (27), the ternary GIFs can be defined as the union of

ternary IFs.

Definition 3. The family of forms, which is created as a union of sets of TIFs for all

variable orders, is called Ternary Generalized Inclusive Forms (TGIFs).
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form which is an expansion over certain transform matrix (i.e., certain TIF) and then

transform systematically from one form to another form without the need to create

all transform matrices from the corresponding S/D trees. This general approach can

lead to several algorithms of various complexities that generalize the existing binary

algorithms to obtain the corresponding forms such as FPRM, GRM and IF forms.

Example 3. Using the result of Example 2 for the expansion of f (x1,x2) in terms of

the ternary Shannon expansion (that resembles the S/D tree for Shannon nodes in both

levels):

f = 0x1
1x2 + 2 · 0x1

2x2 + 2 · 1x1
0x2 +2 · 1x1

1x2 +2 · 1x1
2x2 +

2x1
0x2 +2 · 2x1

2x2,

(29)

We can substitute any of Equations (7) - (15), or a mix of these Equations, to transform

one flattened form to another. For example, if we substitute Equations (7) and (11), we

obtain:

f =(2(x1)
2 + 1)(2(x′2)

2 + x′2)+2(2(x1)
2 +1)2x2 +2(2(x′1)

2 + x′1)(2(x2)
2 +1)

+ 2(2(x′1)
2 + x′1)(2(x

′
2)

2 + x′2)+2(2(x′1)
2 + x′1) ·

2x2 +
2x1(2(x2)

2 +1)

+ 2 · 2x1
2x2,

(30)

By utilizing GF addition and multiplication operators from Figure 1, Equation (30) can

be transformed to:

f =(x1)
2(x′2)

2 + 2(x1)
2(x′2)+2(x′2)

2 + x′2 +(x1)
2( 2x2)+2( 2x2)+2(x′1)

2(x2)
2

+(x′1)
2 +(x′1)(x2)

2 + 2x′1 +2(x′1)
2(x′2)

2 +(x′1)
2(x′2)+ (x′1)(x

′
2)

2 +2x′1x′2

+(x′1)
2 · 2x2 + 2(x′1)

2x2 + 2( 2x1)(x2)
2 + 2x1 +2( 2x1)(

2x2).

(31)

Let us define, as one of possible definitions, the cost of the flattened form (expres-

sion) to be:

Cost = # Cubes (32)

Then, we observe that Equation (29) has the cost of seven, while Equation (31) has

the cost of 19. Thus, the inverse transformations applied to Equation (31) would lead

to Equation (29) and a reduction of cost from 19 to seven. Using the same approach,

we can generate a subset of possible GFSOP expressions (flattened forms). Note that

all of these GFSOP expressions are equivalent since they produce the same function in

different forms. Yet, as can be observed from Equation (31), by further transformations

of Equation (29) from one form to another, some transformations produce flattened

forms with a smaller number of cubes than the others. From this observation rises

the idea of a possible application of evolutionary computing using the S/D trees and

related transformations to produce the corresponding minimum GFSOPs. Analogous

to the binary case in Equation (27), the ternary GIFs can be defined as the union of

ternary IFs.

Definition 3. The family of forms, which is created as a union of sets of TIFs for all

variable orders, is called Ternary Generalized Inclusive Forms (TGIFs).
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Figure 5: Ternary IF (TIF) S/D trees and their numbers: (a) 2-variable order {a,b} and (b) 2-

variable order {b,a}. Variables {a,b} are defined as in Eq. (28) for generalized Davio

(D) where in this figure (a,≡ a) and (b,≡ b).

Theorem 2. The total number of the ternary IFs, for two variables and for orders

{a,b} and {b,a}, and the total number of ternary Generalized IFs, for two variables,

are respectively:

#TIFa,b = 1 · (3)0 + 3 · (3)2+ 3 · (3)4+2 · (3)6+3 · (3)8+3 · (3)10+1 · (3)12

= 730,000,
(33)

#TIFb,a = 1 · (3)0 + 3 · (3)2+ 3 · (3)4+2 · (3)6+3 · (3)8+3 · (3)10+1 · (3)12

= 730,000,
(34)

#TGIF = #TIFa,b + #TIFb,a−#(TIFa,b ∩TIFb,a) = 2 ·#TIF−#(TIFa,b ∩TIFb,a)

= 2 · (730,000)− (1 · (3)0+2 · (3)6+1 · (3)12) = 927,100.
(35)

Proof. By observing Figure 5, we note that the total number of TIFs for orders {a,b}
and {b,a} is the sum of the numbers on top of S/D trees that leads to Equations (33) -

(35), respectively.

2.2 Properties of TIFs and TGIFs

The following present basic properties of the presented TIFs and TGIFs.

Theorem 3. Each Ternary Inclusive Form (TIF) is canonical.
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Figure 5: Ternary IF (TIF) S/D trees and their numbers: (a) 2-variable order {a,b} and (b) 2-

variable order {b,a}. Variables {a,b} are defined as in Eq. (28) for generalized Davio

(D) where in this figure (a,≡ a) and (b,≡ b).

Theorem 2. The total number of the ternary IFs, for two variables and for orders

{a,b} and {b,a}, and the total number of ternary Generalized IFs, for two variables,

are respectively:

#TIFa,b = 1 · (3)0 + 3 · (3)2+ 3 · (3)4+2 · (3)6+3 · (3)8+3 · (3)10+1 · (3)12

= 730,000,
(33)

#TIFb,a = 1 · (3)0 + 3 · (3)2+ 3 · (3)4+2 · (3)6+3 · (3)8+3 · (3)10+1 · (3)12

= 730,000,
(34)

#TGIF = #TIFa,b + #TIFb,a−#(TIFa,b ∩TIFb,a) = 2 ·#TIF−#(TIFa,b ∩TIFb,a)

= 2 · (730,000)− (1 · (3)0+2 · (3)6+1 · (3)12) = 927,100.
(35)

Proof. By observing Figure 5, we note that the total number of TIFs for orders {a,b}
and {b,a} is the sum of the numbers on top of S/D trees that leads to Equations (33) -

(35), respectively.

2.2 Properties of TIFs and TGIFs

The following present basic properties of the presented TIFs and TGIFs.

Theorem 3. Each Ternary Inclusive Form (TIF) is canonical.
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Figure 5: Ternary IF (TIF) S/D trees and their numbers: (a) 2-variable order {a,b} and (b) 2-

variable order {b,a}. Variables {a,b} are defined as in Eq. (28) for generalized Davio

(D) where in this figure (a,≡ a) and (b,≡ b).

Theorem 2. The total number of the ternary IFs, for two variables and for orders

{a,b} and {b,a}, and the total number of ternary Generalized IFs, for two variables,

are respectively:

#TIFa,b = 1 · (3)0 + 3 · (3)2+ 3 · (3)4+2 · (3)6+3 · (3)8+3 · (3)10+1 · (3)12

= 730,000,
(33)

#TIFb,a = 1 · (3)0 + 3 · (3)2+ 3 · (3)4+2 · (3)6+3 · (3)8+3 · (3)10+1 · (3)12

= 730,000,
(34)

#TGIF = #TIFa,b + #TIFb,a−#(TIFa,b ∩TIFb,a) = 2 ·#TIF−#(TIFa,b ∩TIFb,a)

= 2 · (730,000)− (1 · (3)0+2 · (3)6+1 · (3)12) = 927,100.
(35)

Proof. By observing Figure 5, we note that the total number of TIFs for orders {a,b}
and {b,a} is the sum of the numbers on top of S/D trees that leads to Equations (33) -

(35), respectively.

2.2 Properties of TIFs and TGIFs

The following present basic properties of the presented TIFs and TGIFs.

Theorem 3. Each Ternary Inclusive Form (TIF) is canonical.
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Figure 5: Ternary IF (TIF) S/D trees and their numbers: (a) 2-variable order {a,b} and (b) 2-

variable order {b,a}. Variables {a,b} are defined as in Eq. (28) for generalized Davio

(D) where in this figure (a,≡ a) and (b,≡ b).

Theorem 2. The total number of the ternary IFs, for two variables and for orders

{a,b} and {b,a}, and the total number of ternary Generalized IFs, for two variables,

are respectively:

#TIFa,b = 1 · (3)0 + 3 · (3)2+ 3 · (3)4+2 · (3)6+3 · (3)8+3 · (3)10+1 · (3)12

= 730,000,
(33)

#TIFb,a = 1 · (3)0 + 3 · (3)2+ 3 · (3)4+2 · (3)6+3 · (3)8+3 · (3)10+1 · (3)12

= 730,000,
(34)

#TGIF = #TIFa,b + #TIFb,a−#(TIFa,b ∩TIFb,a) = 2 ·#TIF−#(TIFa,b ∩TIFb,a)

= 2 · (730,000)− (1 · (3)0+2 · (3)6+1 · (3)12) = 927,100.
(35)

Proof. By observing Figure 5, we note that the total number of TIFs for orders {a,b}
and {b,a} is the sum of the numbers on top of S/D trees that leads to Equations (33) -

(35), respectively.

2.2 Properties of TIFs and TGIFs

The following present basic properties of the presented TIFs and TGIFs.

Theorem 3. Each Ternary Inclusive Form (TIF) is canonical.
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Figure 5: (continued).

Proof. An expansion is canonical iff its terms are linearly independent; none of the

terms is equal to a linear combination of other terms. Using this fact, it was proven that

all GF(2) IFs are canonical. Analogously over GF(3), for any function F of the same

number of variables, there exists one and only one set of coefficients ai such that F is

uniquely TIF-expandable using ai and thus the resulting expression is canonical. By

induction on number of variables, terms in TIFs will be linearly independent and thus

canonical.

Theorem 4. Ternary Generalized Inclusive Forms (TGIFs) are canonical with respect

to given variable order.

Proof. Since TGIF is the union of the corresponding TIFs, and since each TIF is canon-

ical, then the resulting union of the corresponding canonical TIFs will be also canoni-

cal.

For different variable orderings, some forms are not repeated while other forms

are. Therefore the union of sets of TIFs for all variable orders contains more forms

than any of the TIF sets taken separately and less forms than total sum of all TIFs.

Generalized Inclusive Forms include other forms such as GRMs over GF(3) as can

be shown by considering all possible combinations of literals for all possible orders

of variables. If we relax the requirement of fixed variable ordering, and allow any

ordering of variables in branches of the tree but do not allow repetitions of variables in

the branches, we generate more general GF(3) family of forms.
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Figure 5: (continued).

Proof. An expansion is canonical iff its terms are linearly independent; none of the

terms is equal to a linear combination of other terms. Using this fact, it was proven that

all GF(2) IFs are canonical. Analogously over GF(3), for any function F of the same

number of variables, there exists one and only one set of coefficients ai such that F is

uniquely TIF-expandable using ai and thus the resulting expression is canonical. By

induction on number of variables, terms in TIFs will be linearly independent and thus

canonical.

Theorem 4. Ternary Generalized Inclusive Forms (TGIFs) are canonical with respect

to given variable order.

Proof. Since TGIF is the union of the corresponding TIFs, and since each TIF is canon-

ical, then the resulting union of the corresponding canonical TIFs will be also canoni-

cal.

For different variable orderings, some forms are not repeated while other forms

are. Therefore the union of sets of TIFs for all variable orders contains more forms

than any of the TIF sets taken separately and less forms than total sum of all TIFs.

Generalized Inclusive Forms include other forms such as GRMs over GF(3) as can

be shown by considering all possible combinations of literals for all possible orders

of variables. If we relax the requirement of fixed variable ordering, and allow any

ordering of variables in branches of the tree but do not allow repetitions of variables in

the branches, we generate more general GF(3) family of forms.
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Figure 5: (continued).

Proof. An expansion is canonical iff its terms are linearly independent; none of the

terms is equal to a linear combination of other terms. Using this fact, it was proven that

all GF(2) IFs are canonical. Analogously over GF(3), for any function F of the same

number of variables, there exists one and only one set of coefficients ai such that F is

uniquely TIF-expandable using ai and thus the resulting expression is canonical. By

induction on number of variables, terms in TIFs will be linearly independent and thus

canonical.

Theorem 4. Ternary Generalized Inclusive Forms (TGIFs) are canonical with respect

to given variable order.

Proof. Since TGIF is the union of the corresponding TIFs, and since each TIF is canon-

ical, then the resulting union of the corresponding canonical TIFs will be also canoni-

cal.

For different variable orderings, some forms are not repeated while other forms

are. Therefore the union of sets of TIFs for all variable orders contains more forms

than any of the TIF sets taken separately and less forms than total sum of all TIFs.

Generalized Inclusive Forms include other forms such as GRMs over GF(3) as can

be shown by considering all possible combinations of literals for all possible orders

of variables. If we relax the requirement of fixed variable ordering, and allow any

ordering of variables in branches of the tree but do not allow repetitions of variables in

the branches, we generate more general GF(3) family of forms.
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Figure 5: (continued).

Proof. An expansion is canonical iff its terms are linearly independent; none of the

terms is equal to a linear combination of other terms. Using this fact, it was proven that

all GF(2) IFs are canonical. Analogously over GF(3), for any function F of the same

number of variables, there exists one and only one set of coefficients ai such that F is

uniquely TIF-expandable using ai and thus the resulting expression is canonical. By

induction on number of variables, terms in TIFs will be linearly independent and thus

canonical.

Theorem 4. Ternary Generalized Inclusive Forms (TGIFs) are canonical with respect

to given variable order.

Proof. Since TGIF is the union of the corresponding TIFs, and since each TIF is canon-

ical, then the resulting union of the corresponding canonical TIFs will be also canoni-

cal.

For different variable orderings, some forms are not repeated while other forms

are. Therefore the union of sets of TIFs for all variable orders contains more forms

than any of the TIF sets taken separately and less forms than total sum of all TIFs.

Generalized Inclusive Forms include other forms such as GRMs over GF(3) as can

be shown by considering all possible combinations of literals for all possible orders

of variables. If we relax the requirement of fixed variable ordering, and allow any

ordering of variables in branches of the tree but do not allow repetitions of variables in

the branches, we generate more general GF(3) family of forms.
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Definition 4. The family of forms, generated by S/D tree with no fixed ordering of

variables, with variables not repeated along same branches, is called Ternary Free

Generalized Inclusive Forms (TFGIFs).

2.3 An Extended Green-Sasao Hierarchy with a New Sub-Family

for Ternary Reed-Muller Logic

The Green-Sasao hierarchy of families of canonical forms [1, 10-13, 17, 24, 26] and

the corresponding decision trees and diagrams is based on three generic expansions,

Shannon, positive and negative Davio expansions. For example, this includes Shannon

decision trees and diagrams, positive and negative Davio decision trees and diagrams,

fixed polarity Reed-Muller decision trees and diagrams, Kronecker decision trees and

diagrams, pseudo Reed-Muller decision trees and diagrams, pseudo Kronecker deci-

sion trees and diagrams, and linearly-independent decision trees and diagrams [1, 17,

24]. A set-theoretic relationship between families of canonical forms over GF(2) was

proposed and extended by introducing binary IF, GIF and free GIF (FGIF) forms where

Figure 6(a) illustrates set-theoretic relationship between the various families of canon-

ical forms over GF(2).

Analogously to the Green-Sasao hierarchy of binary Reed-Muller families of spec-

tral transforms over GF(2) that is shown in Figure 6(a), we will introduce the extended

Green-Sasao hierarchy of spectral transforms, with a new sub-family for ternary Reed-

Muller logic over GF(3). While Definitions 2 - 4 defined the Ternary Inclusive Forms,

Ternary Generalized Inclusive Forms and Ternary Free Generalized Inclusive Forms,

respectively, and analogously to the binary Reed-Muller case, the following definitions

are introduced for the corresponding canonical expressions over GF(3).

Definition 5. The decision tree that results from applying the ternary Shannon ex-

pansion in Equation (23) recursively to a ternary input-ternary output logic function

(i.e., all levels in a DT) is called Ternary Shannon Decision Tree (TSDT). The result

expression (flattened form) from the TSDT is called ternary Shannon expression.

Definition 6. The decision trees that result from applying the ternary Davio expan-

sions in Equations (24) - (26) recursively to a ternary-input ternary-output logic func-

tion (i.e., all levels in a DT) are called: Ternary Zero-Polarity Davio Decision Tree

(TD0DT), Ternary First-Polarity Davio Decision Tree (TD1DT) and Ternary Second-

Polarity Davio Decision Tree (TD2DT), respectively. The resulting expressions (flat-

tened forms) from TD0DT, TD1DT and TD2DT are called TD0, TD1 and TD2 expres-

sions, respectively.

Definition 7. The decision tree that results from applying any of the ternary Davio

expansions (nodes) for all nodes in each level (variable) in the DT is called Ternary

Reed-Muller Decision Tree (TRMDT). The corresponding expression is called Ternary

Fixed Polarity Reed-Muller (TFPRM) expression.

Definition 8. The decision tree that results from using any of the ternary Shannon (S)

or Davio (D0, D1 or D2) expansions (nodes) for all nodes in each level (variable) in

the DT (that has fixed order of variables) is called Ternary Kronecker Decision Tree

(TKRODT). The resulting expression is called ternary Kronecker expression.

Definition 9. The decision tree that results from using any of the ternary Davio ex-

pansions (nodes) for each node (per level) of the DT is called Ternary Pseudo-Reed-
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Reed-Muller Decision Tree (TRMDT). The corresponding expression is called Ternary
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Definition 8. The decision tree that results from using any of the ternary Shannon (S)

or Davio (D0, D1 or D2) expansions (nodes) for all nodes in each level (variable) in

the DT (that has fixed order of variables) is called Ternary Kronecker Decision Tree

(TKRODT). The resulting expression is called ternary Kronecker expression.

Definition 9. The decision tree that results from using any of the ternary Davio ex-
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Muller Decision Tree (TPRMDT). The resulting expression is called ternary pseudo-
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disregarding order of variables, provided that variables are not repeated along the

same branches, is called Ternary Free Kronecker Decision Tree (TFKRODT). The re-

sult is called ternary free-Kronecker expression.

Definition 12. The ternary Kronecker DT that has at least one ternary generalized

Reed-Muller expansion node is called Ternary Generalized Kronecker Decision Tree

(TGKDT). The result is called ternary generalized Kronecker expression.

Definition 13. The ternary Kronecker DT that has at least one TGIF node is called

Ternary Generalized Inclusive Forms Kronecker (TGIFK) Decision Tree. The result is

called ternary generalized Inclusive Form Kronecker expression.

Figure 6(b) illustrates the extended GF(3) Green-Sasao hierarchy with the new sub-

family (TGIFK). The presented TGIF nodes can be realized with Universal Logic Mod-

ules (ULMs) for pairs of variables, as will be shown in Section 3, which is analogous

to what was done for the binary case. Although the S/D trees that have been developed

so far are for the ternary radix, similar S/D trees can be developed as well for higher

Galois radices of GF(pk) where p is a prime number and k is a natural number ≥ 1.
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Definition 4. The family of forms, generated by S/D tree with no fixed ordering of

variables, with variables not repeated along same branches, is called Ternary Free
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disregarding order of variables, provided that variables are not repeated along the
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Definition 13. The ternary Kronecker DT that has at least one TGIF node is called

Ternary Generalized Inclusive Forms Kronecker (TGIFK) Decision Tree. The result is

called ternary generalized Inclusive Form Kronecker expression.

Figure 6(b) illustrates the extended GF(3) Green-Sasao hierarchy with the new sub-

family (TGIFK). The presented TGIF nodes can be realized with Universal Logic Mod-

ules (ULMs) for pairs of variables, as will be shown in Section 3, which is analogous

to what was done for the binary case. Although the S/D trees that have been developed

so far are for the ternary radix, similar S/D trees can be developed as well for higher

Galois radices of GF(pk) where p is a prime number and k is a natural number ≥ 1.

TGRM

Ternary GFSOP

Ternary Canonical Forms

TFGIF

TGIF

TIF

TPGK

TGK

TPKRO

TKROTFPRM

TGIFK

ESOP

Canonical Forms

FGIF

GIF

IF

PGK

GK

GRM

PKRO

KROFPRM

(a) (b)

Figure 6: Green-Sasao hierarchy: (a) set-theoretic relationship between GF(2) families of canon-

ical forms, and (b) the extended Green-Sasao hierarchy with a new sub-family

(TGIFK) for GF(3) Reed-Muller logic.

113

An Extended Green - Sasao Hierarchy of Canonical Ternary Galois Forms ...

Muller Decision Tree (TPRMDT). The resulting expression is called ternary pseudo-

Reed-Muller expression.

Definition 10. The decision tree that results from using any of the ternary Shannon

expansion or ternary Davio expansions (nodes) for each node (per level) of the DT is

called Ternary Pseudo-Kronecker Decision Tree (TPKRODT). The resulting expression

is called ternary pseudo-Kronecker expression.

Definition 11. The decision tree that results from using any of the ternary Shannon

expansion or ternary Davio expansions (nodes) for each node (per level) of the DT,

disregarding order of variables, provided that variables are not repeated along the

same branches, is called Ternary Free Kronecker Decision Tree (TFKRODT). The re-

sult is called ternary free-Kronecker expression.

Definition 12. The ternary Kronecker DT that has at least one ternary generalized

Reed-Muller expansion node is called Ternary Generalized Kronecker Decision Tree

(TGKDT). The result is called ternary generalized Kronecker expression.

Definition 13. The ternary Kronecker DT that has at least one TGIF node is called

Ternary Generalized Inclusive Forms Kronecker (TGIFK) Decision Tree. The result is

called ternary generalized Inclusive Form Kronecker expression.

Figure 6(b) illustrates the extended GF(3) Green-Sasao hierarchy with the new sub-

family (TGIFK). The presented TGIF nodes can be realized with Universal Logic Mod-

ules (ULMs) for pairs of variables, as will be shown in Section 3, which is analogous

to what was done for the binary case. Although the S/D trees that have been developed

so far are for the ternary radix, similar S/D trees can be developed as well for higher

Galois radices of GF(pk) where p is a prime number and k is a natural number ≥ 1.

TGRM

Ternary GFSOP

Ternary Canonical Forms

TFGIF

TGIF

TIF

TPGK

TGK

TPKRO

TKROTFPRM

TGIFK

ESOP

Canonical Forms

FGIF

GIF

IF

PGK

GK

GRM

PKRO

KROFPRM

(a) (b)

Figure 6: Green-Sasao hierarchy: (a) set-theoretic relationship between GF(2) families of canon-

ical forms, and (b) the extended Green-Sasao hierarchy with a new sub-family

(TGIFK) for GF(3) Reed-Muller logic.

113



62 A. N. Al-RAbADi  An Extended Green - Sasao Hierarchy of Canonical Ternary Galois Forms and Universal logic Modules 63
An Extended Green - Sasao Hierarchy of Canonical Ternary Galois Forms ...

3 Universal Logic Modules For The Circuit Realization

Of S/D Trees

The nonsingular expansions of ternary Shannon (S) and ternary Davio (D0, D1 and

D2), can be realized using a Universal Logic Module (ULM) with control variables

corresponding to the variables of the basis functions which are the variables we are ex-

panding upon. We call it a Universal Logic Module, because similarly to a multiplexer,

all functions of two variables can be realized with two-level trees of such modules

using constants on the second-level data inputs.

The presented ULMs are complete systems because they can implement all pos-

sible functions with certain number of variables. The concept of the universal logic

module was used for binary RM logic over GF(2), as well as the general case of lin-

early independent (LI) logic that includes RM logic as a special case. Binary LI logic

extended the universal logic module from just being a multiplexer (Shannon expan-

sion), AND/EXOR gate (positive Davio expansion) and AND/EXOR/NOT gate with

inverted control variable (negative Davio expansion), to the universal logic modules

for any expansion over any linearly independent basis functions. Analogously to the

binary case, Figure 7 presents universal logic modules for ternary Shannon and ternary

Davio, respectively. One can note, that any function f can be produced by the ap-

plication of the independent variable x and the cofactors { fi, f j and fk} as inputs to a

ULM. The form of the resulting function depends on our choice of the shift and power

operations that we choose inside the ULM for the input independent variable, and on

our choice of the weighted combinations of the input cofactors. Utilizing this note, we

can combine all Davio ULMs to create the single all-Davio ULM, where Figure 7(c)

illustrates this ULM. Also, the more general ULM as shown in Figure 7(d), can be

generated to implement all ternary GF(3) Shannon and Davio expansions.

In general, the gates in the ULMs can be implemented, among other circuit tech-

nologies, by using binary logic over GF(2) or using multiple-valued circuit gates. Each

ternary ULM corresponds to a single node in the nodes of ternary DTs that were il-

lustrated previously. The main advantage of such powerful ULMs is in high layout

regularity that is required by future nanotechnologies, where the trees can be realized

in efficient layout because they do not grow exponentially for practical functions. For

instance, assuming ULM from Figure 7, although every two-variable function can be

realized with four such modules, it is highly probable that most of two-variable func-

tions will require less than four modules. Because of these properties, this approach is

further expected to give good results when applied to the corresponding incompletely

specified functions and multiple-valued relations.

4 Conclusions and Future Work

In this paper, an extended Green-Sasao hierarchy of families and forms is introduced.

Analogously to the binary case, two general families of canonical ternary Reed-Muller

forms, called Ternary Inclusive Forms (TIFs) and their generalization of Ternary Gen-

eralized Inclusive Forms (TGIFs), are presented. The second family includes minimum

GF(3) Galois Field Sum-Of-Products (GFSOPs). The multiple-valued Shannon-Davio

(S/D) trees developed in this paper provide more general polarity with regards to the
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further expected to give good results when applied to the corresponding incompletely

specified functions and multiple-valued relations.

4 Conclusions and Future Work

In this paper, an extended Green-Sasao hierarchy of families and forms is introduced.

Analogously to the binary case, two general families of canonical ternary Reed-Muller

forms, called Ternary Inclusive Forms (TIFs) and their generalization of Ternary Gen-

eralized Inclusive Forms (TGIFs), are presented. The second family includes minimum

GF(3) Galois Field Sum-Of-Products (GFSOPs). The multiple-valued Shannon-Davio

(S/D) trees developed in this paper provide more general polarity with regards to the
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operators, and one multiplexer, and (d) general ULM of GF(3) S/D node using four

GF(3) multiplication gates, one GF(3) addition gate and four multiplexers.

corresponding IF polarity, which contains the GRM as a special case. Since Universal

Logic Modules (ULMs) are complete systems that can implement all possible logic

functions utilizing S/D expansions of multiple-valued Shannon and Davio decompo-

sitions, the realization of the presented S/D trees utilizing the corresponding ULMs is

also introduced. The application of the presented TIFs and TGIFs can be used to find

minimum GFSOP for multiple-valued inputs-outputs within logic synthesis, where a

GFSOP minimizer based on IF polarity can be used to minimize the corresponding

multiple-valued GFSOP expressions.
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corresponding IF polarity, which contains the GRM as a special case. Since Universal

Logic Modules (ULMs) are complete systems that can implement all possible logic

functions utilizing S/D expansions of multiple-valued Shannon and Davio decompo-

sitions, the realization of the presented S/D trees utilizing the corresponding ULMs is

also introduced. The application of the presented TIFs and TGIFs can be used to find

minimum GFSOP for multiple-valued inputs-outputs within logic synthesis, where a

GFSOP minimizer based on IF polarity can be used to minimize the corresponding

multiple-valued GFSOP expressions.
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Future work will include the following items:

1. The investigation of the various multiple-valued and two-valued techniques for

the ULM implementation for the important case of quaternary logic. Since the

ULM realization over GF(3) extends and generalizes from the binary case of the

GF(2) ULM realization - where most digital system designs are performed - the

special case of the extension into GF(4) becomes important as this GF(4) ULM

realization can be achieved by utilizing the currently existing and widely-used

implementations over GF(2). This two-valued realization of quaternary ULM

can be done for GF(4) addition utilizing GF(2) addition using vector of EXORs,

(4/2) and (2/4) decoders, and for GF(4) multiplication utilizing GF(2) operations

using vectors of XORs, ANDs, (4/2) and (2/4) decoders, and therefore the GF(4)

ULM producing quaternary Shannon and all Davio expansions can be achieved

using the corresponding multiplexers and GF(4) additions and multiplications

which can be accordingly realized using GF(2) methods.

2. The implementation of the introduced ULMs using nanotechnology methods

such as quantum computing, quantum dots and carbon nanotubes.

3. The utilization of evolutionary algorithms for function minimization using the

introduced S/D trees.

4. The investigation using other more complex types of literals such as the pre-

sented generalized literal (GL) and universal literal (UL) to expand upon and

consequently construct the corresponding new ULMs.
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