
FACTA UNIVERSITATIS
Series: Electronics and Energetics Vol. 29, No 3, September 2016, pp. 475 - 487
DOI: 10.2298/FUEE1603475S

BRIDGING THE SNMP GAP: SIMPLE NETWORK

MONITORING THE INTERNET OF THINGS


Mihajlo Savić

University of Banja Luka, Faculty of Electrical Engineering,

Republic of Srpska, Bosnia and Herzegovina

Abstract. Things that form Internet of Things can vary in every imaginable aspect.

From simplest devices with barely any processing and memory resources, with

communication handled by networking devices like switches and routers to powerful

servers that provide needed back-end resources in cloud environments, all are needed

for real world implementations of Internet of Things. Monitoring of the network and

server parts of the infrastructure is a well known area with numerous approaches that

enable efficient monitoring. Most prevalent technology used is SNMP that forms the

part of the IP stack and is as such universally supported. On the other hand, “things”

domain is evolving very fast with a number of competing technologies used for

communication and monitoring. When discussing small, constrained devices, the two

most promising protocols are CoAP and MQTT. Combined, they cover wide area of

communication needs for resource constrained devices, from simple messaging system

to one that enables connecting to RESTful world. In this paper we present a possible

solution to bridge the gap in monitoring by enabling SNMP access to monitoring data

obtained from constrained devices that cannot feasibly support SNMP or are not

intended to be used in such a manner.

Key words: IoT, monitoring, SNMP, CoAP, MQTT

1. INTRODUCTION

Internet of Things (IoT) may mean many different things to many different people,

but few would disagree that in order to achieve the full potential of smart environment

based on IoT one needs to be able to fully monitor all of the things that do make IoT

possible. Although there is a wealth of monitoring products as well as comparable

number of standards and platforms that go hand in hand with them, there is one standard

that has been around for a long time, is implemented in almost all networking devices and

is even a part of the set of the protocols that enable modern networking to exist.


 Received June 30, 2015; received in revised form November 12, 2015

Corresponding author: Mihajlo Savić

University of Banja Luka, Faculty of Electrical Engineering, Patre 5, 78000 Banja Luka, Republic of Srpska,
Bosnia and Herzegovina

(e-mail: badaboom@etfbl.net)

476 M. SAVIĆ

As it often is, with age it gained robustness and reliability, but lost some of the appeal to

newer generations and younger monitoring systems, though one would be hard pressed to

find a monitoring product that does not support it. It is also important to note that

monitoring is never easy and in production tried and true solutions have proven themselves

worthy throughout the history. To monitor the IoT we need to monitor any and every device

that makes it or provides the services to it, from smallest and simplest single function sensors

to ritualized back-end services needed to transform raw data into usable information.

Currently, Simple Network Management Protocol (SNMP) is the protocol that enables

uniform monitoring of all parts of the IoT infrastructure, save for the simplest of devices.

As even those devices need to be monitored, presented in this paper one of the possible

SNMP based solutions for end-to-end monitoring is.

Solution described in this paper covers one possible use of SNMP in monitoring IoT

infrastructures, enabling monitoring of just IoT devices as well as larger heterogeneous

infrastructures that can also contain complex IaaS entities that provide services to IoT devices.

2. SIMPLE NETWORK MANAGEMENT PROTOCOL

Simple Network Management Protocol (SNMP) is a part of Internet Protocol Suite (IP)

set of protocols as defined by Internet Engineering Task Force (IETF) [1], organization in

charge of defining standards and protocols that provide base for existence and exchange of

data over the Internet. SNMP defines a set of standards for network management that

include application protocol, database schema, as well as the definition of data sets.

Relatively small numbers of what we generally consider to be standards are in fact full

standards and this only gives weight to SNMP and its use in management and monitoring

areas. Common use of SNMP is in default configuration that consists of at least one

computer or other device that has administrative role (master) and a group of managed

networked devices that are controlled by the master device. Every managed device (slave)

is running a software component called an agent that is in charge of communication with

master node. Agents provide for access to various system variables of managed device (e.g.

system identification, available resources, resource consumption, etc.) but also provide a

mechanism to control the device by setting the values of specified variables to desired

values (e.g. bringing network interfaces up or down, changing their addresses, etc). Data

transfer is typically done over User Datagram Protocol (UDP) and default port numbers 161

on the agent side and 162 on master side. Communication can be initiated by the master

through use of GET operations for accessing the data and SET operations used to modify

the data, as well as by the managed device through the use of TRAP or INFORM operations

used to send data to management node.

2.1. Versions of SNMP protocol

SNMP standard has been so far defined by three versions as will be described in

following text. SNMP version 1 (SNMPv1) was defined by RFC documents number

1155, 1157 and 1215. Although it has a “historic” status today, it is still widely used as it

is supported by almost all network equipment manufacturers for nearly all networking

devices. Security model leaves a lot to be desired as it is based on so called “community”

strings that can be seen as a shared secret or access passwords. Biggest issue lies in the

fact that all communication, including community strings, is performed in unencrypted

 Bridging the SNMP Gap: Simple Network Monitoring the Internet of Things 477

form. SNMP version 2 (SNMPv2) was defined by RFC documents 1441-1452 and introduced

a host of improvements in the area of security, by utilizing more complex security model, and

performance, by introduction of GETBULK operation.

SNMP version 3 (SNMPv3) as defined by RFC documents 3411-3418 is also known

as STD0062 and represents the official version of the standard recognized by IETF. Older

versions of the standard are considered to be historic or obsolete. The main improvement

in this version is advanced security model based on version v2.It is important to note that

there is no compatibility between different versions of SNMP protocol as the message

format and the protocol itself was changed. Possible scenarios for coexistence between

different versions of SNMP protocol are described in RFC 2576.

2.2. Data organization

Every network device accessible by SNMP protocol is defined by one or more

Management Information Bases (MIB) – a virtual database representing a hierarchically

organized set of information available for a given device. MIB consists of managed objects

(MIB objects) that are uniquely identifiable in MIB hierarchy by value named object

identifier (OID). MIB tree has an unnamed root node that is branched out to branches

controlled by organizations in charge of standards that are further divided on lower levels of

hierarchy. MIB object consist of at least one instance that can be seen as a variable or

variables. There are two types of MIB objects: scalars (that define a single instance of the

object) and tables (that define multiple linked instances that make up the MIB table).

One of the aims of the SNMP standard is to solve the problem of differing data

representations on various platforms, a task that was solved by the use of subset of ISO OSI

Abstract Syntax Notation One (ASN.1) – Structure of Management Information (SMI).

SNMPv1 SMI specific data types can be either simple (integer, octet-string, OID) or

application-wide (network address, counter, gauge, time tick, opaque, integer, unsigned

integer).

2.3. Extending the SNMP functionality

As was previously described, SNMP allows for a flexible approach and management

of networked devices, but is unfortunately limited to functionality implemented in the

agent component. If one desires to access additional data or enable new functionality,

there are several approaches, among which the most used are: modification of the agent,

use of external programs and use of AgentX protocol.

The most efficient, but also the most difficult to implement and least flexible approach

is modifying the agent to implement required functions through access to and modification

of the source code of the agent in question. If it is impossible or infeasible to modify the

agent, or if there is a need for several agents on the same device, solution can be obtained

by the use of SNMP proxy software. Use of proxy increases the complexity of the system

as the introduction of additional layer in the architecture also requires full support for all

relevant requirements on this layer as well (e.g. proxy layer becomes a key component in

security aspect).

Alternative solution is the use of external programs for access to required data. The

simplest solution is execution of the external program every time the need for a specific

data arises. This approach can have severely degraded performances as the program

could be executed during any SNMP operation. Better solution is parallel execution of

478 M. SAVIĆ

both agent and external program, providing the means for communication between them.

As this problem was present since the early days of SNMP, parallel to development of

various ad-hoc solutions, a process for standardized solution of the problem was created.

Result of this process is AgentX protocol [2] that is based on master-slave principle

within one or more devices. This protocol is continuation of SNMP-SMUX and SNMP-DPI

protocols that were relegated to historic and experimental statuses. In 1995 IETF formed

SNMP Agent Extensibility Working Group [3] which defined an extension framework [2]

and corresponding MIB document [4]. These documents define the protocol, master agent,

sub-agents, coding of all required data types, as well as the handling of all communication

between parties.

3. INTERNET OF THINGS AND MONITORING

When talking about IoT and monitoring, there are two major protocols that cannot be

overlooked: CoAP (Constrained Application Protocol) and MQTT (Message Queuing

Telemetry Transport). As per RFC 7252 that defines it, CoAP “is a specialized web transfer

protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks”

aimed at M2M (machine to machine) applications and is intended to be usable on devices

with very limited processor, memory and networking resources [5]. It is UDP based and

employs an adapted subset of HTTP optimized for M2M use cases, offering features not

present in HTTP but highly valuable in M2M environment such as discovery, multicast

support, and asynchronous message exchanges[5]. It was specifically designed to utilize

insignificant processing resources in normal operation. From request perspective, CoAP

messages are very similar to HTTP request methods, but are limited to GET, POST, PUT

and DELETE messages that implement corresponding HTTP method functions. CoRE

(Constrained RESTful Environments) link format as described by RFC 6690 [6] defines a

well-known entry point ("/.well-known/core") that enables client to list the links hosted by

the server and as such can be used for discovery, resource collection and resource directory

and similar needs. There is an ongoing work on implementing CoAP on alternative

transports such as TCP, P2P, WebSockets, ZigBee and other network protocols that would

enable wider use of CoAP in IoT scenarios.

MQTT as defined by OASIS [7] is a light weight, open and simple client server oriented

publish/subscribe messaging transport protocol. Like CoAP, it is aimed at use in M2M

applications and resource constrained devices. It runs over TCP/IP or other network

protocols that need to provide ordered, lossless and bi-directional connections (for example

ZigBee protocol [8]). There is a special version of MQTT aimed at sensor networks under

the name MQTT-SN that enables use of MQTT in very unreliable networking conditions

by severely resource constrained devices via MQTT-SN Forwarders and MQTT-SN

Gateways [9].

MQTT utilizes publish-subscribe pattern in which clients, here referred to as

publishers, connect to servers (messaging brokers) and are able to send the messages to

select topics with no need to specify exact recipient of the message, in this context called

subscriber. Messages are filtered by their attributes, chief of which is called topic and is

represented by UTF-8 string. Topics can have hierarchical organization in which different

levels are separated by forward slash. An example of such topic is “building1/room007/

rack02/server27/temperature”. As messaging is asynchronous, topics can exist even with

 Bridging the SNMP Gap: Simple Network Monitoring the Internet of Things 479

no currently connected publishers or subscribers which enables for use in unreliable

environments as individual nodes can connect and disconnect as the need arises. This

allows for considerable flexibility as subscriber can precisely choose to listen only to

messages in topics related to, for example, certain room or building, or to listen to all

messages related to temperature data in all rooms or buildings.

But, IoT does not consist of constrained devices only. Fundamental to proper

functioning of any IoT infrastructure is also the proper functioning of interconnecting

network as well as, most often, proper functioning of back-end services, running on any

kind of server device. Further complicating the things is the fact that both networking and

service components of modern architectures can be virtualized. This represents a problem

specially for monitoring of the performance as the NMS traditionally has access to

monitoring data inside virtualized environment and performance data of actual physical

device running the virtualization software is available on to infrastructure provider.

When discussing the networking component, outside of possible specialized

hardware, for example MQTT-SN forwarders and similar, almost all networking devices

support SNMP for monitoring. Devices that do not support it are usually unmanageable

devices that provide no means for remote monitoring and are as such not suitable for use

in described circumstances.
Virtualized servers running back-end services are under control of infrastructure user

and can be easily configured to support SNMP monitoring if it is not already the case. As
mentioned earlier, the real problem lies in the fact that the virtual machine that contains
the service has no access to non-virtualized performance data of physical host. Following
example illustrates the issue. Let’s assume that the server running our hourly data
collection service is spending proportionally large percentage of time waiting for
database server to complete processing of new records. In non-virtualized situation we
could monitor the processes in the system and see that, for example, we are waiting for
storage system to complete the writing to disk as another process, archiving of previous
data in this example, is consuming the resource at same time. This would give us enough
information to solve the issue by rescheduling the offending process or decreasing the
priority in order to ensure that data collection is completed properly. But, in virtualized
environment, if another virtual machine is consuming resources, we have no idea that is
happening, as all the performance data suggests nothing is consuming resources but they
are unavailable to our service. This is but one example that illustrates how any of the
limited resources on the physical host (processor, memory, networking, storage, etc) can
be temporarily unavailable without having any means to determine whether the issue lies
with our code or just wider environment. Fact that virtual machines can be migrated,
without shutting down, from one host to another with different resources available further
complicates the monitoring aspect of back-end.

3.1. Use of SNMP for monitoring the internet of things

We can divide devices we want to monitor into three categories depending on their
support for SNMP. First category consists of devices that do support SNMP and provide
needed monitoring data. Second category includes devices that do support SNMP but do
not provide needed data directly, while the third category would be made of devices that
do not support SNMP. For our needs, second and third category are essentially the same,
as there is no simple way for our monitoring system to directly access the required data,
whatever it may be.

480 M. SAVIĆ

First group mostly consists of devices providing network connectivity as they were

usually designed to be remotely managed and monitored by SNMP. There is very little to

do for us here, barring the cases where supported version of SNMP does not provide

sufficient security (versions 1 and 2) or there are other reachability issues (VPN, NAT,

etc). Most of these issues can be solved by using SNMP proxy services or other similar

technique. Physical infrastructure in cloud environment can also be in this category,

providing that we are self hosting operation or have specific arrangements with hosting

provider.

There are four principal ways to gather data from devices that do not provide them in

suitable form for monitoring:

1. Devices that support messaging or event notifications allow us to subscribe to

relevant topics and queues or implement listeners and receive the data as it is generated

by the device. This is the best approach as all the data is current and the required

resources are minimal, but is limited by the support by the monitored device.

2. Polling (predefined intervals) is a simple, robust and enables us to estimate needed

resources in advance. Down sides are possible monitoring of devices that are not

required, risk of stale data or higher resource consumption if polling more frequently.

3. Proxying data collection as requests are made. This provides for minimal resource

usage as we are collecting only the data that is needed when it is needed, but

introduces unknown response delay in the system as we have to wait for all required

devices to respond, makes estimates about resource usage difficult as we are dealing

with, for us, random requests (example would be frequent monitoring of a slow

responding device by large number of clients) and makes aggregate data calculations

almost impossible.

4. Proxying with caching extends previous approach by introducing a proxy level

cache that can reduce system load at the price of not returning current data to all

requests and significantly increasing the complexity of the system.

Described approaches can be combined in a number of ways to create hybrid solution

that would tailor to one’s specific needs, again at the price of increasing already

significant level of complexity.

As Lindholm-Ventola and Silverajan have shown in [10], monitoring of constrained

devices using CoAP can be done by using CoAP to SNMP proxy, with or without

database component, in principle corresponding to third and fourth approach described

above. In their work they conclude that further work must be done on research regarding

implementation of notifications in IoT monitoring systems.

Of the four described ways to monitor the devices in IoT environment, only the first

approach provides for meaningful handling and generating of notifications. Remaining

three approaches will either introduce a possibly significant delay in case of polling, or

might completely miss the event if there were no requests to monitor the device. If a

device supports messaging or can generate SNMP notifications we can process and

respond to event with minimal delay.

3.2. MQTT-SNMP Bridge

In order to enable SNMP monitoring of MQTT and MQTT-SN devices, we need to

implement a system that would listen to messages generated by monitored devices, if

needed send requests to monitored devices and transform collected data into form suitable

 Bridging the SNMP Gap: Simple Network Monitoring the Internet of Things 481

for serving to SNMP clients. Although it is possible to serve standalone SNMP clients,

most often setup like this are a part of larger monitoring infrastructure where SNMP

clients are in fact NMSs (Network Management Systems).

Architecture of such IoT-SNMP Bridge system is presented in Figure 1. The system

consists of: monitored devices either supporting MQTT or in case of severely constrained

devices MQT-SN protocol, MQTT-SN Gateways and Forwarders, MQTT Broker,

IOTSNMP Collector and Server and various number of SNMP clients.

MQTT-SN Forwarders and Gateways exist in configurations where there is a need to

monitor MQTT-SN devices. MQTT-SN Gateways can, and usually are a part of MQTT

Broker. The Broker itself should be chosen to be a polyglot type broker, enabling simple

use of different messaging protocols by other endpoints in the system. Choice of a

suitable broker would also enable simplifying the infrastructure of a complete system that

will be described later in the text. When it comes to collecting the data and serving

SNMP clients, it is possible to create monolithic system where both functions would be

centralized, but by separating the collector and server we can easily scale the system or

introduce additional load balancing and fault tolerance by employing multiple instances

of needed service. Broker infrastructure can also be made scalable and/or fault tolerant by

employing suitable broker like Apache ActiveMQ [11] that can function in both classic

clustered environment as well as in a so called network of brokers that enables distributed

queues and topics across a number of brokers.

Fig. 1 Overview of IoT-SNMP Bridge

3.3. SNMP monitoring of IaaS

Development of monitoring component for IaaS in this paper is a continuation of

work performed in the areas of grid computing and monitoring of distributed services

started in SEE-GRID-SCI project [12] that resulted in BBmGRIDSNMP system [13] and

is heavily influenced by implemented solutions. Architecture of CloudSNMP system is

given in Figure 2. Data is collected from various IaaS endpoints via listening to messages

generated by endpoints and sent through queue server (broker), by listening to SNMP

notifications and performing SNMP monitoring of physical devices that are a part of the

infrastructure as well as accessing needed information through IaaS API specific for a

482 M. SAVIĆ

given IaaS implementation or through generalized and standardized interfaces like ones

produced by DMTF CMWG (Distributed Management Task Force Cloud Management

Working Group) [14], ETSI (European Telecommunications Standards Institute) [15],

OASIS CAMP TC (Organization for the Advancement of Structured Information

Standards Cloud Application Management for Platforms Technical Committee) [16] and

OGF OCCI (Open Grid Forum Open Cloud Computing Interface) [17]. Depicted queue

server also supports at least one of the JMS (Java Message Service) [18] or AMQP

(Advanced Message Queuing Protocol) [19] protocols.

Fig. 2 Architecture of CloudSNMP (IaaS-SNMP Bridge)

Overall architecture mirror the one used in collecting and processing the data from

constrained devices enabling unification of many of the components in this complex

infrastructure. For example, it is possible to use the same brokers connected in load

balancing and fault tolerant architecture to handle messages from both constrained

devices as well as IaaS services endpoints. This also enables for sharing the code on the

IoT SNMP and CloudSNMP collector and server components and further modularization

of the code.

 Bridging the SNMP Gap: Simple Network Monitoring the Internet of Things 483

There are two principal users of served data: operator and client. Operator access should

allow for full access to real monitored data and should provide for any information of

interest to the operator. This can be achieved by designing and implementing a custom MIB

that contains tables where rows represent monitored resources and enable the operator to

easily access summary data for any required parameter. As the monitoring is already done,

at least in part, by using SNMP there are existing SNMP servers with already configured

access rules, thus the simplest solution is to extend their functionality by using AgentX

protocol. Client access has various restrictions imposed and enables the client to access

only the data relevant for a specific virtual machine, or set of individual virtual machines.

This requirement mandates either the use of many instances of SNMP server, one for

every monitored virtual machine, or some other mechanism that would allow for efficient

access to the monitoring data.

In order to provide possibility of the client of IaaS infrastructure to access the data of

the physical server hosting the monitored virtual machine, we employ SNMP contexts. In

simple terms, SNMP contexts provide for creating multiple instances of data structure, be

a full tree or some subset, serving the right instance to client. In our use, this enables one

SNMP server to perform the function of several servers, one for each context, without

unnecessary duplication of resources. As CloudSNMP server has the data from all

physical virtualization servers in the infrastructure, by connecting a certain context value

to a unique virtual machine, client can be served data from the correct virtualization

server even after migration to another server has taken place.

Example in Figure 3 presents data propagation for a SNMP sub-tree providing data

for processor, memory and basic storage statistics from physical device to CloudSNMP

server to be served for infrastructure operator as an extension of existing SNMP data by

utilizing AgentX protocol as well as for the client by using custom SNMP server that

masks and transforms the data prior to replying to client request.

Depending on the requirements of the system, it is possible to serve different versions

of data to clients, both to ensure that we are serving only the data that needs to be served

and to avoid sudden changes in configuration of monitored device after migration. For

example, it is possible to provide following levels of data masking:

1. No masking – served data is identical to data gathered from physical server. This

enables for best performance monitoring by the client but also provides deep

insight into actual configuration of infrastructure and can cause troubles for

monitoring software as it is possible for a server to suddenly gain or lose CPU

cores, RAM or networking interfaces.

2. Normalize to virtual machine resource – data will be normalized to maximum

resources that can be occupied by monitored virtual machine. For example, if the

virtual machine can utilize up to 8 CPU cores and server has 16 CPU cores, served

data will be scaled to 8 CPU cores, even after migration to different server with 64

CPU cores. This provides for both limiting the amount of information we are

publishing to client and for consistent measurements as the maximum values

remain the same. The issue arises from the fact that it is now possible to serve data

that is in collision with data recorded within the virtual machine.

3. Normalize to fixed value – any resource is to be normalized to a predefined fixed

value and be seen as proportion of resource currently utilized. This hides almost

all information from end users while still providing for limited performance

monitoring and troubleshooting.

484 M. SAVIĆ

Fig. 3 Data propagation in CloudSNMP to operator and client

3.4. Overview of security aspects

While IoT promises a wealth of future possibilities in future, there are also some
worrisome aspects that cannot go unmentioned, security as being the chief one. Due to
pervasive nature of IoT and access to sensitive information, any compromise can have
potentially grave consequences. When discussing the security of the described system, we
can divide it into several possible attack surfaces: SNMP based components, messaging
components and IoT components.

When discussing the security of SNMP it is important to distinguish between different
versions. Versions 1 and 2c are prone to packet sniffing and other general attacks applicable
to unencrypted communication. Only non-obsolete version of the protocol is version 3
that employs standard cryptographic features. Due to the limits imposed by stateless
nature of the protocol, the protocol can be attacked by brute force and dictionary attacks.
Modular architecture of SNMP enables use of TLS [21] and DTLS [22] within transport
subsystem [23]. Proper configuration and utilization is of paramount importance in order
to provide for secure operating environment.

Messaging components allow for use of complex authentication and authorization
mechanisms as well as use of encryption. While this component and its security analysis
lie outside of the scope of this paper, it is worth noting that there have been a number of

 Bridging the SNMP Gap: Simple Network Monitoring the Internet of Things 485

security vulnerabilities in various widely used SSL/TLS libraries in the past few years,
affecting systems ranging from simple embedded solutions to mobile devices and
dedicated servers [24][25][26][27].

Discussing security models of IoT is complicated by the nature of IoT and the fact that it

covers everything from simple sensors to connected cars and vast industrial infrastructures.

Examples of security issues range from vulnerabilities in widely used ZigBee protocol [28]

to vulnerabilities present in connected cars [29]. Concise overview is given by Sadeghi,

Wachsmann and Waidner in [30].

One of the benefits of described monitoring system is a possibility to provide effective

monitoring to users of the infrastructure while limiting possible attack surfaces to exposed

monitoring servers. It is also worth noting that this approach also enables the system to

function as a proxy that exposes secure SNMP version 3 to outside world although the

monitored devices might be able to support only insecure versions of the protocol. In a stark

contrast to resource constrained devices, these servers can possess ample hardware and

software resources and are much better equipped to handle possible attacks, possible

through detection in cooperation with IDS (Intrusion Detection System) or mitigation when

coupled with IPS (Intrusion Prevention System).

3.5. Integration with existing systems

Although there is a possibility to use specialized systems to gather, analyze and
present monitoring data related to IoT, most organizations already use some form of NMS
(Network Management System) that can be used for both management and monitoring of
the infrastructure. There exists a vast variety of monitoring system, running on different
platforms, utilizing different architectures, operational procedures and data collection
methods. Some of the representatives of popular NMSs are Nagios [31], Zenoss [32],
Zabbix [33] and OpenNMS [34]. One example of using Zenoss in IoT monitoring was
given in [35]. Mazhelis et al have analyzed the possibilities of use of the CoAP protocol for
monitoring of IoT infrastructure as well as adapting existing Accounting and Monitoring of
Authentication and Authorization Infrastructure Services (AMAAIS) project [36] for such
use [37]. Although NMS products can differ significantly from each other, practically all of
them support at least data gathering via SNMP. This enables previously described system to
extend the reach of general purpose network monitoring systems to IoT part of the
infrastructure. Depending on the exact purpose and system configuration, it is possible to
serve either raw collected data or data derived after previously defined transformations.
This can be used to also mitigate or solve some of the privacy aspects of possibly sensitive
data as the said data can be thoroughly filtered and modified to provide anonymization
and/or aggregation. One example of complex monitoring system in the heterogeneous
and distributed computing infrastructure such as SEE-GRID [12] was described in [13].

Developing software for systems as diverse as IoT infrastructures are can be a
daunting task. Shear diversity of available devices and implementations provides for a
very dynamic environment, often difficult to set up for testing purposes. While developing
the system Contiki [38] based Cooja network simulator [39] can be used in place of
physical devices. For testing MQTT and CoAP as well as stress testing the system simple
load generator was developed in Java utilizing Californium CoAP framework [40] and
Fusesource MQTT libraries [41]. Proof of concept SNMP server was first created in Java
using JAX toolkit [42] utilizing AgentX protocol, but was rewritten in Python programming
language [43] utilizing PySNMP library [44].

486 M. SAVIĆ

4. CONCLUSION

In this paper we presented one solution for end-to-end monitoring of IoT devices,

including severely constrained devices such as sensors, IaaS installations, as well as the

networking infrastructure that connects them together. On the constrained devices end of

spectrum, use of CoAP and MQTT was covered, while networking infrastructure natively

supports SNMP and four approaches to IaaS and virtualization equipment data gathering

were presented. Integration into existing network management and monitoring systems

enables simpler transition to full utilization of IoT infrastructures in practice. Often

neglected aspect of harmonization of operational procedures in different domains can be

significantly simplified by enabling uniform view and/or control interface for the whole

infrastructure. By limiting exposed attack surfaces to simpler to manage and secure

monitoring servers, security of the complete system can be increased, also alleviating

some of the privacy aspects of the data gathering through the use of data transformation

and anonymization prior to serving.

Described solution provides for non-blocking asynchronous data collection, scalable

and fault tolerant data processing and serving, but most importantly, it provides an

uniform standards based interface needed for reliable monitoring.

REFERENCES

[1] “RFC 2571 - An Architecture for Describing SNMP Management Frameworks.” [Online]. Available:

https://tools.ietf.org/html/rfc2571.
[2] “RFC 2741 - Agent Extensibility (AgentX) Protocol Version 1.” [Online]. Available: https://tools.ietf.

org/html/rfc2741.

[3] “Agent Extensibility Working Group (agentx).” [Online]. Available: http://www.ietf.org/html.charters/
agentx-charter.html.

[4] “RFC 2742 - Definitions of Managed Objects for Extensible SNMP Agents.” [Online]. Available:

https://tools.ietf.org/html/rfc2742.
[5] “RFC 7252 - The Constrained Application Protocol (CoAP).” [Online]. Available: https://tools.ietf.org/

html/rfc7252.

[6] “RFC 6690 - Constrained RESTful Environments (CoRE) Link Format.” [Online]. Available: https://tools.
ietf.org/html/rfc6690.

[7] “MQTT Version 3.1.1.” [Online]. Available: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

[8] ZigBee Alliance. Zigbee specification. Technical Report Document 053474r06, Version 1.0, 2005.
[9] A. Stanford-Clark and H. Linh Truong, MQTT For Sensor Networks (MQTT-SN) Protocol

Specification,. IBM, http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf.
[10] Lindholm-Ventola, Hanna; Silverajan Bilhanan , “CoAP-SNMP Interworking IoT Scenarios,” Tampere

University of Technology, Department of Pervasive Computing. Report 3, Tampere, 2013.

[11] “Apache ActiveMQ.” [Online]. Available: http://activemq.apache.org/.
[12] A. Balaž, O. Prnjat, D. Vudragović, V. Slavnić, I. Liabotis, E. Atanassov, B. Jakimovski, M. Savić,

“Development of grid e-infrastructure in south-eastern Europe,” J of Grid Comp, Vol. 9, No. 2, pp. 135-154,

2011.
[13] M. Savic, S. Gajin, M. Bozic, “SNMP based Grid infrastructure monitoring system,” In Proceedings of

the 34th International Convention MIPRO, 2011, pp. 231-235.

[14] D. Davis, G. Pilz, “Cloud Infrastructure Management Interface (CIMI) Model and RESTful HTTP-based
Protocol,” Technical report, Distributed Management Task Force (DMTF), 2012.

[15] “ETSI - ICT Standards, GSM, TETRA, NFV, GPRS, 3GPP, ITS, UMTS, UTRAN, M2M.” [Online].

Available: http://www.etsi.org/standards.
[16] “OASIS Cloud Application Management for Platforms (CAMP) Technical Committee | Charter.”

[Online]. Available: https://www.oasis-open.org/committees/camp/charter.php.

[17] “Open Cloud Computing Interface” [Online]. Available: http://occi-wg.org/.

 Bridging the SNMP Gap: Simple Network Monitoring the Internet of Things 487

[18] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout, “Java message service,” Sun Microsystems

Inc., Santa Clara, CA, 2002.
[19] “Advanced Message Queuing Protocol Website” [Online]. Available at http://www.amqp.org/.

[20] “RFC 2576 - Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network

Management Framework.” [Online]. Available: https://tools.ietf.org/html/rfc2576.
[21] “The Transport Layer Security (TLS) Protocol Version 1.2” [Online]. Available: https://tools.ietf.

org/html/rfc5246.

[22] “Datagram Transport Layer Security” [Online]. Available: https://tools.ietf.org/html/rfc4347.
[23] “Transport Layer Security (TLS) Transport Model for the Simple Network Management Protocol

(SNMP)” [Online]. Available: https://tools.ietf.org/html/rfc5953.

[24] “CVE-2014-1266” [Online]. Available: https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-1266.
[25] “CVE-2015-0282” [Online]. Available: https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-0282.

[26] “CVE-2014-0160” [Online]. Available: https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160.

[27] “Microsoft Security Advisory 3046015.” [Online]. Available: https://technet.microsoft.com/en-us/library/
security/3046015.

[28] “Zigbee Exploited – The Good, the Bad and the Ugly” [Online]. Available: http://cognosec.com/zigbee_

exploited_8F_Ca9.pdf
[29] S. Kamkar, “Drive it Like You Hacked it”[Online]. Available: http://samy.pl/defcon2015/2015-defcon.pdf

[30] A.-R. Sadeghi, C. Wachsmann, and M. Waidner, “Security and privacy challenges in industrial internet of

things”, In Proceedings of the 52nd Annual Design Automation Conference, 2015, p. 54.
[31] “Nagios Core. Nagios Open Source Project.,” Nagios. [Online]. Available: https://www.nagios.org/.

[32] “Zenoss,” Zenoss. [Online]. Available: http://www.zenoss.com/.

[33] “Zabbix: The Enterprise-Class Open Source Network Monitoring Solution.” [Online]. Available:
http://www.zabbix.com/.

[34] “The OpenNMS Project.” [Online]. Available: http://www.opennms.org/.

[35] U. Gupta, “Monitoring in IOT enabled devices,” arXiv preprint arXiv:1507.03780, 2015.
[36] O. Mazhelis, M. Waldburger, G. S. Machado, B. Stiller, and P. Tyrväinen, “Extending Monitoring and

Accounting Infrastructure Towards Constrained Devices in Internet-of-Things Applications”, Technical paper,

University of Zurich, 2013. Available: https://www.merlin.uzh.ch/contributionDocument/download/5076
[37] B. Stiller, “Accounting and monitoring of AAI services.” SWITCH Journal, 2010(2):12–13,October 2010.

[38] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki-a lightweight and flexible operating system for tiny

networked sensors,” In Proceedings of the 29th Annual IEEE International Conference on Local
Computer Networks, 2004, pp. 455-462.

[39] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-level sensor network simulation with

cooja”, In Proceedings of the 31st IEEE Conference on Local Computer Networks, 2006, pp. 641-648.
[40] “Californium (Cf) CoAP framework - Java CoAP Implementation.” [Online]. Available: http://people.inf.

ethz.ch/mkovatsc/californium.php.

[41] “Fusesource MQTT libraries.” [Online]. Available: https://github.com/fusesource/mqtt-client.
[42] “Jasmin: JAX - Java AgentX Client Toolkit.” [Online]. Available: https://www.ibr.cs.tu-bs.de/projects/

jasmin/jax.html.
[43] G. VanRossum and F. L. Drake, The Python Language Reference. Python Software Foundation, 2010.

[44] “SNMP library for Python.” [Online]. Available: http://pysnmp.sourceforge.net/.

