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Abstract. In this paper a numerical algorithm for computation of per-unit-length 

internal impedance of cylindrical conductors under complex arguments of large 

magnitude is presented. The presented algorithm either numerically solves the scaled 

exact formula for internal impedance or employs asymptotic approximations of 

modified Bessel functions when applicable. The formulas presented can be used for 

computation of per-unit-length internal impedance of solid cylindrical conductors as 

well as tubular cylindrical conductors.  
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1. INTRODUCTION  

Internal impedance per-unit-length (pul) or surface impedance of cylindrical conductors is 

required in analysis of numerous electromagnetic problems [1-5]. This pul internal impedance 

can be computed using various formulas which contain special functions such as Bessel 

functions and modified Bessel functions [6]. Whatever formula is employed the results are 

valid only for smaller function arguments whereas for larger function arguments stability issues 

often occur. These issues are directly connected with computing special functions (Bessel 

functions and modified Bessel functions) under large parameters which in some cases yield 

extremely large values and in some cases extremely low values. In addition, these extreme 

values are multiplied, divided, subtracted and added which considerably makes thing worse. In 

this paper an algorithm is presented which circumvents the mentioned issues by first scaling the 

employed formulas to avoid overflow/underflow issues and then solving the expressions for 

modified Bessel functions in two ways - either by numerical integration or by using asymptotic 

approximations when applicable [7].  

                                                           

 Received February 25, 2016; received in revised form April 7, 2016 

Corresponding author: Slavko Vujević 

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia  

(E-mail: vujevic@fesb.hr) 

* An earlier version of this paper was presented at the 12th International Conference on Applied Electromagnetics  

(ПЕС 2015), August 31 - September 2, 2015, in Niš, Serbia [1]. 



82 S. VUJEVIĆ, D. LOVRIĆ 

The formulas presented in the paper are applicable to solid and tubular cylindrical 

conductors. All presented formulas are for a tubular cylindrical conductor, but by 

introducing the value zero for internal radius of the tubular cylindrical conductor, the pul 

internal impedance of a solid cylindrical conductor can be obtained. This model for 

computing pul internal impedance of single-layer tubular conductors represent a basis for 

a more general model which will be able to compute pul internal impedance of a multi-

layered tubular conductor which is currently in development.  

2. FORMULA FOR COMPUTATION OF TUBULAR CYLINDRICAL CONDUCTOR 

INTERNAL IMPEDANCE 

Computation of pul internal impedance of tubular cylindrical conductors (Fig. 1), 

which takes the skin effect into account but ignores the proximity effect, can be performed 

using various formulas based on different special functions. It has been concluded in the 

previous work of the authors of this paper that, from the numerical stability standpoint, 

the most suitable formula for computation of pul internal impedance of tubular conductors 

is based on modified Bessel functions of the first and second kind [7]:  
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where σ is the electrical conductivity of the conductor material, re is the external radius of 

the conductor, ri is the internal radius of the conductor,  0I  and 1I  are complex-valued 

modified Bessel function of the first kind of order zero and one, 0K  and 1K  are 

complex-valued modified Bessel function of the second kind of order zero and one (also 

called Kelvin functions),   is the complex wave propagation constant, α is the 

attenuation constant, µ is the permeability of the conductor material, ω is the circular 

frequency and j is the imaginary unit.  

 

Fig. 1 Cross-section of a tubular cylindrical conductor 

 

As it has been shown in [7] by rearranging formula (1) and scaling it by an appropriate 

factor, the following formula for pul internal impedance of tubular conductors can be 

obtained: 
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where the scaled modified Bessel functions are: 
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Modified Bessel functions of the first kind are scaled down exp( )r   times whereas 

modified Bessel functions of the second kind are scaled up exp( )r   times. In such a 

way quantities of similar magnitudes are obtained which consequently enables more 

stable computation.  

The computation of internal impedance Z  can be further simplified depending on the 

magnitude of ( )e ir r   . Numerical analysis has shown that for ( ) 19e ir r     

computation of Z  must be performed using (3) in order to maintain high accuracy. 

However, for larger magnitudes of ( )e ir r    simplifications of formula (3) can be 

performed without loss of accuracy. The following relation presents these simplifications 

and their interval of applicability: 
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As can be seen from (3) and (6), it is imperative to compute scaled modified Bessel 

functions of the first and second kind as accurately as possible. The proposed numerical 

procedure for achieving this is addressed in the following section of the paper. 

3. COMPUTATION OF SCALED MODIFIED BESSEL FUNCTIONS  

In the developed algorithm for function parameters α∙r ≤ 25 integral representation of 

scaled modified Bessel functions of the first and second kind is used. Integral 

representation of modified Bessel functions is more suitable than the infinite sum 

representation because the scaling factors given in (4-5) can be easily included in the 

integral representation of modified Bessel functions. This is not the case when using the 

infinite sum representation. Integrals that occur in modified Bessel functions of the first 

and second kind are solved numerically using adaptive Simpson rule.  

On the other hand, for function parameters α∙r > 25 computation of scaled modified 

Bessel functions of the first and second kind is performed using asymptotic approximations. 

Through extensive numerical analysis it has been found that for function parameter values 

larger than 25, asymptotic approximations of modified Bessel functions produce results of 

equal accuracy as the numerical solution of integral representation of modified Bessel 

functions but in less computation time.  
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3.1. Computation of scaled modified Bessel functions of the first kind for α∙r ≤ 25  

Modified Bessel function of the first kind of order zero in its integral form can be 

expressed by the following equation [8]: 
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Further simplification of the previous expression and separation of real and imaginary 

parts yields the following relation for scaled modified Bessel function of the first kind of 

order zero: 
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where a and b are given by: 

 (sin 1)a r      (9) 

 (sin 1)b r      (10) 

The separation of the real and imaginary parts is performed because these integrals are 

solved separately using adaptive Simpson numerical integration. Numerical integration 

yields highly accurate results because the separated functions are simple to integrate as 

can be seen from Fig. 2 and Fig. 3 which depict how the real and imaginary parts of 

equation (8) behave on the integration interval for various values of parameter α∙r. 

 

Fig. 2 Real part of scaled modified Bessel function of the first kind of order  

zero for various values of parameter α∙r  
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Fig. 3 Imaginary part of scaled modified Bessel function of the first kind of order 

zero for various values of parameter α∙r 

Integral representation of modified Bessel function of the first kind of order one can 

be expressed by the following equation [8]: 
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As before, by simplification of expression (11) and separation of real and imaginary 

parts, the following relation for scaled modified Bessel function of the first kind of order 

one can be obtained: 
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Two integrals present in equation (12) are again solved numerically using adaptive 

Simpson rule. Fig. 4 and Fig. 5 depict how the real and imaginary parts of equation (12) 

behave on the integration interval for various values of parameter α∙r. 
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Fig. 4 Real part of scaled modified Bessel function of the first kind of order  

one for various values of parameter α∙r  

 

Fig. 5 Imaginary part of scaled modified Bessel function of the first kind of order  

one for various values of parameter α∙r 

3.2. Computation of scaled modified Bessel functions of the first kind for α∙r > 25  

Asymptotic approximation of scaled modified Bessel function of the first kind can be 

expressed by [8]: 
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From the previous expression asymptotic approximations of scaled modified functions 

of the first kind of orders zero and one can easily be deduced: 
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The expressions for cm and dm are deduced from (13) and are also used for asymptotic 

approximations of modified Bessel functions of the second kind. Values of NA have been 

determined through numerical analysis. 

3.3. Computation of scaled modified Bessel functions of the second kind for α∙r ≤ 25  

Integral present in the expression for the modified Bessel function of the second kind 

of order zero has an upper integral limit that tends to infinity [8]. Fortunately, the integral 

function rapidly tends to zero as the function argument increases so the infinite limit can 

be substituted with a finite limit tm0 without loss of accuracy: 
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Now the scaled modified Bessel function of the second kind of order zero can be 

deduced from (19): 
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The two integrals present in equation (21) are again solved numerically using adaptive 

Simpson rule with high accuracy. Fig. 6 and Fig. 7 depict how the real and imaginary parts 

of equation (21) behave on the integration interval for various values of parameter α∙r. 

 

Fig. 6 Real part of scaled modified Bessel function of the second kind of order zero  

for various values of parameter α∙r  

 

Fig. 7 Imaginary part of scaled modified Bessel function of the second kind of order zero  

for various values of parameter α∙r 

Similarly as for the modified Bessel function of second kind of order zero, the integral 

present in the expression for modified Bessel function of second kind of order one [8] can 

be replaced with a finite limit tm1: 
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Simplification of expression (23) yields the following expression for scaled modified 

Bessel function of the second kind of order one: 
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As before the two integrals present in equation (25) are solved numerically using 

adaptive Simpson rule with high accuracy. Fig. 8 and Fig. 9 depict how the real and 

imaginary parts of equation (25) behave on the integration interval for various values of 

parameter α∙r. 

 

Fig. 8 Real part of scaled modified Bessel function of the second kind of order  

one for various values of parameter α∙r  

 

Fig. 9 Imaginary part of scaled modified Bessel function of the second kind of order  

one for various values of parameter α∙r 
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3.4. Computation of scaled modified Bessel functions of the second kind for α∙r > 25  

Asymptotic approximation of scaled modified Bessel functions of the second kind is 

given by the following expression [8]: 
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From the previous expression asymptotic approximations of scaled modified functions 

of the second kind of orders zero and one can be deduced: 
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where NA is given by (16) whereas the coefficients cm and dm are computed from (17) and (18). 

4. NUMERICAL EXAMPLES 

The presented model for computation of pul internal impedance of tubular conductors 

was implemented into a FORTRAN program. In order to ascertain the accuracy of 

obtained results and numerical stability of the model itself, a comparison is made with 

MATLAB which is used to compute pul internal impedance using the initial formula (1). 

Both FORTRAN and MATLAB employ double precision computing.  It is important to 

note here that by using a program package which can employ more decimal places higher 

robustness of results would be achieved but at the expense of execution time.  

In the numerical example magnitudes and phase angles of Z  for a thin tubular copper 

conductor (internal radius ri = 3.8 mm and external radius re = 4 mm) are computed. The 

results of the comparison are presented in Table 1 and Table 2.  

Table 1 Comparison of magnitudes of tubular cylindrical conductor internal impedance. 

α∙re Z (Ω) 

 Proposed MATLAB 

10-2 0.003643657122067 0.003643657122067 

10-1 0.003643657122745 0.003643657122745 

100 0.003643663902873 0.003643663902873 

101 0.003710702668820 0.003710702668820 

102 0.025181394368712 0.025181394368712 

103 0.251267138203603 NaN 

105 25.12049572965153 NaN 

1010 2512043.292911872 NaN 

1015
 251204329284.9072 NaN 
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 Table 2 Comparison of phase angles of tubular cylindrical conductor internal impedance. 

α∙re φ (°) 

 Proposed MATLAB 

10-2 9.30814638898·10-6 9.30814663686·10-6 

10-1 9.30814668336·10-4 9.30814668521·10-4 

100 9.30813198101·10-2 9.30813198100·10-2 

101 9.164530090507745 9.164530090507741 

102 44.85885196305934 44.85885196305934 

103 44.98566888986672 NaN 

105 44.99985675983501 NaN 

1010 44.99999999856761 NaN 

1015
 45.00000000000000 NaN 

As can be seen from the results in Table 1 and Table 2, when computing formula (1) 

using MATLAB an underflow/overflow stability issue occurs for larger function 

parameters. These numerical instabilities are a direct consequence of the denominator 

consisting of subtraction of two products. When these products become identical up to the 

last decimal place that the program package can compute, the denominator becomes equal 

to zero thus resulting in a Not a Number value. The proposed numerical procedure 

successfully circumvents these issues as can be seen form the results of the analysis. 

5. CONCLUSION 

In this paper an algorithm for computation of pul internal impedance of cylindrical 

conductor under large complex function arguments is presented. The high accuracy and 

stability of the algorithm was achieved by selecting a formula for pul internal impedance 

which does not lead to undefined values for relatively small function arguments and by 

scaling the modified Bessel functions present in this formula by an appropriate scaling 

factor. The developed algorithm represents a basis for computation of pul internal 

impedance of multilayered tubular cylindrical conductors which is in development. 
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