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Abstract. This paper presents a study of MOSFETs as a sensor and dosimeter of ionizing 

radiation. The electrical signal used as a dosimetric parameter is the threshold voltage. 

The functionality of these components is based on radiation-induced ionization in SiO2, 

which results in increase of positive charge trapped in the SiO2 and interface traps at Si- 

SiO2, leads to change in threshold voltage. The first part of the paper deals with analysis 

of defect precursors created by ionizing radiation, responsible for creation of fixed and 

switching traps, as well as most important techniques for their separation. Afterwards, the 

results for sensitive p-channel MOSFETs (RADFETs) are presented, following with results 

for commercially available MOSFETs applications as a sensors of ionizing radiation. 
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1. INTRODUCTION 

The attention of today’s research on the impact of ionizing radiation on MOSFETs is 

directed in two ways. The first one is the production on MOSFETs with the highest 

possible resistance to ionizing radiation (radiation hardness), while the other is toward to 

ionizing radiation dosimeters production. The first report on the use p-channel MOSFET 

as integrating radiation dosimeter was published in 1970 [1] and this idea was verified by 

results published in 1974 [2]. Further investigations lead to the manufacture of radiation 

sensitive p-channel MOSFETs, also known as RAdiation sensitive Field Effect Transistor 

(RADFET) or pMOS dosimeter [3]. RADFET has been shown to be suitable for dose 

measurements in various applications, such as diagnostic radiology and radiotherapy [4]-

[8], space radiation monitoring [9]-[12], irradiation of food plants [13] and in personal 

dosimetry [14], [15]. 

The RADFET radiation-sensitive region, the oxide film layer under the Al-gate is 

typically 1m  200m  200m, i.e., the sensing volume is much smaller than competing 

integral dose measuring devices as the ionizing chamber or thermoluminescent dosimeter, 

implying that it can also be used in vivo dosimetry [16], [17]. This property of the RADFET 
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also makes it attractive for measurement in the gradient radiation field where the gradient 

mostly depends on a single space coordinate, like resolving dose of X-ray microbeams or 

depth dose distribution [18]. The advantages of RADFETs include immediate, non-

destructive dosimetric information readout, real time or delayed reading, possible integration 

with other sensors and/or electronics, wide dose range, accuracy and competitive price [19], 

[20]. The application of RADFETs for dosimetry is hadron therapy, which is one of the 

promising radiation modalities in radiotherapy, another field where it is possible to explore 

their advantages. Hadron therapy includes, fast neutron therapy, proton therapy, heavy ion 

therapy and boron-neutron capture therapy. It is shown [21] that RADFETs are less sensitive 

to neutron radiation than the photon or charge particles. On the other hand, a disadvantage of 

RADFETs is the need for separate calibration in the fields of different modalities and 

energy. Moreover, RADFETs have a certain range of the total accumulated dose, which 

depends on the dosimeter type and sensitivity. Once the upper limit of linearity is 

achieved, the RADFETs need to be replaced. However, recent studies have shown that 

such RADFETs can be recovered for reuse by storing at room or elevated temperature for a 

sufficient time [22], [23] or by annealing with current [24], [25]. 

The dosimetry of ionizing radiation using radiation sensitive MOSFETs is based on 

converting the threshold voltage shift VT into radiation dose D. This shift originates in 

the radiation-induced electron-hole pairs in the gate oxide layer of the transistor which 

lead to increase in the density of interface traps and build-up or neutralization of positive 

trapped charge. The sensitivity of RADFETs can be adjusted, which makes them suitable 

for various applications. For example, sensitivity can be tuned using different gate oxide 

layer thickness [26], [27], or in some cases by stacking transistors [14], [15]. The sensitivity 

can also be tuned by applying positive bias on the gate during irradiation [28], [29]. 

2. THE DEFECTS PRECURSORS CREATED BY IONIZING RADIATION 

Ionizing radiation leads to formation of large number of defects in SiO2 and at SiO2 - 

Si interface, which are responsible for MOSFETs threshold voltage shift. The defects 

which make significant impact to devices performance will be discussed further. 

2.1. Photon induced ionization 

During gamma or X-ray irradiation photons interact with the electrons in the SiO2 

molecules releasing secondary electrons and holes, i.e., photons break Sio  O and 

Sio  Sio covalent bonds in the oxide [30] (the index o is used to denote silicon atom in the 

oxide). The released electrons (so called “secondary electrons”) which are highly 

energetic, may be recombined by holes at the place of production, or may escape 

recombination. The secondary electrons that escape recombination with holes travel some 

distance until they leave the oxide, losing their kinetic energy through the collisions with 

the bonded electrons in the Sio  O and Sio  Sio covalent bonds in the oxide, releasing 

more secondary electrons (the latter bond represents an oxygen vacancy). 
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Each secondary electron, before it has left the oxide or been recombined by the hole, 

can break a lot of covalent bonds in the oxide producing a lot of new secondary highly 

energetic electrons, since its energy is usually much higher than an impact ionizing 

process energy (energy of 18 eV is necessary for the creation of one electron-hole pair 

[30], i.e., for the molecule ionization). It is obvious that the secondary electrons play a 

more important role in bond breaking than highly energetic photons, as a consequence of 

the difference in their effective masses, i.e., in their effective cross sections. The electrons 

leaving the production place escape the oxide very fast (for several picoseconds), but the 

holes remain in the oxide. 

The holes released in the oxide bulk are usually only temporary, but not permanently 

trapped at the place of production, since there are no energetically deeper centers in the 

oxide bulk. The holes move toward one of the interface (SiO2-Si or SiO2-gate), depending 

on the oxide electric field direction, where they have been trapped at energetically deeper 

trap hole centers [31], [32]. Moreover, even in the zero gate voltage case, the electrical 

potential due to a work function difference between gate and substrate is high enough for 

partial or complete moving towards an interface.  

2.2. The defects created by secondary electrons in impact ionization 

A secondary electrons passing through oxide bulk, break covalent bonds in the oxide 

by the impact ionization and create  Sio  O
+

Sio  complex, where  denotes the three 

Sio  O bonds (O3  Sio  O) and 

 denotes the unpaired electron. The formed  Sio  O

+
Sio  

complex is energetically very shallow, representing the temporary hole centre (the trapped 

holes can easily leave it [33]). 

The strained silicon-oxygen bond  Sio  O  Sio  mainly distributed near the interfaces 

can also be easily broken by the passing secondary electrons, usually created  non-bridging-

oxygen (NBO) centre,  Sio  O

, and positively charged E' center, 

 oSi  [34] known as a E'S 

center [35]. A NBO centre is an amphoteric defect that could be more easily negatively charged 

than positively by trapping an electron. The NBO as an energetically deeper centre is the main 

precursor of the traps (defects) in the oxide bulk and the interface regions. 

A secondary electron passing through the oxide can also collide with an electron in the 

strained oxygen vacancy bond  Sio  Sio , which is a precursor of a E' centre (  oSi ) 

[36], breaking this bond and knocking out an electron. The oxygen vacancy bonds are 

mainly distributed in the vicinity of the interfaces. 

The trapped charge can be positive (oxide trapped holes) and negative (oxide trapped 

electrons) and the former is more important, since the hole trapping centers more 

numerous including E'S, E'  and NBO centers, compared with one electron trap centre  

(NBO). The holes and electrons trapped near the Si – SiO2 interface have the biggest effect 

on MOSFET characteristics, since they have the strongest influence on the channel carriers.  

2.3. Defects created in SiO2 by hole transport 

The holes trapped at 
 oSi  centers formed from oxygen vacancies and strained 

silicon-oxygen bonds are energetically deep and steady, at which the holes can remain for 

longer time period, i.e. they can be hardly filled by electrons than some shallowly trapped 

holes. These centers exist near both interfaces, especially near the Si – SiO2 interface. The 
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holes created and trapped at the bulk defects,  representing energetically shallow centers, 

are forced to move towards one of the interfaces under the electric field, where they are 

trapped at deeper traps, since there a lot of oxygen vacancies, as well as a lot of strained 

silicon-oxygen bonds near the interfaces, grouping all positive trapped charge there. The 

holes leave the energetically shallow centers in the oxide spontaneously and transporting to the 

interface (Fig. 1(a)) by hopping process using either shallow centers in the oxide (Fig. 1(b)); the 

holes “hop” from one to another center or centers in the oxide valence band (Fig. 1(c)) [31], 

[37]. Fig. 1 displays the hole transport in the space for the positive gate bias (a) and the 

energetic diagram for the possible mechanisms of this space process (b) and (c). 

 

Fig. 1 Space diagram: (a) hole transport through the gate oxide layer in the case of 

positive gate bias. “x” represents unbroken bonds and “o” broken bonds (trapped 

holes at shallow traps), respectively, and “ ” represents the hole trap precursors 

near the interface (precursors of a deep trap). Energetic diagram: the hole transport 

(b) by tunneling between to localized traps and (c) by the oxide valence band. 

Fig. 2 shows the possible hole (electron) tunneling between adjacent centers: a shallow 

centre and deep centre. When there is no gate bias (Fig. 2 (a)) the holes (electrons) tunneling 

between these centers, is not possible. When the transistor is positively biased (Fig. 2 (b)), 

the bonded electron can tunnel from the deep centre to the shallow centre. It represents the 

hole tunneling from shallow to deep centers, being permanently trapped at the deep 

center. The electron, which is now in the shallow centre, can easily tunnel from this 

shallow centre to the next adjusted shallow centre, enabling the hole transport towards the 

interface [31]. 
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Fig. 2 The electron tunneling between adjacent centers: (a) shallow centre and (b) deep centre. 

Moving throughout the oxide, the holes react with the hydrogen defect HSio   and 
OHSio   finally create E'S, E' , NBO centers, hydrogen ions H  and hydrogen atoms 

oH . H  ions and oH  atoms were important for defect creation at SiO2-Si interface (see 

the next subsection). 

When the holes reach the interface, they can break both the strained oxygen vacancy 

bonds  oo SiSi , forming E' centers [34] and the strained silicon-oxygen bonds  
 oo SiOSi , created the E'S and NBO centers [31]. These centers represent 

energetically deeper hole and electron trapping centers, respectively. It should be noted 

that the energetic levels of the defects created after the holes at E'S, and E' centers and 

electrons at NBO centre, respectively, have been trapped can be various. The chemically 

same defects show different behaviors depending on the whole bond structure: the angles 

and distances between the surrounding atoms [38]-[43]. 

2.4. Defects created at SiO2 - Si interface 

The defects at the SiO2-Si interface known as true interface traps represent an 

amphoteric defect Si3  Si

s  (index s is used to denote silicon atom in substrate): a silicon 

atom  Si

s at SiO2-Si interface back bonded to three silicon atoms from the substrate  Sis

 

usually denoted as  Si

s or Si


. They can directly be created by incident photons passing 

to the substrate or the gate [44], [45] but this amount can be neglected. Interface traps are 

mainly created by trapped holes (h
+ 

model) [46]-[49] and by hydrogen released in the 

oxide (hydrogen-released species model– H model) [50]-[52]. The h
+
 model proposes that 

a hole trapped near the SiO2-Si interface created interface trap, suggesting that an 
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electron-hole recombination mechanism is responsible [47]. Namely, when holes are 

trapped near the interface and electrons are subsequently injected from substrate, 

recombination occurs. From the energy released by this electron-hole recombination the 

interface state may be created. 

The H model proposes that H
+
 ions released in the oxide by trapped holes drift towards 

SiO2-Si interact with  Sio  H and  Sio  OH defects, drifting toward the SiO2-Si interface 

under the positive electric field. When the H
+
 ion arrives at the interface, it picks up an electron 

from the substrate, breaking a highly reactive hydrogen atom H
o
 [53]. Also, according to the H 

model the hydrogen atoms oH  released in reaction holes with  Sio  H and  Sio  OH defects 

and diffuse towards the SiO2-Si interface under the existing concentration gradient. These 

atoms react without an energy barrier at the interface producing interface trap in interaction 

with interface trap precursors   Sis  H and  Sis  OH [54]-[56]. Interaction between H
o
 

atoms with  Sis  H and  Sis  OH precursors, beside creation of interface traps in interaction 

with interface trap precursors, leads to the creation of H2 and H2O molecules, respectively 

[31], [53]. H2 molecules diffuse towards the bulk of oxide where it is cracked at CC
+
 

centers [57]. This cracking process ensured the continuous source of H
+
 ions, which drift 

towards the interface to form interface traps [58]. 

2.5. Classification of defects according to their influence on I-V characteristics 

The above mentioned defects can be divided to fixed traps (FT) and switching traps 

(ST). FT represents traps in the oxide that do not have an ability to exchange the charge 

with the channel (substrate) within the transfer/subthreshold characteristic measurement 

time frame [59]. FT could be either negatively or positively charged, and they attract or 

repulse the channel carrier by the Coulomb force, depending on the charge sign of both 

their charge and channel carrier charge. ST represent the traps created near and at SiO2-Si 

interface and they do capture (communicate with) the carrier from the channel within the 

transfer/subthreshold characteristic measurement time frame [59]. The ST created in the 

oxide near SiO2-Si interface are called slow switching traps (SST), but the ST created at the 

interface are called fast switching traps (FST) also called true interface traps. The SST located 

in the oxide, closed to the SiO2-Si interface are also known slow states (SS) [60], anomalous 

positive charge (APC) [61], [62], switching oxide traps (SOT) [63] and border traps [64]. It 

was emphasized that the influence of FT and ST on the transistor subthreshold characteristics is 

manifested through the parallel shift and its slope variation, respectively. FT are usually deeper 

in the oxide, and during the long time post-irradiation annealing they can only be 

permanently recovered or temporally compensated (as in the case of switching gate bias 

experiments). It is emphasized that FST are amphoteric, and each of them contributes to 

two states within the silicon band gap (an acceptor and a donor) which could be randomly 

distributed inside it. 

3. TRANSISTOR CHARACTERIZATION 

There are several techniques for FT and ST separation [65]. Most commonly used 

techniques are subthreshold midgap and charge pumping technique. Their basic principle will 

be presented. 
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3.1. Subthreshold midgap technique 

 

Fig. 3 Subthreshold characteristics of RADFETs with 100 nm thick gate oxide manufactured 

by Tyndall National Institute, Cork, Ireland: (0) before gamma-ray irradiation and (1) 

after irradiation to 500 Gy. 

The midgap-subthreshold (MG) technique [59] for determination of FT and ST 

densities is based on analysis of MOSFETs subthreshold characteristics. Namely, the 

influence of FT and ST on the transistor subthreshold characteristics in saturation is in 

their parallel shifts and their slope changes, respectively. The first step is linear regression 

of the linear regions of subthreshold characteristics (Fig. 3). The linear regression gives a 

straight line nVmI GD )log( . The next step in the procedure is the calculation of the 

midgap current before irradiation, IMG0 and after irradiation IMG. The calculation of the 

midgap current is performed using the subthreshold-current equation for a transistor in 

saturation [66]: 
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where 0 /x effW C L   and 
2

,/D s A DL kT q N  is the Debye length. In this equation 

C0x is the oxide capacitance per unit area, k is the Boltzmann’s constant, q is the absolute 

value of electron charge, T is the absolute temperature, ni is the intrinsic carrier concentration, 

NA,D is the doping concentration, s is the silicon permittivity, s is the surface potential,  is the 

carriers mobility, W is the channel width and Leff is the effective channel length.  

Regardless of the distribution within the substrate energy gap, interface traps are 

electrically neutral (total charge equals zero) when surface potential s is equal to 

Fermi’s potential F and that is the case when Fermi’s level is in the middle of the 

semiconductor’s energy gap. In that case, the shift between two subthreshold characteristics  

towards the VG-axis is a consequence of the charge of FT only, and the gate voltage which 
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corresponds to these surface potential is denoted as VMG (midgap voltage) and it can be 

obtained as abscissa of the (VMG, IMG) point at subthreshold characteristics (Fig. 3). 

Using the equation log(ID) = m  VG + n, obtained by the linear fit of subthreshold 

characteristic, the VMG, i.e., VG that corresponds to ID = IMG could be found as 

./])[log( mnIV MGMG   Using this procedure, VMG0 and VMG are found. In Fig. 3 a region 

used for the linear fit is shown, and the straight lines obtained by the linear fits of 

subthreshold characteristics are extended up to corresponding midgap current IMG. 

The component of threshold voltage shift due to FT, ftV  is  

0MGMGMGft VVVV  ,   (2) 

where VMG0 and VMG are midgap voltages before irradiation and after irradiation, respectively. 

The component of threshold voltage shift due to ST, Vst, is 

 000 )()( ssMGTMGTst VVVVVVV  , (3) 

where VT0 and VT are transistors threshold voltages before irradiation and after irradiation, 

respectively and threshold voltage shift is 0TTT VVV  . VT0 and VT are determined from the 

transfer characteristics in saturation as the intersection between VG-axis and extrapolated linear 

region of )( GD VfI   curves that are modeled by the following equation [66]: 
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The total value of threshold voltage shift, TV  can be expressed as [67]: 
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where q is the absolute value of electron charge Nft is the areal density of FT and Nst is 

the areal density of ST. Signs “+” and “-“ are for p-channel and n-channel MOSFET, 

respectively. As it can be seen from exp. (6), both the FT and ST contribute to the 

threshold voltage shift in p-channel MOSFET in the same direction. Also, so called 

“rebound effect” [30] is absent in p-channel MOSFETs: this phenomenon is due to 

competitive effects to the positive charge in the oxide and negative interface traps 

generated in n-channel MOSFETs leading to a positive or negative VT values depending 

on the relatively values of Nft and Nst. This is a reason that more commonly p-channel 

MOSFETs are used as sensor or dosimeter of ionizing radiation. It is emphasized that Nft 

could contain a small amount of SST that are located deeper in the oxide, since there is 

not enough time for the carriers from the channel to reach them during measurement frames.  

3.2. Charge pumping technique 

As opposed to the MG technique, the charge-pumping (CP) technique does not give 

changes in charge densities in the positive oxide trapped charge and interface traps, but is 
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used solely to determine interface traps density while the positive oxide trapped charge 

can be subsequently determined on the basis of the expression (6) under the condition that 

the change in threshold voltage known [68]-[70]. 

 

 

Fig. 4 Shematic diagram of charge pumping measurement. 

The charge-pumping effect can be explained on the basis of the scheme in Fig. 4 [69]. 

The source and the drain of the transistor are short-circuited and p-n junction of source and 

drain with the substrate are inversely polarized with VR voltage. In the absence of signal at 

the gate, under the influence of inverted polarization at the junction source-substrate and 

drain-substrate, the inverted saturation current of these connections will flow. When a train 

of rectangular pulses of sufficiently high amplitude is applied to gate (with pulse generator), 

a change of current direction in the substrate occurs. The intensity of that current is 

proportional with the pulse frequency, and “pumping” of the same amount of electric charge 

towards the substrate. As current cannot flow through oxide, the electric charge in the 

substrate go through p-n junction of source and drain. In this way, in the case of n-channel 

MOSFETs, a channel is formed under the gate in positive pulse half-period, whereby 

electrons are captured on interface traps. During the negative half-period, when the channel 

area turns into the state of accumulation, mobile electrons from the channel are returned to 

the source and drain, and the captured electrons are recombined with holes from the 

accumulated layer, thereby generating CP current ICP, whose maximum value ICP,max is 

expressed by[70] 

 EDfqADAfqI itGSitGCP  2

max, ,  (7) 

where AG is the area under the gate active in charge pumping and f is the pulse frequency 

and S = qE is the total sweep of the surface potential that corresponds to the E. In 

order to avoid recombination with channel electrons, it is necessary to ensure their return 

to the source and drain before overflow of cavities from the substrate occurs, which is 

accomplished by using reverse polarization of p-n junction or using a train of trapezoid 

pulses or triangular pulses with sufficient times for rise of time tr and fall time tf pulse. 

However, part of the electrons whose capture is shallowest, are in the meantime thermally 

emitted into conductive band of the substrate, reducing the width of interface traps energy range 

measure by the CP technique, so that CP current is generated by interface traps within the 

range [70]  
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which is 0.5 eV from the middle of the forbidden band. In the expression (8) vth is thermal 

velocity, n and p are cross section surface of carrier captures, ni is self-concentration of 

carriers in the semiconductor and VG is pulse height. 

 

Fig. 5 Elliot-tipe CP curves of RADFETs with a 100 nm thick gate oxide manufactured 

by Tyndall National Institute, Cork, Ireland: (0) before gamma- ray irradiation and 

(1) after irradiation to 500 Gy. 

The absolute value of interface traps density Nit can be calculated using equation (7) 

and EDN itit  : 

 
fAq
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 max .  (9) 

The change in areal density of interface traps is 0)()( ititit NtNCPN  , where Nit(t) is 

the absolute value of interface trap density after irradiation time t and  Nit0 is the absolute 

value of interface trap density before irradiation. ICPmax (Fig. 5) is directly proportional to 

the pulse frequency and a small-size transistor with usual state density needs a frequency 

of at least several kHz to enable the charge-pumping current level reach the order of 

magnitude of picoampers. Due to this, CP measuring is most often conducted with 

frequencies in the range between 100 kHz and 1 MHz, whereby only FST (true interface 

traps) are registered (in some frequencies, CP is also contributed by of SST which also 

captures electrons from the channel [71]). As the CP technique required a separate outlet 

for the substrate, it could be concluded that it is not applicable for power VDMOSFETs, in 

which the p-bulk is technologically connected to the source. However the CP technique for 

these devices is applicable in a somewhat altered form (see [72], [73] for more details). 
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The density Nit found by CP technique using expression (9) is, in fact, also the 

switching trap density Nst (CP)  Nit (CP). However, a very useful feature of the CP 

technique is that, as a much fast technique, it can sense only the FST and eventually just 

the fastest among SST. Hence, the density of ST measured by the CP technique is 

indicative of true interface trap (FST) behavior, i.e., Nst (CP) = Nfst. The simultaneous 

use of both techniques has a great advantage. For instance, the difference in the behavior 

of Nst (MG) and Nst (CP) is a consequence of SST [74], since Nst (MG) = Nsst + Nfst  

and Nst (CP) = Nfst. 

3.3. Single point threshold voltage shift measurements 

 

Fig. 6 Threshold voltage measurement configuration based on constant current. 

As  mentioned above, one of the methods for threshold voltage determination is based 

on transfer characteristics in saturation as the intersection between VG-axis and extrapolated 

linear region of )( GD VfI   curves that are modeled by equation (4). The single point 

threshold voltage measurement requires measuring the drain-source voltage while the 

transistor remain biased by a constant drain current and the gate and drain terminals are 

short-circuited (Fig. 6) [75]. Under this configuration, the source-drain voltage shift is 

taken as VT. The monitoring of the drain-source voltage can be done continuously during 

irradiation.  

Most of the commercial dosimetry systems based on MOSFETs measure increments of 

the drain-source voltage at constant drain current [76]-[78]. Usually, in the order to 

minimize the thermal drift, the drain current selected is the zero temperature coefficient 

current, IZTC, for which the thermal dependence of the drain-source voltage cancels out. 

When I  Vout are measured at different temperatures, all of them intersect in the same point. 

In Fig. 7 presented the readout current ranging from 1 to 150 A and the Vout  voltage (VSD) 

were measured at temperature ranges from 25 to 100 
o
C for RADFETs with 400 nm thick 

gate oxide manufactured by Tyndall National Institute, Cork, Ireland. As it can be seen, all 

of these curves intersected in the vicinity of 12 A. It could be concluded that a selection of 

this current would minimize the effect of the temperature on the threshold voltage. 
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Fig. 7 Single-point characteristics of RADFETs with a 400 nm thick gate oxide layer 

manufactured by Tyndall National Institute, Cork, Ireland  at various temperatures. 

4. RADFET AS A SENSOR AND DOSIMETER OF IONIZING RADIATION 

As it was stated before, the first results in MOSFETs application in dosimetry were 

published by Andrew Holmse-Siedle in 1974. [2]. Basic principles in application of these 

devices as sensors and dosimeters of ionizing radiation were presented. Several research 

groups which dealt with similar problems appeared afterwards. Those are Canadian 

research group [79], USA Navy research group [80], [81], French research group [82], 

[83], Netherlands [84], [85], USA [86], [87] and Serbia [88]-[90]. Large number of 

companies and institutes throughout the world are engaged in production of radiation 

sensitive MOSFETs. Among them is Tyndall National Institute, Cork, Ireland. This 

institute produces RADFETs with gate oxide thicknesses of 100 nm, 400 nm and 1 m. 

Some of the results related to these components will be presented in this paper regarding 

several important dosimetric parameters. 

4.1. Sensitivity of RADFETs irradiated by gamma rays 

4.1.1. Influence of gate bias 

Fig. 8 shows the threshold voltage shift VT of RADFETs with 100 nm gate oxide 

layer thickness for gamma-ray radiation dose D in the range from 100 to 500 Gy without 

and with gate bias during irradiation Virr = 5V [91]. It can be seen that for irradiation 

without gate bias in the range from 0 to 500 Gy, VT increases for about 0.4 V. For the 

same dose interval, for gate bias 5 V, VT increased for about 2.3 V. The sensitivity is 

defined as VT / D, so it can be concluded that the gate bias Virr = 5V significantly 

increases the sensitivity of the RADFET.  



 P-Channel MOSFET as a Sensor and Dosimeter of Ionizing Radiation 521 

 

Fig. 8 Threshold voltage shift VT as a function of radiation dose D, for 100 nm gate oxide 

thick layer RADFETs, without and with gate bias during irradiation of  Virr = 5V. 

In order to determine the contribution of FT and ST to total VT during irradiation, 

their densities were determined using MG and CP techniques, and results are presented in 

Figs. 9 and 10, respectively. It can be seen that the increase of radiation dose D lead to 

increase in both Nft and Nst and that these increase are smaller for RADFETs 

previously irradiated without gate bias. Also, for the same values of D and Virr the 

increase of FT density is larger than the increase of ST density. The ST density Nst (MG) 

determined using MG technique is bigger than the ST density Nst (CP) determined using 

CP technique. This is due to the fact that MG technique determines both SST and FST, 

while CP technique determines only FST (true interface traps). From Figs. 9 and 10, it 

can be seen that FT density is for about order of magnitude larger than ST density 

obtained using the MG technique. These results have shown that FT play a crucial role in 

threshold voltage shift. 

 

Fig. 9 The change in areal density of fixed traps Nft as a function of radiation dose D, 

for 100 nm gate oxide thick layer RADFETs, without and with gate bias during 

irradiation Virr = 5V. 
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Fig. 10 The change in areal density of switching traps as a function of radiation dose D, 

for 100 nm gate oxide thick layer RADFETs, obtained by MG and CP technique 

without and with gate bias of Virr = 5V. 

Fig. 11 shows VT = f (D) dependence of a RADFETs with a gate oxide layer thickness 

of 100 nm for gamma-ray radiation dose in the range from 0 to 50 G [92]. During the 

irradiations the gate biases Virr were 0, 1.25, 2.5, 3.75 and 5 V. The threshold voltage shift 

for the same dose increases in gate bias increase. The radiation dose up to 50 Gy did not 

degrade the linearity of the RADFETs significantly, which is significant for practical 

applications of these devices. 

 

Fig. 11 Threshold voltage shift VT as a function of radiation dose D for RADFETs with 

a 100 nm thick gate oxide layer for various gate bias Virr  during irradiation. 

In general, one can express the dependence of  VT on D as: 

nDAV  ,                               (10) 

where A is a constant and n is the degree of linearity. Ideally, n =1, and the dependence is 

linear with the sensitivity S = VT / D. Correlation coefficients for linear fits for all values 

of Virr (Fig. 11) are r
2
 = 0.999. Having that r

2
 are very close to one, it can be assumed that 

there is a linear dependence between VT and D and that the sensitivity of RADFETs for 

a given values of irrV  is the same in the range from 0 to 50 Gy. 
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Fig. 12 Sensitivity S as a function of gate bias Virr during irradiation for RADFETs with a 

100 nm thick gate oxide layer for radiation dose of 50 Gy. 

 

Fig. 12 shows the sensitivity S as a function of gate bias Virr during gamma-ray 

radiation dose of 50 Gy for the RADFETs with 100 nm gate oxide thickness [92]. The 

symbols stand for experimental data while the solid lines represent fits, which are 

exponential. 

Fig. 13 shows VT = f(D) of RADFETs with a 400 nm gate oxide layer thickness for 

gamma-radiation dose in range from 0 to 5 Gy and Virr = 0V and Virr = 5V [78], [93]. 

Expression (10) very well describes experimental data because the correlation coefficient 

is r
2
 = 0.999. These results, as well as those presented in Figs. 8 and 12, show that the 

increase in gate bias during irradiation lead to the increase in VT value, i.e. the sensitivity 

is increased as well. 

 

Fig. 13 Threshold voltage shift VT as a function of radiation dose D for RADFETs with 

a 400 nm thick gate oxide layer in the case without gate bias and gate bias of Virr = 5V. 

4.1.2. Influence of gate oxide layer thickness 

Fig. 14 shows the threshold voltage shift VT as a function of radiation dose D for 

RADFETs with gate oxide layer thicknesses of 100 nm, 400 nm and 1m. The gamma-

ray irradiation of these devices was performed in the dose range from 0 to 50 Gy, while 

the gate bias was Virr = 5V [92]. It can be seen that the increase in gate oxide layer 
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thickness lead to significant increase in VT for the same radiation dose. It is mainly due 

to the increase in FT density [94]. Experimental data fitting using expression (10) for n=1, 

gives the correlation coefficient value, for RADFETs whith 100 and 400 nm gate oxide 

thickness, r
2
 = 0.999, what proves linear dependence between VT and  D, i.e. the 

sensitivity is the same in considered dose range and this value is higher for 400 nm gate 

oxide later thickness. For 1 m gate oxide thickness RADFETs, correlation coefficient is 

r
2
 = 0.976, so there is no linear dependence between VT and  D, and hence the sensitivity 

is different for different values of radiation dose. 

 

Fig. 14 Threshold voltage shift VT as a function of radiation dose D for three values of 

gate oxide layer thickness. Gate bias during irradiation was Virr = 5V. 

VT = f(D) dependence for RADFETs with a gate oxide layer thicnesses of 400 nm 

and 1m is shown in Fig. 15 [78]. Irradiation of these devices was also performed with 

gamma-rays and gate bias during irradiation of Virr = 5V but the dose range was from 0 to 

5 Gy. I was also shown that the sensitivity increases with gate oxide thickness and that 

here is linear dependence between VT and D (correlation coefficient r
2
 = 0.999). 

 

Fig. 15 Threshold voltage shift VT as a function of radiation dose D for two values of 

gate oxide layer thickness. Gate bias during irradiation was Virr = 5V. 
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4.1.3. Photon energy influence on RADFETs sensitivity 

Threshold voltage shift VT for RADFETs with 1 m gate oxide layer thickness, 

irradiated with gamma-rays which originates from 
60

 Co and X-rays with energy of 140 

keV for radiation dose in the range from 0 to 5 Gy for Virr = 0V and Virr = 5V is presented 

in Figs. 16 and 17, respectively [95]. It can be seen that VT increases in much higher in 

the case when RADFETs are irradiated with X-rays then in the case of gamma-rays. It is a 

consequence of different photon energies which lead to ionization of the oxide gate 

molecules. Namely, X-rays photon energy of 140 keV leads to molecule ionization by 

both photoeffect and Compton’s effect, while gamma-rays, which originate from 
60

Co 

with energies of 1.17 and 1.33 MeV lead to molecules ionization only by Compton’s 

effect [31]. Since the probability for molecule ionization by photoeffect is significantly 

higher than Compton’s effect, during X-ray irradiation a large number of FT and ST are 

formed than during gamma-ray irradiation which directly causes the change in VT values. 

 

Fig. 16 Threshold voltage shift VT as a function of radiation dose of gamma and X-ray 

D for 1 m gate oxide thick layer RADFETs irradiated without gate bias. 

 

Fig. 17 Threshold voltage shift VT as a function of radiation dose of gamma and X-ray 

D, for 1 m gate oxide thick layer RADFETs irradiated with Virr = 5V. 
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Fitting of experimental data for gamma radiation dose in the range from 0 to 5 Gy 

(Figs. 16 and 17) using the expr. (10) for n=1 gives correlation coefficient of r
2
 = 0.998 

for both Virr = 0V and Virr = 5V. Having that the correlation coefficients are very close to 

one, it can be assumed that there is a linear dependence between VT and D, so that the 

sensitivity VT / D is the same in whole interval. Correlation coefficients for the case 

when RADFETs are irradiated with X-rays (Figs. 16 and 17) are 0.96 and 0.95 for 

Virr = 0V and Virr = 5V, respectively, so it is shown that there is no linear dependence 

between VT and D. 

 

Fig 18 Threshold voltage shift VT as a function of radiation dose D, for 1 m gate oxide 

thick layer RADFETs, for two value of energy of X-ray. Gate bias during 

irradiation is Virr = 5V. 

 

Fig. 18 shows VT = F(D) dependence of RADFETs with 1 m gate oxide layer 

thikcness during X-ray irradiation with photons energies of 90 and 140 keV for gate bias 

Virr = 5V [96]. It can be seen that lower photon energy leads to a greater change in VT 

for the same radiation dose. Similar behavior is detected in TN-502 RDI MOSFETs 

(Thomson and Neilson Electronic Ltd, Ottawa, Canada) [97]. 

 

Fig. 19 Threshold voltage shift VT as a function of X-ray radiation dose D for RADFETs 

with a 400 nm thick gate oxide layer. Radiation was performed without and with 

gate bias of Virr = 5V. 
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Fig 20 Threshold voltage shift VT as a function of X-ray radiation dose D for RADFETs 

with a 1m thick gate oxide layer. Radiation was performed without and with gate 

bias of  Virr = 5V. 

 

Figs. 19 and 20 show the threshold voltage shift for X-ray radiation dose in the range 

from 0 to 100 cGy for RADFETs with gate oxide layer thickness of 400 nm and 1 m, 

respectively. Fig. 21 shows the same dependence for X-ray radiation dose in the range 

from 1 to 10 cGy for RADFETs with gate oxide layer thickness of 1 m [98]. These 

dependence are given for gate bias during irradiation Virr = 0V and Virr = 5V. As it can be 

seen, VT values are higher when the gate bias during irradiation was Virr = 5V, compared 

with the case when it was Virr = 0V. Furthermore, VT is higher for RADFETs with large 

gate oxide layer thickness (Figs. 19 and 20). Results presented in Fig. 21 show that VT 

values can be detected with good reliability even for radiation dose of 1 cGy.  

 

Fig. 21 Threshold voltage shift VT as a function of X-ray radiation dose D for RADFETs 

with a 1m thick gate oxide layer. Radiation was performed without and with gate 

bias of  Virr = 5V. 
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4.2. Irradiated RADFETs fading 

As a dosimeter a RADFETs must satisfied two fundamental dosimetric demands: a good 

compromise between sensitivity to irradiation and stability with time after irradiation. The 

stability means insignificant change in VT of an irradiate RADFET at room temperature for 

a long period of time, i.e., dosimetric information should be saved for a long period. There 

are two important reasons for this:  first, being the fact that the dose cannot always be 

acquired immediately after irradiation, but after a certain period of time; second, as by 

individual monitoring, the exact moment of irradiation is often unknown, and the radiation 

dose measurements are performed periodically. Room temperature stability of irradiated 

RADFET can be followed by calculating fading F, which can be calculated as [95]: 

0

(0) ( ) (0) ( )
100 [%] 100 [%]

(0) (0)

T T T T

T T T

V V t V V t
F

V V V

 
   

 
.   (11) 

where VT0 is the pre irradiation threshold voltage, VT(0) is the threshold voltage 

immediately after irradiation, VT(t) is the threshold voltage after annealing time t and 

VT(0) is the threshold voltage shift immediately after irradiation. 

 

Fig. 22 Fading F at room temperature for 2000 h of RADFETs with a 400 nm thick gate 

oxide layer previously irradiated with gamma-ray radiation dose 5 Gy. 

 

 

Fig. 23 Fading F at room temperature for 2000 h of RADFETs with a 400 nm thick gate 

oxide layer previously irradiated with gamma-ray radiation dose 50 Gy. 
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Fading RADFETs with gate oxide layer thickness of 400 nm which were previously 

irradiated with 5 Gy gamma-rays are shown in Fig. 22. It can be seen that fading for the 

first 24 h annealing at room temperature is about 3.5% while for the annealing time from 

24 h to 800 h it is increases for about 6%. During further annealing fading is insignificant. 

For the same type of RADFETs previously irradiated with 50 Gy gamma-rays is shown in 

Fig. 23. It can be seen that for the first 24 h annealing at room temperature fading is about 

6% and its value slightly increases to 200 h annealing time. For annealing time longer 

than 200 h comes to a slight increase in fading, and therefore, is fading after 2000 h for 

about 2% higher than after 200 h. 

 

Fig. 24 Fading F at room temperature for 2000 h of RADFETs with a 400 nm thick gate 

oxide layer previously irradiated with X-ray radiation dose 100 cGy. 

 

Fig. 25 Fading F at room temperature for 28 d of RADFETs with a 1m thick gate oxide 

layer previously irradiated with X-ray radiation dose 100 cGy. 

Fading results for RADFETs with gate oxide thickness of 400 nm and 1 m, at room 

temperature previously irradiated with X-rays up to 100 cGy, are presented in Figs. 24 

and 25, respectively [98]. In Fig. 26 fading of RADFETs with gate oxide layer thickness 

of 1 m previously irradiated with X-rays up to 10 cGy is also presented [98]. Fading of 

RADFETs with gate oxide layer thickness of 400 nm, which were irradiated with gate 

bias of 5 V, is 40% in the first 7 d, whereas those of RADFETs irradiated without gate 
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bias during irradiation have 22% fading also in the first 7 d (Fig. 24). For the time period 

between 7 and 28 d, fading of RADFETs irradiated with gate bias 5 V increased for about 

3% whereas that of RADFETs irradiated without gate bias during irradiation fading had a 

nearly constant value. Fading of 1m thick gate oxide layer RADFETs, which were 

irradiated up to 100 cGy with gate bias 5 V in the first 7 d was 14% (Fig. 25), whereas for 

the time period between 7 and 28 d, it increases about 1%. RADFETs with the same gate 

oxide layer thickness, which were irradiated without gate bias the first 7 d, have a fading 

increase for about 1% and this value is kept up to 28 d. 

Figs. 24 and 25 show that fading is lower when the gate oxide layer of RADFETs is 

thicker which in accordance with early study [10], [89], showed that fading decreases 

with the increase in gate oxide thickness.  

 

Fig. 26 Fading F at room temperature for 28 d of RADFETs with a 1m thick gate oxide 

layer previously irradiated with X-ray radiation dose 10 cGy. 

In RADFETs with gate oxide layer thickness of 1m irradiated up to 10 cGy, the 

highest fading occurs in the first 3 d and it is 15% for RADFETs irradiated without gate 

bias and 13% for RADFETs with 5 V gate bias during irradiation (Fig. 26). Moreover, in 

both case, fading from 3 to 28 d is smaller than 2%. 

Fading of RADFETs is mainly a consequence of positive oxide trapped charge 

decrease. This decrease is a consequence of electrons tunneling from Si into SiO2; these 

electrons are captured at positive oxide trapped charge, which leads to their neutralization/ 

compensation, and thus instability of manifested threshold voltage shift [99]. 

4.3. The possibility of RADFETs re-use 

Many investigations have showed that RADFETs cannot be used for subsequent 

determination of ionizing radiation dose. Namely, these dosimeters are only used to 

measure the maximum dose, which is determined by the type and sensitivity of RADFET. 

When the maximum radiation dose is reached, these RADFETs should be replaced. The 

first results dealing with the possibility of re-use of these devices are given in ref. [10] for 

radiation dose 400 Gy. Later investigations for the same components are presented in 

[23], [100]. Irradiation was performed with gamma-rays up to 35 Gy, without gate bias 

and with gate bias Virr = 2.5V and Virr = 5V. Fig. 27 shows the threshold voltage shift VT 
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as a function of radiation dose D, for both the first and second irradiation with gate bias of 

Virr = 5V. After the first irradiation, the RADFETs were annealed at room temperature for 

5232 h without gate bias. After this, the annealing process was continued at 120 
o
C without 

gate bias for 432 h. The RADFETs were then irradiated under the same conditions. The 

values of VT during the first and second irradiation is very close. Such results are in 

oposition with earlier results [10] where it was shown that values for VT during the first 

irradiation are higher than the values obtained during the second irradiation. 

 

Fig. 27 Threshold voltage shift VT as a function of radiation dose D of RADFETs with a 

400 nm thick gate oxide layer for both the first and second irradiation with gate 

bias of Virr = 5V. 

The first and second irradiation of RADFETs lead to approximately the same increase 

of Nft  (Fig. 28) while the increase of Nst (MG) is higher during the second irradiation 

(Fig. 29). Nfst (CP) is higher during the second irradiation (Fig. 30). On the basis of the 

results presented in Figs. 28, 29 and 30 it can be seen that the major contribution to VT 

increase during the first and second irradiation originates from FT, which density is an order 

magnitude higher than ST(MG) density for a radiation dose of 35 Gy. 

 

Fig. 28 Areal density of fixed traps Nft as a function of radiation dose D of RADFETs 

with a 400 nm thick gate oxide layer for both the first and second irradiation with 

gate bias of Virr = 5V. 
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Fig. 29 Areal density of switching traps Nst (MG) as a function of radiation dose D of 

RADFETs with a 400 nm thick gate oxide layer for both the first and second 

irradiation with gate bias of Virr = 5V. 

 

Fig. 30 Areal density of switching traps Nst (CP) as a function of radiation dose D of 

RADFETs with a 400 nm thick gate oxide layer for both the first and second 

irradiation with gate bias of Virr = 5V. 

5. LOW-COST COMMERCIAL P-CHANNEL MOSFET AS A RADIATION SENSOR 

In recent years, many investigations are driven toward applications of low-cost commercial 

p-channel MOSFETs as a radiation sensors in radiotherapy [101]. Paper [102] presents results 

of some most important dosimetric parameters (sensitivity, linearity, reproductibility and 

angular dependence) for power p-channel MOSFETs 3N163. These transistors were irradiated 

by gamma rays from 
60

Co up to 55 Gy. These devices were irradiated without gate bias. Fig 31 

shows the threshold voltage shift VT versus radiation dose D for 15 devices. As expected, the 

VT values increases when the radiation dose in MOSFETs increases. The data show excellent 

linearity with a mean sensitivity value of 29.2 mV/Gy and resonable good reproducibility up to 

a total dose of 58 Gy (which is around to the total dose used in typical radiotherapy treatments). 

Moreover, the angular and dose-rate dependencies are similar to those of other, more 

specialised p-channel MOSFETs (RADFETs). Authors of this paper concluded that power  
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p-channel MOSFET 3N163 would be an excellent candidate as a sensor of a low-cost system 

capable of measuring the gamma radiation dose. This radiation sensor could be placed on 

patient without the need for wires, and the threshold voltage shift, which is indicative of the 

radiation dose could be measured after the completion of each irradiation session with a 

resonable degree of confidance. 

 

Fig. 31 Threshold voltage shift VT as a function of radiation dose D for fifteen 

MOSFETs 3N163 irradiated with gamma-rays without gate bias. 

 

Martines-Garicia et al [103] investigatted the possibility of vertical diffusion MOS, also 

called double-diffused MOS transistor, or simply DMOS, as a sensor of ionizing radiation. 

Those components were DMOS BS250F, ZVP3306 and ZVP4525, manufacured by Diodes 

Incorporated (Plano, USA). The irradiation was performed by an electron beam of 6 MeV 

energy without gate bias. The same auhors invesigated the behavior of p-channel MOS 

transistors from integrated circuis CD4007 (Texas Instruments, Dallas, USA and NXP 

Semiconductors, Eindhoven, Netherlands) under 6 MeV energy electron beam. In Fig. 32 

the VT versus D is ploted for four simples of the ZVP3306 DMOS transistors. The results 

for the other models DMOS transistors are similar. As it can be seen there is a linear 

dependence betveen VT and D to radiation dose of 25 Gy. Values of sensitivity for 

BS250F, ZVP4525 and ZVP3306 are 3.1, 3.4 and 3.7 mV/Gy, respectively. 

 

Fig. 32 Threshold voltage shift VT as a function of radiation dose D for four DMOD 

ZVP3306 irradiated with 6 MeV electrons without gate bias. 
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It is shown [103] that p-channel MOS transistors from integrating circuits CD4007 in 

unbiased configuration during irradiation showed the sensitivity 4.6 mV/Gy with a very 

good linear behaviour of the threshold voltage shift versus radiation dose. As the thermal 

compensation may be applied this transistor may be considered as a promising candidate 

to use as dosimeter in intra-operative radiology. 

 

Fig. 33 Threshold voltage shift VT and sensitivity S as a function of radiation dose D for 

p-channel MOS transistors from integrated circuits CD4007 irradiated with 6 

MeV electrons with gate bias Virr = 0.6V. 

Fig. 33 shows the VT = f(D) dependence when CD4007 manufactured by Texas 

Instruments irradiated with electron beam of 6 MeV. During irradiation gate bias is 0.6 V. 

The data present a linear behaviour showing that p-chnnel transistors from this integrating 

circuit is suitable foR electron beam dosimetry because the sensitivity is 7.4 mV/Gy. 

Sensitivity for CD4007 manufactured by NXP Semiconductor for the same conditions is 8.9 

mV/Gy. 

 

Fig. 34 Threshold voltage shift VT as a function of radiation dose D for RADFETs and 

VDMOSFETs IRF9520 irradiated without gate bias. 
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Fig. 35 Threshold voltage shift VT as a function of radiation dose D for RADFETs and 

VDMOSFETs IRF9520 irradiated with gate bias of Virr = 10V. 

A comparative study of RADFETs manufactured by Tyndall National Institute, Cork, 

Ireland with 100 nm gate oxide layer thicknes and commercial p-channel power 

VDMOSFETs IRF9520 manufactured by International Rectifier sensitivity to gamma-ray 

irradiation in the dose range from 0 to 500 Gy is given in paper [104]. Figs. 34 and 35 

show the dependence between VT and D for RADFETs and IRF9520 in the case when 

they were irradiated without gate bias (Virr = 0V) and with gate bias of Virr = 10V, 

respectively. It can be seen that VT is higher for IRF9520 then for RADFET for the same 

radiation dose. The difference in VT is probably a concequence of different technological 

procedures during device fabrication. It is shown that linear dependence between VT and  D 

valid only for devices with Virr = 10V during irradiation (the value of corelation coefficient 

obtained by experimental data fiting using expression (10) is r
2
 = 0.998). 

Figs. 36 and 37 present the change in areal densities of FT, Nft for RADFET and 

IRF9520 without gate bias and with gate bias Virr = 10V during irradiation, respectively 

[104]. It can be seen that Nft is larger in IRF9520 then in RADFET as well as that gate 

bias leads to the increase in VT for the same value of radiation dose for both types of 

transistors. 

 

Fig. 36 The change in areal density of FT Nft  as a function of radiation dose D  

for RADFETs and VDMOSFETs IR9520 irradiated without gate bias. 
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Fig. 37 The change in areal density of FT Nft  as a function of radiation dose D for 

RADFETs and VDMOSFETs IR9520 irradiated with gate bias of Virr = 10V. 

 

Fig. 38 The change in areal density of ST Nst, determined using MG technique, as a 

function of radiation dose D for RADFETs and VDMOSFETs IR9520 irradiated 

without gate bias. 

 

Fig. 39 The change in areal density of ST Nst, determined using MG technique, as a 

function of radiation dose D for RADFETs and VDMOSFETs IR9520 irradiated 

with gate bias of Virr = 10V. 
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The change in areal densities of ST, Nst determined by MG technique for RADFET and 

IRF9520 without gate bias and with Virr = 10V gate bias are presented in Figs. 38 and 39, 

respectively [104]. It can be seen that Nst is smaller in IRF9520 than in RADFET. However, 

Nft is considerably larger than Nst in both types of devices. On the basis of these data it can 

be concluded that Nft predominantly contributes to VT increase during irradiation. 

Fading of irradiation IRF9520 and RADFET up to 500 Gy is calculated 24 h after 

irradiation using equat. (11). For this time the device were kept at room temperature 

without gate bias. It was shown that the fading is higher in IRF9520 than in RADFETs 

and it is smaller for devices previously irradiated with gate bias Virr = 10V. 

6. CONCLUSION 

Intensive investigations of radiation sensitive MOSFETs (RADFETs) have been 

performed in order to investigate their application in dosimetry. Their relatively small 

volumen give them advantage over some other dosimetric systems, which  is particulary 

important in in-vivo dosimetry as well as in control of gradient radiation fielld of x-rays. 

RADFETs are most commonly used for photon and ionizing radiation charged particles 

detection. It can be also used for neutron detection, but their sensitivity is much smaller 

than for photons and charged particles. Their sensitivity can be increased by gate bias 

application during irradiation and by increasing the gate oxide layer thickness. The 

sensitivity increases with the decrease in ionizing radiation photon energy. It is required 

for these components to achieve minimal variation in threshold voltage shift after 

irradiation at room temperature, i.e. it is neccessary to preserve the dosimetric information 

for a long period of time. Considered RADFETs are sensitive sensors of gamma and x-

rays, because they can register doses below 1 cGy. Unfortinatelly, their major 

disadvantage is large fading immidiatelly after irradiation. Investigations in the past few 

years have shown that some commercially available p-channel MOSFETs can be very 

efficiently applied as gamma and x-ray sensors as well as electrons sensors with energyes 

of seweral MeV. Those are low power p-channal MOSFETs 3N163, DMOS BS250F, 

ZVP3306, ZVP4525 and power VDMOSFETs IRF9520. Furthermore, p-channel MOS 

transistors, for example from CD4007, can be used as sensors of ionizing radiation. 
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