
FACTA UNIVERSITATIS
Series:Electronics and Energetics Vol. 27, No 1, March 2014, pp. 137 - 151
DOI: 10.2298/FUEE1401137B

EVALUATING SYSTEM SECURITY USING TRANSACTION

LEVEL MODELLING


Aisha Bushager
1
, Mark Zwolinski

2

1
Department of Information Systems, College of Information Technology, University of

Bahrain, Bahrain
2
Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ,

UK

Abstract. The design of secure systems requires the use of security analysis techniques.

Security objectives have to be considered during the early stages of system development

and design; an executable model will give the designer the advantage of exploring the

vulnerabilities early, and therefore enhancing the system security. In this work we

create an executable model of a smart card system using SystemC with the Transaction

Level Modelling (TLM) extensions. The model includes the security protocols and

transactions. The model is used to compare a number of authentication mechanisms

with different probabilities of failure. In addition, a number of probable attacks,

including theft of a private key and denial of service were modelled to examine the

vulnerabilities. The executable model shows that security protocols and transactions

can be effectively simulated in order to design improvements to withstand different

types of security attacks.

Key words: Security Modelling, SystemC, Transaction Level Modelling, Protocols,

Smart Cards.

1. INTRODUCTION

Robust and secure system design requires the selection and implementation of a set of

policies, procedures, architectures, technology, and personnel. However, there is no

system that is 100% secure; there will always be a way to breach the system. The

objective in security analysis is to identify the weak points. This requires modelling and

simulation tools.

We have used an executable model of a smart card system as an exemplar, including

the security protocols and transactions, to allow examination of the security strengths and

weaknesses by executing tests on the model. This paper extends work previously

presented [1].


 Received January 12, 2014

Corresponding author: Mark Zwolinski

Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK
(e-mail: mz@ecs.soton.ac.uk)

138 A. BUSHAGER, M. ZWOLINSKI

2. RELATED WORK

Security protocols are sets of rules designed to ensure particular security goals.

However, designing and implementing these protocols is difficult and they may fail

against various attacks. To be able to effectively integrate the security protocols at early

stages of development, modelling languages and techniques are used to better visualize

the entire system. One such modelling tool is Communicating Sequential Processes

(CSP), which is a process algebra that is used to describe and analyse security properties

and protocols by providing a mathematical framework [2]. However, to be able to use

CSP, the designer must have specialized knowledge and training, which limits the usage

of this method. GSPML, [3], is a visual security protocol modelling language. Again, this

language introduces notations and complex models that are targeted to security specialists.

Stereotypes and tags are used to create and present security requirements and

assumptions, constraints may be attached but they should be satisfied by modelling

elements with the related stereotype [4]. The Unified Modelling Language (UML)

version 2.0 has been widely used to model security protocols [5]. For example, UMLsec

[4], [6] is an extension to UML for integrating security related information into UML

specifications, by specifying security requirements through stereotypes, tagged values,

and constraints[7].

An adversary can be created in UMLsec to model possible threats to a system. UMLsec

was used to find possible vulnerabilities in Common Electronic Purse Specifications

(CEPS) [4], it was also used to define security permissions that enforce restrictions on the

workflows of a system [8].

None of the above modelling languages provides an automatic transition from design

to code implementation. A designer would like to have an executable model that allows a

better testing of the designed model and therefore links the gap between the design phase

and the code implantation phase. In our work, an executable model is produced using

SystemC with the TLM extensions [9]. SystemC has been used to produce a methodology

to simulate security attacks on smart cards with fault injection [10] and it has also been

used to create an environment for design verification of smart cards using security attack

simulation [11]. In TLM, communication among computational components is modelled

by channels and transaction requests are handled by calling interface functions of these

channel models [12].

3. USING UML TO MODEL SMART CARD TRANSACTIONS

As an illustration of our methodology, we use a smart card system. Because smart

cards are used to store sensitive data such as PINs, passwords, and keys, they are likely

targets for criminal attacks. The main purpose of an attack is to get hold of this data.

Attackers might perform various numbers and types of attack on the smart card system.

3.1. Overview of a Smart Card System

Figure 1 is a use case diagram that gives an overview of the basic components and

functions of any smart card system. The use case diagram is a behavioural UML diagram

that presents the system functionality. In our system, the actors illustrated in the figure

represent the main components of the system, which are the User, Smart Card, Smart

 Evaluating System Security using Transaction Level Modelling 139

Card Reader, Client, Server, and Database. The use cases represent the functions or

services that take place while the system is operating. The focus of the analysis in this

study will be on the functions of three main components, which are the User, Smart Card,

and the Smart Card Reader.

Fig. 1 Overview of a Smart Card System

The system combines three security mechanisms and a smart card ("what the user

has"). The mechanisms are: PIN, Biometrics, and PKI. The first two mechanisms are

responsible for user identification and verification, a PIN is: "what the user knows", and

the biometrics are: "who the user is". PKI verifies the devices in the system.

When the User decides to use the Smart Card, the first step is to insert the Smart Card

in the Smart Card Reader. The Smart Card Reader has number of jobs: it has to verify

and authenticate the User and Smart Card, commit transactions, and exchange and

confirm the User details with the other system components. To be able to demonstrate the

transactions of the system, another type of UML diagram has to be used, Figure 2. The

following sections describe the registration phase and the verification phase of the smart

card system and the potential threats and attacks.

3.2. Smart Card Registration System

To be able to demonstrate the transactions and message sequence between the smart

card system objects, a sequence diagram is used, e.g. Figure 2, which is a behavioural

diagram that shows the interactions of system processes.

The User provides the required information along with the biometric evidence. The

system then saves the User details in the Smart Card and captures the fingerprint, which

is the biometric method used in the proposed design, and produces a template that is

140 A. BUSHAGER, M. ZWOLINSKI

stored in the system and the Smart Card. Then, the Registration System requests a PIN

from the User to be used in future verification processes.

Fig. 2 Registration Phase in PIN, Biometrics (Fingerprint), and PKI Smart Card System

The PIN is stored in the Smart Card for future verification. Finally, the smart card

system requests a private key from the Certificate Authority (CA) to generate a digital

signature [13]. The CA, on the other hand, requests User verification from the Registration

System, generates a pair of keys for the User. The CA also issues a digital certificate

corresponding to the public key, and sends the private key to the Smart Card to generate a

digital signature that combines the private key and the biometric template of the User.

3.3. Smart Card System Verification

Figure 3 shows the transactions that take place when the User uses the Smart Card in

a security environment that combines PIN, Biometrics, and PKI security methods.

The Sender first inserts the PIN, the Smart Card Reader extracts the stored PIN from

the Smart Card and starts the comparison process. If the match is successful the Smart

Card Reader will ask for another proof, which is the Sender's fingerprint, otherwise, the

transaction will be aborted after allowing the Sender three attempts to enter the PIN. The

Sender scans the finger through the Smart Card Reader scanner; the Reader will extract

the Sender's biometric feature and produce a template. The matching process will then

take place and the result will decide whether the Sender has permission to access the

 Evaluating System Security using Transaction Level Modelling 141

system or not. If the match is true, the Smart Card releases the Sender's private key. Next,

the Sender starts to send a message to the Receiver; the message is going to be digitally

signed with the Sender's private key, and the system will request the Receiver's public

key from the CA to encrypt the message. The CA will send the digital certificate and the

message will be encrypted using both the Sender's private key and the Receiver's pubic

key, therefore, the digital envelope is now ready to be sent securely to the Receiver.

Finally, the Receiver will send a request to the CA to get the Sender's public key to

decrypt the message. Again, using both the Sender's public key and the Receiver's private

key the Receiver will be able to decrypt the message successfully.

Fig. 3 Verification Processes in PIN, Biometrics (Fingerprint), and PKI Smart Card System

These security methods should achieve the security goals of confidentiality, integrity,

authentication, and non-repudiation. However, each mechanism has its pros and cons. For

example, fingerprints have disadvantages: How can we know that the biometric provided

is not subject to misuse? If the User was clever and powerful enough to fool the system

and use a false fingerprint, then the system will be breached and an intruder will have

access to the real User's credentials and privileges. The PKI method has its disadvantages

as well. If one breach takes place during the transaction the Sender and the Receiver can

both suffer security loss.

142 A. BUSHAGER, M. ZWOLINSKI

3.4. Smart Card System Threats

Threats are the possible means by which a security policy may be breached [14]. A

threat source can be any person, thing, event, or idea that poses danger to an asset within

a system in terms of confidentiality, integrity, availability, or legitimate use. Moreover,

threats can be deliberate or accidental [14]. If deliberate, a threat can be categorized as

passive, such as network sniffing, or active, such as negligence, errors, attempt to gain

unauthorized access to the system, or changing the value of a particular transaction by

malicious persons. Therefore, possible threats on a smart card system include unau-

thorized system access, hacking and system intrusion, information leakage or theft,

integrity violation (errors and omissions by insiders or outsiders), distributed denial of

service, illegitimate use (dishonest or disgruntled insiders or outsiders), system

penetration and tampering. Threat sources have different motivations that may lead to

various attacks on any government or business information system; therefore, the parties

involved in the smart card system must be familiar with the human threat environments

and their different motivations.

3.5. Possible attacks on a Smart Card System

Attacks may occur at every single stage of a product's lifecycle, starting from the

development stage, the manufacturing stage, and ending up with actual usage. Attacks

that take place at the development stage and the manufacturing stage of a smart card are

most likely to be carried out by an insider, [15]. Attacks during the smart card use stage

can be physical or logical [15]. Physical attacks may manipulate the semiconductor itself

and usually require equipment like microscopes, focused ion beams, etc. [16]. Side-

channel attacks consist of observing behaviour while the information is being processed

and include timing analysis and power analysis [17].

In contrast, logical attacks or so-called software attacks do not attack the hardware

properties directly; they are more focused on the communication and flow of information

between the smart card and the terminal [15]. Attackers can write malicious software, that

can be employed in a software attack on a smart card, for example, in smart cards that

support Java Card it is possible to load and run software. Examples of logical attacks

could be bug exploits, illegal bytecode, and attacks during PIN comparison.

Other types of attacks take place during the authentication phase of the smart card

system, where the user identity is authenticated using different types of authentication

mechanisms like biometrics [18].

3.6. Modelling attacks using UMLsec

After using UML diagrams to express the smart card system protocol and processes,

and to represent the transactions that take place while messages are exchanged during the

registration and verification processes, in addition to knowing where the areas are that

could be vulnerable to attacks, it is also essential to test the model against possible

attacks. UMLsec was used to model attacks, using stereotypes such as secrecy and secure

information flow along with their tags and constraints. An adversary type in UMLsec can

have a function called Threat that allows the adversary to commit delete, read, and insert

attacks. Nevertheless, the model is still static and not executable.

 Evaluating System Security using Transaction Level Modelling 143

4. ANIMATING THE MODEL USING SYSTEMC TLM

SystemC was developed to support the need for a language that improves the overall

productivity for designers in the electronic systems field [9]. It supports the development

of complex systems by the design and verification of hardware system components at a

high level of abstraction. The SystemC library is open source and written in C++. In

addition, it contains a lightweight kernel that schedules the processes.

The SystemC library provides concurrent and hierarchical modules, ports, channels,

processes, and clocks. Large designs are always broken down hierarchically to be able to

manage complexity; structural decomposition of the simulated model in SystemC is

specified with modules. The module is the smallest container with state, behaviour, and

structure for hierarchical connectivity [9]. Within a module, we use a thread process,

which is associated with its own thread of execution. Once the thread starts executing it is

in complete control of the simulation until it chooses to return control to the simulator.

Hence, the thread process is used to model sequential behaviour [9]. SystemC has two

ways to pass control to the simulator again, one way is to exit by (return), in this case the

thread is totally stopped, the other way is by having a (wait), therefore, every thread

contains an infinite loop and usually has at least one wait function.

The TLM library is built on top of SystemC and allows abstract communications to be

modelled in a structured manner. In TLM communication between components is

modelled by channels and transaction requests, which are implemented by calling

interface functions of the channel models [12]. The initiator port and the target port are

distinguished in TLM. An initiator is a module that creates new transactions and passes

them on by calling a method of one of the core interfaces. The target is a module that

receives the transactions from the initiator. A system component can be an initiator, a

target, or an interconnect. The interconnect module accesses a transaction but does not act

as an initiator or a target for that transaction, for example routers can be interconnect

modules in a system. Another important element in TLM is the generic payload, which

allows data abstraction.

4.1. Smart Card System Simulation

The executable model produced in our work shows the sequence of transactions that

occur in the smart card system while the smart card is used; they correspond to the

transactions in Figure 3.

Hence, in the executable model, the smart card system objects and their related

transactions, the lifelines in the UML diagram, are represented as objects – modules in

SystemC, and the arrows are represented as TLM transactions. The modules have two

types of socket, an initiator socket that is responsible for sending the transactions and a

target socket that is responsible for receiving the transactions; both sockets are defined in

the module structure. The Sender module communicates with the Smart Card module and

the Smart Card Reader module. An initiator socket from the Sender to the Smart Card is

created, along with another initiator socket to the Smart Card Reader module, to allow the

Sender to send transactions to both modules. The initiator is responsible for calling the

transport function to send the payload to the target socket. On the other hand, a target

socket is created and then registered in the constructor; the target socket receives the

payload from the transfer function for processing and response.

144 A. BUSHAGER, M. ZWOLINSKI

The next step is creating the threads that correspond to the processes taking place in

each module, creating the payloads that are transferred from a module to the other,

creating functions, and setting events and variables. In the smart card executable model,

the authentication methods used are PIN and biometrics. The user, modelled as part of the

Sender module, enters the PIN. If the PIN is correct, the user enters the fingerprint. The

number of attempts allowed for the Sender is programmable. The executable model

counts the number of attempts, and compares the inserted PIN and fingerprint with the

saved PIN and fingerprint template in the smart card. Also, there is a time limit for

inserting the PIN and fingerprint, otherwise a timeout message will appear. If the number

of incorrect attempts exceeded the limit, the system blocks the smart card and saves the

smart card ID in the banned smart card list. Errors in entering the correct PIN vary; it

could be wrong digits, taking a long time to insert the correct PIN, or an attacker trying to

insert the PIN randomly.

The same steps take place when entering a fingerprint. The successful attempts at PIN

and fingerprint entry will confirm that the Sender is a legitimate user. Therefore, when the

Sender passes the authentication step, the smart card releases the private key. Then the

transactions related to signing the message with the private and public keys take place,

and finally the system sends the digitally signed message to the Receiver. In reality, the

User enters the PIN and scans the fingerprint through an input device like a keypad,

biometric scanner, or touch pad. However, our executable model can randomise the PIN

and fingerprint entries, and also randomise the correct and incorrect time. A simple

pseudo-random number generator is used to randomise the PIN and fingerprint entries

along with randomising the correct and incorrect time in seconds. The simple random

number generator is fast and provides better randomness properties like adjusting the

ratios, changing the range of sample smart cards to be tested, and modifying the

probabilities of failure. An arbitrary ratio of successful PIN and fingerprint is used; it can

be modified to allow flexibility in testing different probabilities of failure.

The executable module has the smart card system objects and their related

transactions. The lifelines in the UML diagram are represented as objects, modules in

SystemC, and the arrows are represented as transactions using TLM. The transitions in

the output correspond to the transaction number in the UML diagram in Figure 3.

Obviously, the designer can observe the attempts to enter the right PIN and Biometric

along with the required timing. This allows the testing of the effectiveness of the authen-

tication methods used. By running the simulation on different numbers of smart cards

with different probabilities of failure it is possible to evaluate the effectiveness of each

authentication method.

4.2. Testing the Authentication Methods

Validation of the authentication methods in the smart card system is based on two

proposed models. The first model uses a PIN followed by a biometric authentication

method, while the second model reverses the sequence. The main reason behind carrying

out these correctness tests is to check that the simulation using the executable model is

actually working. The purpose of these tests is to verify:

 The functionality/workability of the smart card simulation tool and the availability

of test results;

 The reliability of the smart card simulation tool through simulation;

 Evaluating System Security using Transaction Level Modelling 145

 The degree of flexibility in assigning thresholds and failure probabilities, which

will assist in customising the simulation tool based on the industry and sector in

which the smart card system will be used;

 The speed of testing, which allows users of the simulation tool to obtain results

and manipulate thresholds with ease and flexibility.

The following tests have been performed:

1. PIN followed by biometrics.

2. Biometrics followed by PIN.

For each of these tests, an arbitrary probability of failure has been assigned to each of

the authentication methods. For example, the probability of failure for the PIN is set at

15%, for the biometrics (fingerprint) it is set at 10%, and the time allowed for entering the

correct pin and correct fingerprint is set at 10 seconds for each. The reason for assuming

that the PIN has a slightly higher probability of failure is that the PIN authentication

method is weaker than the biometrics and thus there is a higher probability of successful

attacks and user errors and mistakes.

The first test (PIN followed by Biometrics) used 100 to 3,000 smart cards. Table 1

displays the results for the authentication method based on the scenarios of potential

failure/error.

Table 1 Results from Testing the PIN followed by Biometrics Authentication Method

Remarks Number of simulated smart cards

 100 500 1000 1500 2000 2500 3000

good pin decoded 100 500 998 1490 1976 2464 2950

pin incorrect/re-enter correct pin 16 102 207 302 394 493 587

timeout error (pin) 9 58 125 189 257 299 376

good bio decoded 100 500 998 1490 1976 2464 2950

bio incorrect/re-enter correct bio 13 38 82 126 167 200 234

timeout error (bio) 11 58 124 171 236 299 359

An examination of the results may be interpreted according to the industry and sector

of use, which dictate the levels of acceptable thresholds and probabilities of failure.

Initially, when examining the relationship between the expected and observed results of

failure attempts across all sample sizes we are able to confirm that it is a linear

relationship and that observed failure attempts are always below the expected range.

In a sample of 3,000 cards, failure attempts are 963 over 30% of the sample size. This

failure percentage alerts us to the vulnerability of the system. This entails a low level of

acceptance of usage from both parties due to the increased risks represented by the use of

this method. Having such a high degree of risk and vulnerability in the system will

expose it to numerous additional threats from different sources.

The results of the expected and observed PIN and Biometric failure attempts are listed

in Table 2 and recorded as percentage of the total sample size.

146 A. BUSHAGER, M. ZWOLINSKI

Table 2 Percentages of Expected and Observed PIN followed by Biometrics Failure Attempts

Number of Smart Cards 100 500 1000 1500 2000 2500 3000

Percentage Observed (PIN) 8 11 11 11 11 11 11

Percentage Expected (PIN) 15 15 15 15 15 15 15

Percentage Observed (BIO) 8 6 7 7 7 7 7

Percentage Expected (BIO) 10 10 10 10 10 10 10

When comparing the observed PIN failure attempts to the biometrics failure attempts,

it is noted that the percentages are 11% and 7%, respectively. Although the difference is

relatively small, it indicates that the PIN authentication method requires additional

monitoring, particularly in avoiding risks of external threats that pose potential harm

against the users and system confidentiality and privacy. Furthermore, under the

simulation of 1,000 smart cards, it is noted that two cards have been banned for reaching

the maximum attempts of PIN entry. However, as the sample size increases, the number

of banned smart cards grows significantly as illustrated in Figure 4.

Fig. 4 Smart Cards Banned in PIN and Biometrics Proposed Model

For example when simulating 3000 smart cards, about 50 of them were banned during

the PIN authentication step. On the other hand, for the Biometrics authentication method,

it is noted that no smart cards have been banned when using this method. This is a clear

indication of the level of security that the use of Biometric authentication provides when

adopted by smart cards, particularly ones that store and have access to sensitive data.

In the second test, the initial expectation is that the use of a Biometrics authentication

first will decrease the possibility of failure attempts and attacks. This mechanism supports

the security concept of using something you own (smart card), something you are

(Biometrics), and something you know (PIN).

-10	

0	

10	

20	

30	

40	

50	

60	

100	 500	 1000	 1500	 2000	 2500	 3000	

Fa
ilu

re
	A

e
m
p
ts
	

Number	of	Smart	Cards	

max	pin	a empts/card	banned	 max	fingerprint/card	banned	

 Evaluating System Security using Transaction Level Modelling 147

When using the Biometrics authentication method before the PIN, the number of

banned smart cards is recorded at 7 and 2 consecutively for a sample size of 3,000 smart

cards. This is low compared to when the PIN is used prior to the Biometrics where the

number of banned smart cards was 50 and 0 consecutively for a sample size of 3,000.

Given the benefits to the user and administrator, as well as the practicality of using the

Biometrics and PIN authentication methods across most industries, it is recommended to

adopt this method in the given order as it provides better security levels.

In summary, the executable model developed using SystemC TLM allowed the

designer to test the proposed models that support a combination of authentication

methods; by running simulations on different number of smart cards with different

authentication methods and recording the results, the designer can examine the robustness

of the proposed models in terms of enhancing security specifically during the phase of

authenticating the smart card system users. The simulation tool provided a quick,

automated, and flexible environment to test the proposed models, in addition to allowing

the designer to observe and modify the transactions whenever changes are required.

Testing the proposed model against physical and logical attacks while the smart card

is in use has resulted in giving the attacker the chance to get hold of the users private key,

and therefore violating numbers of security properties like authentication, confidentiality,

privacy, and integrity. This in essence shows that the system is vulnerable to threats and

successful attacks taking place. Yet, to be able to reduce the probability of successful

attacks, our approach allows the designer to modify the executable model to test against

future attacks.

4.3. Simulating Attacks on Smart Card System

There are different types of attacks that have different probabilities of occurrence and

different consequences for the smart card system and its users. Each attack targets

different areas of the system and has a specific goal; some attacks violate the smart card

system authentication, privacy, and confidentiality like attacks on PIN or attacks on

biometrics. Other attacks violate the smart card system integrity, reliability, and even

authentication like invasive attacks, side channel attacks, etc. Figure 5 is a UML sequence

diagram that demonstrates the types of attacks that may occur in any smart card system,

even though safeguards and controls like PIN, Biometrics, and PKI are in place.

The purple callouts represent the types of possible attacks that an attacker can carry

out in that area precisely; in addition, the red callouts represent the attacks that are

created in the executable model to test the system robustness.

The executable model allows us to simulate an attack on the system. An attack on any

part of the system is essentially another transaction inserted into the model. For example,

to simulate an attack that allows the attacker to steal the private key released from the

smart card object, which is coded as a state machine, an attacker is implemented as a

class that can intrude into multiple modules in a thread-safe manner. Thus, a transaction

is effectively inserted into the model with one line of code at the appropriate point in the

smart card module.

148 A. BUSHAGER, M. ZWOLINSKI

Fig. 5 Possible Attacks on PIN, Biometrics (Fingerprint), and PKI Smart Card System

Now, the model waits for transitions 1 to 8 to occur, and then the attacker interferes

and attacks the system after transition 8 where the private key is released, Figure 6.

smartcard_reader_object: begin transition 8

smartcard_reader_object: end transition 8

sender_object: end transition 5 Attacker initialized,

@104 s Attacker stole the private key, @104 s

smartcard_object: begin transition 9

smartcard_object: end transition 9

Fig. 6 Simulated Private Key Theft

In this example, the attacker has to conduct a physical or logical attack to be able to

get hold of the private key. For example, the attacker can practise a successful side

channel attack, invasive attack, attacks during PIN comparison, or attacks on Biometrics.

The executable model in this study does not simulate the physical or logical attack; it

only assumes that a physical or logical attack has taken place. For that reason, it

simulates an attack and creates an attacker class with features that allow the attacker to

modify the transitions and as a result gain access to the user's secret information,

specifically the private key.

 Evaluating System Security using Transaction Level Modelling 149

Another example of utilising the executable module in attacks simulation is by

modelling another sort of an attack, which is carried out on the key exchange operation.

This time the attacker monitors the public keys exchanged between the users and the CA,

and gets hold of the users' public keys. Being able to interfere with the key exchange

protocol opens a door for the attacker to practice attacks that result in network disruption

and loss of user trust like for example carrying out a man-in-the-middle attack [19], or a

multi-protocol attack [20]. This example focuses on modelling an attack that allows the

attacker to interfere through the transactions exchanged between the user and the receiver

and gets hold of the data exchanged without both of the users knowing, by being able to

model the attack, it is possible to point out a gap in the protocol that allows an attacker to

monitor the flow of data, interfere within the transactions, and get hold of the public keys

exchanged, Figure 7.

smartcard_object: begin transition 13

certificate_authority_object: begin transition 14

certificate_authority_object: end transition 14

Attacker stole the receiver public key, @203 s

smartcard_object: end transition 13

smartcard_object: begin transition 15

smartcard_object: end transition 15

smartcard_object: begin transition 16

smartcard_object: end transition 16

receiver_object: begin transition 17

certificate_authority_object: begin transition 18

certificate_authority_object: end transition 18

Attacker stole the sender public key, @206 s

receiver_object: end transition 17

Fig. 7 Simulated Public Key Theft

A Denial of Service (DOS) attack is simulated using the same model. The attack aims

at violating the availability property of the system security.

The DOS attack will take place against the Certificate Authority server; the attacker

attempts to exhaust the server, which will result in the server being unable to provide the

services for legitimate users. The following is part of the DOS attack simulation output:

As the output shows, the transactions of the smart card system are running normally,

however, when the DOS attack successfully takes place, the service is denied and the

attacker gets hold of the users public keys exchanged among the system objects. In

addition, the subsequent transactions failed to occur because the Certificate Authority

server is unavailable. This attack shows that the availability property has been violated

and the system users will not be able to use their smart cards until the Certificate

Authority server recovers from the attack.

DOS attacks are indistinguishable from legitimate sign-in requests. The only

differentiation is in the frequency of sign-in attempts and their origin. A large number of

sign-in attempts in rapid succession can be indicative of a DOS attack. Hence, smart card

systems can be protected from DOS attacks by identifying high frequency of login

attempts from a source and denying service to the source of such attack. Another

effective way is to limit the number of login attempts a user is allowed at a time.

In summary, the executable model developed using SystemC TLM allowed the

designer to test the proposed models that support a combination of authentication

150 A. BUSHAGER, M. ZWOLINSKI

methods; by running simulations on different number of smart cards with different

authentication methods and recording the results, the designer can examine the robustness

of the proposed models in terms of enhancing security specifically during the phase of

authenticating the smart card system users. The simulation tool provided a quick,

automated, and flexible environment to test the proposed models, in addition to allowing the

designer to observe and modify the transactions whenever changes are required. In addition,

the SystemC TLM executable model also allowed the designer to discover the weak points

of the system and point out vulnerabilities; the successful attacks indicate that there are

weaknesses in the security protocol. To be able to reduce the probability of successful

attacks, the designer can modify the executable model to test against future attacks.

In contrast with the UML diagram, the animation makes it possible to see the attack

actually happening. Moreover, it is possible to make changes easily within the model and

to try a number of attacks to test the system's robustness by simply inserting transactions

into the UML diagram, and transforming them into transactions within the SystemC TLM

executable model.

5. CONCLUSION

UML diagrams are an excellent way of modelling systems, along with their

extensions; they have features that show the designer how things should work. However,

UML does not allow the designer to see what happens if something goes wrong with the

system. Therefore, to be able to see things happening and give reasons about the system,

simulation has to take place. SystemC TLM was used to transform a static UML model

into an executable model. The executable model providing the opportunity to see the

transaction flow within the system objects in an animated manner. In addition, it allowed

the simulation of attacks in different parts of the system. The model gives a clear view of

the weaknesses in the security requirements, methods, and protocols used in the smart

card system.

REFERENCES

[1] A. Bushager and M. Zwolinski, "Modelling smart card security protocols in SystemC TLM", In:

Embedded and Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th International Conference on. 2010,

pp. 637–643.
[2] S. Schneider, "Security properties and CSP", In: Proceedings IEEE Symposium on Security and Privacy, 1996,

pp. 174 –187.

[3] J. McDermott, "Visual security protocol modeling", In: Proceedings of the 2005 workshop on New
security paradigms, NSPW '05:. New York, NY, USA: ACM. ISBN 1-59593-317-4; 2005, pp. 97–109.

[4] J. Jürjens, "UMLsec: Extending UML for secure systems development", In: UML 2002 – The Unified

Modeling Language. 2002, pp. 412–425.
[5] Object Management Group, Introduction to OMG's Unified Modeling LanguageTM (UML ®) 2005;URL

http://www.omg.org/gettingstarted/what is uml.htm.

[6] J. Jürjens, "Modelling audit security for smart-card payment schemes with UMLsec", In: Proceedings of
SEC 2001 – 16th International Conference on Information Security, 2001, pp. 93–108.

[7] J. Jürjens, "Using UMLsec and Goal-Trees for Secure Systems Development", In: Proceedings of the

2002 ACM Symposium on Applied computing. 2002, pp. 1026–1031.
[8] J. Jürjens, J. Schreck, and Y. Yu, "Automated analysis of permission-based security using UMLsec", In:

Fundamental Approaches to Software Engineering, 11th International Conference, FASE 2008, Budapest,

Hungary, March 29-April 6, 2008. Proceedings. 2008, pp. 292–295.

 Evaluating System Security using Transaction Level Modelling 151

[9] IEEE Standard System C Language Reference Manual. IEEE Std 1666 2005

[10] K. Rothbart, U. Neffe, C. Steger, R. Weiss, E. Riegerand A. Muehlberger, "High level fault injection for
attack simulation in smart cards", In: Proceedings of Asian Test Symposium 2004, pp. 118–121.

[11] K. Rothbart, U. Neffe, C. Steger, R. Weiss, E. Rieger and A. Muehlberger, "Extended abstract: an environment

for design verification of smart card systems using attack simulation in SystemC", In: ACM/IEEE International
Conference on Formal Methods and Models for Co-Design, 2005, pp.253–254.

[12] L. Cai, and D. Gajski, "Transaction level modeling: an overview", In: Proceedings of the 1st IEEE/ACM/IFIP

international conference on Hardware/software codesign and system synthesis. CODES+ISSS '03; New
York, NY, USA: ACM. ISBN 1-58113-742-7; 2003, pp. 19–24.

[13] C. Williams, "Configuring enterprise public key infrastructures to permit integrated deployment of signature,

encryption and access control systems", In: Military Communications Conference, 2005. MILCOM 2005.
IEEE. 2005, pp. 2172 – 2175 Vol. 4.

[14] R.J. Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems. Wiley

Publishing; 2 ed.; 2008. ISBN 9780470068526.
[15] W. Rankl, "Overview about attacks on smart cards",Information Security Technical Report 2003, Vol. 8,

pp.67 – 84.

[16] K. Markantonakis, M. Tunstall, G. Hancke, I. Askoxylakis, and K. Mayes, "Attacking smart card
systems: Theory and practice",Information Security Technical Report 2009,Vol. 14, pp.46 – 56.

[17] K. Baddam, and M. Zwolinski, "Evaluation of dynamic voltage and frequency scaling as a differential
power analysis countermeasure", In: VLSID '07: Proceedings of the 20th International Conference on

VLSI Design. Washington, DC, USA: IEEE Computer Society. ISBN 0-7695-2762-0; 2007, pp. 854–862.
[18] X. Leng, "Smart card applications and security. Information Security Technical Report 2009, Vol. 14, pp.

36 – 45.

[19] C. Y. Yang, C.C. Leeand S.Y. Hsiao, "Man-in-the-middle attack on the authentication of the user from the
remote autonomous object". International Journal of Network Security, 2005, pp.81–83.

[20] A. M. Johnston and P.S. Gemmell, "Authenticated key exchange provably secure against the man-in-the-

middle attack". Journal of Cryptology, 2002, pp.139–148.

