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Abstract. The aim of this paper is to present a research of magnetic hysteresis loops of 

a toroidal ferromagnetic core made of electrical steel. The experimental results of 

induced voltage, magnetic induction and hysteresis loop obtained at different frequencies 

of the sinusoidal excitation magnetic field have been presented. The harmonic content of 

the induced voltage and magnetic induction have been calculated using Fast Fourier 

Transformation. Observed variation of higher harmonics with frequency has been 

correlated to the mechanism of magnetic domain walls damping. A variation of 

harmonics of the magnetic induction with the amplitude of the excitation magnetic field 

has been analysed and a proper mathematical model has been proposed. Furthermore, 

the influence of the triangularly shaped excitation magnetic field and the distorted shape 

excitation that produces sinusoidal induction on the shape of hysteresis loop and 

harmonic content of the induced voltage and the magnetic induction has been analysed 

and discussed.  
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1. INTRODUCTION 

Measurement and modelling of the dynamic magnetisation process in the electrical 

steel are subject of interest for many years. It reaches its culmination in the last decay 

through the development of sophisticated measurement setups, such as the one presented 

in [2], as well as in the comprehensive modelling approaches and techniques of analysis 

of this process under various amplitudes, frequencies and types of excitation [3-6].  

                                                           

 Received May 23, 2016; received in revised form July 13, 2016 

Corresponding author: Branko Koprivica 

University of Kragujevac, Faculty of Technical Sciences, Svetog Save 65, 32000 Čačak, Serbia  

(E-mail: branko.koprivica@ftn.kg.ac.rs) 

*An earlier version of this paper was presented at the 12th International Conference on Applied Electromagnetics (ПЕС 

2015), August 31 - September 02, 2015, in Niš, Serbia [1]. 



122 B. KOPRIVICA, I. DUMITRU, A. MILOVANOVIĆ, O. CALTUN 

The analysis of higher harmonics induced in AC circuits systematic attracted the 

attention of researchers because it has two equally important aspects. One is related to the 

modelling of the magnetic hysteresis [7, 8]. The second aspect relates to the theoretical 

perspective focused on higher frequencies and magnetisation processes in magnetic 

materials [9]. Even proved to be a powerful tool, such analysis is not so much used by 

researchers in the field of electrical steel industrial application. Therefore, this paper is 

focused on the comprehensive investigation of the magnetic hysteresis shape and 

harmonic analysis of induced signals in electrical steel cores. 

The measurements have been done on the toroidal core sample using classical 

oscilloscope based method [10]. An application designed and implemented in LabVIEW 

software has been used for calculation of all quantities of interest [11].  

The magnetisation process and consequently hysteresis loops have been studied at 

different amplitudes and frequencies of the sinusoidal excitation magnetic field. The 

induced voltage and the magnetic induction waveforms obtained from measurements have 

been analysed and represented in the frequency domain by using fast Fourier transform. A 

variation of the harmonic content of these signals at different amplitudes and frequencies 

of the sinusoidal excitation field has been computed, analysed and interpreted in terms of 

magnetic domains damping. A proper mathematical model of this variation has been 

proposed. This model comprises the variation of higher harmonic amplitudes as well as 

the variation of their initial phases. 

Furthermore, a triangular shape of the excitation magnetic field has been also used in 

some measurements in order to examine the influence of the magnetic field rate to the 

magnetisation process and core response at different excitation waveform. Also, the 

harmonic contents of the induced voltage and the magnetic induction in this case have been 

presented. Also, similar analysis has been made in the case of the distorted excitation that 

produces sinusoidal induction. 

The practical impact of the results presented should be mostly on the researchers in 

the field of electrical engineering in proper understanding of the dynamic magnetisation 

process in the electrical steel from the physical point of view. Its practical uses may be in the 

development of novel approaches of inclusion of magnetic hysteresis in the modelling of 

magnetic cores of electrical machines, power transformer and different kind of electronic 

parts. Also, they may be used in the analysis of power loss and efficiency of such equipment.  

2. EXPERIMENTAL SETUP 

In Fig. 1 is schematically represented the experimental setup. On a toroidal core, made 

of electrical steel, primary and secondary coils with the same number of turns were 

wounded. The primary winding having has been connected in series with a power source 

and a non-inductive resistor R. The voltage u1 across the resistor R and voltage u2 induced 

in the secondary winding have been connected to the input channels of the digital 

oscilloscope interconnected with the computer via GPIB interface in order to record the 

signals.  

The magnetic field H and the magnetic induction B have been calculated from the 

measured data using expressions (1) and (2) [11]: 
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where N1 and N2 are the number of the turns in the primary and secondary winding, l is 

the effective length of the magnetic circuit and S is its cross-section area. Measured data 

have been processed using a LabVIEW application in order to represent the hysteresis 

loop and harmonics of induced signal. 

 
 

OSCILLOSCOPE

1N 2N

1u
2u

R

PC

POWER

SOURCE

  

Fig. 1 Experimental setup 

3. LABVIEW APPLICATION – HYSTERESIS REPRESENTATION AND FFT ANALYSIS 

A simple LabVIEW application has been made in order to process the measurement 

results. It contains two tabs for results presentation and analysis. The first tab shows an 

input data, such as the dimensions of the toroidal core and a number of turns in the 

primary and secondary coil, as well as waveforms of the measured magnetizing current 

and induced voltage. It also presents the waveforms of the magnetic field and the 

magnetic induction obtained using (1) and (2), as well as the magnetic hysteresis loop that 

correspond to these two waveforms, Fig. 2a.  

The waveforms of the induced voltage and magnetic induction have been analysed using 

fast Fourier transform (FFT) and the results obtained are contained in the second tab of 

LabVIEW application, Fig. 2b. A result of the FFT of the signal a(t) is obtained in the form 

of two arrays that respectively contain the amplitudes of the harmonic components Ai (i=0, 1, 

2, 3, …) and their initial phases θi (i=0, 1, 2, 3, …). Consequently, a time waveform of the 

signal a(t) can be approximately represented over the DC component – A0, the first harmonic 

– A1 and the higher harmonics – Ai (i=2, 3, 4, …) using the equation (3): 
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where N is the number of used harmonic components and f is the frequency of the first 

harmonic (fundamental frequency). In this paper, analysed waveforms are periodic 

functions of time symmetrical with respect to the time axis. Therefore, their FFT contains 

only odd harmonics (as presented in Fig. 2b) and they have significant values and 

importance in the analysis. 

 

a) 

 

b) 

Fig. 2 LabVIEW application: a) first tab, b) second tab 
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4. EXPERIMENTAL RESULTS 

Most of the experimental results presented in this paper have been obtained using 

sinusoidal excitation magnetic field. During the measurements the amplitude and the 

frequency of this field has been varied. A total number of six sets of measurements at 

different frequencies (20 Hz, 30 Hz, 40 Hz, 50 Hz, 93 Hz and 141 Hz) have been performed. 

During the each set the amplitude of the excitation magnetic field has been varied in ten 

steps, from low value (beginning of the sample magnetisation) to the high value that 

corresponds to the magnetic saturation of the sample. Some of these measurement results have 

been presented in this section of the paper, while the results of the FFT analysis performed on 

all measurement results have been presented in the next section. 

Fig. 3a presents waveforms of the secondary voltage induced at different amplitudes 

of the sinusoidal excitation magnetic field at 50 Hz. A family of hysteresis loops obtained 

at sinusoidal excitation magnetic field at 50 Hz is presented in Fig. 3b. 
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Fig. 3 Sinusoidal excitation at 50 Hz: a) waveforms of induced voltage,  

b) family of hysteresis loops at 50 Hz - sinusoidal excitation 
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A comparison of hysteresis loops obtained at different frequencies (20 Hz to 141 Hz) of the 

sinusoidal magnetic field excitation is presented in Fig. 4. It is evident that the shape of the 

loops is highly dependent on the frequency of the excitation field. Obviously, larger frequency 

means wider hysteresis loop that is associated with higher power loss due to the increase of the 

eddy currents and the magnetic viscosity of domain wall movement [12, 13]. 
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Fig. 4 Hysteresis loop shape at different frequencies of sinusoidal excitation 

5. RESULTS OF FFT ANALYSIS 

Fig. 5a shows normalized values of the first and higher odd harmonics Vi/V1, i = 

1, 3,…, 25, (only odd harmonics have significant value) of the induced voltage at various 

amplitudes of 50 Hz sinusoidal excitation. Corresponding normalized odd harmonic 

components of the magnetic induction Bi/B1, i=1, 3,…, 25, are presented in Fig. 5b.  

 

50
150

250
350

450
550

650
750

850

950

1050

1150

1250

0.2

0.4

0.6

0.8

1.0

4769116168224335441
516

620
684

Vi/V1

H max
 [A

/m
]

 

 

f [Hz]

 

50
150

250
350

450
550

650

750

850

950

1050

1150

1250

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

47
69

116168224
335

441
516

620
684

Bi/B1

H max
 [A

/m
]

 

f [Hz]

 
a)                                                                   b) 

Fig. 5 Harmonics of: a) induced voltage, b) magnetic induction, 

at 50 Hz - sinusoidal excitation 
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As expected, the results presented in Fig. 5a have confirmed highly distorted shape 

(from sinusoidal) of the induced voltage. The presence of higher harmonics has been 

observed even at low excitation magnetic field while at higher excitations (close to the 

magnetic saturation) the 19
th

 and 21
st
 harmonics have significant value (around 1 % of the 

first harmonic). 

The harmonic content of the magnetic induction is notably different from the induced 

voltage harmonic content, Fig. 5b. In this case, only harmonics up to 11
th

 have significant 

value (larger than 1% of the first harmonic). Even so, the magnetic induction is highly 

distorted from the sinusoidal waveform. 

Fig. 6 shows normalized values of the first and higher harmonics of the secondary 

voltage induced at different frequencies of the excitation magnetic field with amplitude of 

210 A/m, 430 A/m and 680 A/m.  
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Fig. 6 Harmonics of induced voltage, at different frequencies 

and amplitudes - sinusoidal excitation 

From these results can be observed that the normalized amplitudes of the harmonics at 

frequencies up to 50 Hz do not change significantly regardless of the excitation field, 

while at double of frequency suppression of the harmonics is evident. At low frequencies 

both domain wall movement and magnetisation rotation contribute to the magnetisation 

process. At high frequencies the domain wall movements are strongly damped by eddy 

currents and magnetisation rotation dominates the process [9, 14].  
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Domain wall motion in bulk metallic samples is dominated by eddy currents that 

produce power loss and limit the mobility of domain walls [9, 14]. Eddy currents can be 

calculated from Maxwell’s equations, as well as power loss they produce. The effect of 

the induced eddy field is a decrease of the magnetic field inside material because it has a 

direction opposite to the direction of the excitation field. Thus, due to the decrease of the 

magnetic field the average wall velocity is also decreasing. Also, a number of domains 

and domain walls can be greater in this case. Domain wall motion induces microcurrents 

at a microstructural level and causes power loss (excess eddy current loss). Therefore, at 

higher frequencies, with a higher number of domain walls, higher power loss occurs. 

Altogether, a total power loss in the material will increase with the frequency due to the 

increase of these two components of power loss. Eddy current effects, consequently 

power loss, can be reduced by the decrease of the material thickness and its conductivity 

(this will reduce induced eddy currents) and by domain refining which will reduce 

microcurrents produced by domain wall motion [12, 14]. 

6. MODELLING BY USING FFT 

The normalized harmonics of the magnetic induction Bi /B1, i=1, 3,…, 11 and their 

normalized initial phases θi /θ1, i=1, 3,…, 11 obtained at 20 Hz for various amplitudes of 

the sinusoidal excitation magnetic field are presented in Fig. 7a. Variation of normalized 

harmonics of magnetic induction Bi /B1, i=1, 3,…, 11 obtained at different frequencies of 

the sinusoidal excitation magnetic field with amplitude of 680 A/m is presented in 

Fig. 7b. According to these results, only harmonics up to 11
th

 have significant value in 

comparison to the first harmonic (higher than 1 % of the first harmonic). Therefore, only 

these harmonics have been used in the further analysis. Also, a suppression of the higher 

harmonics can be observed at higher excitation frequencies, such as 93 Hz and 141 Hz, 

Fig. 7b, while at lower frequencies such variation is negligible. 

An analysis of a variation of the normalized amplitudes and initial phases of harmonic 

components has been performed. It has been noticed that this variation can be approximately 

expressed as follows: 
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where i is the order of the odd harmonic component and a, b, c and d are fitting parameters. 

A comparison of normalized amplitudes and initial phases of magnetic induction harmonic 

components, up to 11
th
, obtained by using FFT and by using expressions (4) and (5) is 

presented in Fig. 8. Some difference between the results obtained can be observed, at the 

acceptable level.  
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Fig. 7 a) Harmonics of magnetic induction and their initial phases, for different 

amplitudes of sinusoidal excitation, at 20 Hz, b) Harmonics of magnetic  

induction for different frequencies of sinusoidal excitation 
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Fig. 8 Comparison of: a) normalized amplitudes and b) normalized initial phases, of the 

harmonic components of magnetic induction obtained using FFT and fitting function 
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For certain amplitude of the excitation magnetic field parameters a, b, c and d are 

constant, but their values vary with the change of the magnetic field. These variations 

have been presented in Fig. 9. 

 

-0.7

-0.6

-0.5

-0.4

-0.3

-0.15

-0.14

-0.13

-0.12

-0.11

1.30

1.35

1.40

1.45

1.50

1.55

100 200 300 400 500 600 700

0.004

0.006

0.008

0.010

0.012

0.014

d

c

b

a

H
m
 [A/m]

 

Fig. 9 Variation of fitting parameters a, b, c and d  

with the amplitude of the excitation magnetic field 

Expressions (4) and (5) give normalized values of amplitudes and initial phases, but 

for further calculations it is needed to know also values of B1 and θ1. It has been found 

that these two quantities amount approximately B1=0.9 T and θ1=π/2. Accordingly, 

magnetic induction can be expressed as: 

 
11

2
1 1

1

( ) e cos[2 ( 1)]; 1,3, ,11bi

i

c
B t B a if t di i

i

 
      

 
 . (6) 

A time waveform of induction can be obtained using this expression. It can be further 

used in modelling of the magnetic hysteresis, along with the sinusoidal excitation 

magnetic field as input waveform. A comparison of the measured and modelled hysteresis 

loop has been presented in Fig. 10. 
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Fig. 10 Comparison of measured and modelled hysteresis loop, at 20 Hz 

7. HYSTERESIS LOOP AT VARIOUS EXCITATION WAVEFORMS 

A shape of the magnetic hysteresis loop strongly depends on the shape of the 

excitation magnetic field (magnetic induction) [15 - 17]. Such behaviour has also been 

observed during the measurements with the used toroidal sample made of electrical steel. 

A comparison of hysteresis loops obtained with sinusoidal and triangular excitation field 

and sinusoidal induction (at 50 Hz) is presented in Fig. 11a. 

It is evident that sinusoidal excitation produces widest hysteresis loop, while narrowest loop 

is obtained at sinusoidal induction. In this case, of three excitation fields with the same 

frequency but different in shape, the difference in shape corresponds to different magnetic 

field rate and the response of the material is different. It is important to analyze the 

response of the material under triangular excitation from the physical point of view, since 

it gives information about the real characteristics of the ferromagnetic material. On the 

other hand, proper understanding of the magnetisation process obtained under sinusoidal 

induction is very important in the electrical engineering and electronics. 

This can be explained by means of the difference in the harmonic content of the 

excitation fields. While sinusoidal excitation contains only first harmonic, triangular 

excitation contains also higher harmonic (3
rd

, 5
th

, 7
th

 and 9
th

 harmonic in the percentage of 

11.12 %, 4.01 %, 2.05 % and 1.24 % of the first harmonic, respectively) which significantly 

influence the harmonic content of the induces signal and the magnetic induction, Fig. 11b. The 

distribution of the harmonics shown in this figure is significantly different from the distribution 

presented in Fig. 5. Also, the suppression of all higher harmonics can be observed in Fig. 11b. 

These two excitations produce non-sinusoidal magnetic induction, while in the third case the 

excitation is such that the magnetic induction is sinusoidal. As in the case of the triangular 

excitation, it also contains higher harmonics that in this case completely suppress all 

higher harmonics in the induced voltage and the magnetic induction. Observed difference 
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can be also analysed in another sense. Beside differences in the harmonic content, all three 

excitation fields of the same frequency have different rate of change (dH/dt). 
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Fig. 11 a) Hysteresis loops comparison at 50 Hz sinusoidal and triangular excitation 

magnetic field and sinusoidal magnetic induction, b) Harmonics of induced 

voltage and magnetic induction, at 50 Hz triangular excitation 

Corresponding waveforms of the magnetic field and induction and magnetic field rate 

of change in time in these cases are presented in Fig. 12. Three waveforms of the excitation 

magnetic field are aligned so that their maximums appear at 0.05 s and all other waveforms 

are given synchronously to these three waveforms, as they appear during the measurement. 

Thus, the rate of change of triangular excitation is constant during one quarter of the period, 

while sinusoidal excitation has a variable rate of change, as well as the excitation that gives 

sinusoidal induction (this one will be called distorted excitation in the further analysis). It is 

interesting to analyze how these differences influence the shape of the magnetic induction 
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waveform. Since the corresponding hysteresis loops, Fig. 11a, have only one common point, 

the saturation point, it is most convenient to observe changes in the waveforms after 

reaching this point. As shown in Fig. 12, all three excitation fields are at the maximum at 0.05 s 
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Fig. 12 Magnetic field, field rate of change and induction waveforms, sinusoidal and 

triangular excitation magnetic field and sinusoidal magnetic induction, at 50 Hz 
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and after that moment they start to decrease with the different rate of change. It can be 

observed that sinusoidal excitation field decrease much slower than other two excitation 

fields, with the sinusoidal rate of change. Triangular excitation reaches quickly its minimum 

rate of change (fastest change in the decreasing direction), while distorted excitation almost 

follows the triangular for some short period of time and after that period quickly reaches its 

minimum rate of change. Consequently, the magnetic induction of the triangular and 

distorted excitation matches each other for some short period of time. After that period the 

magnetic induction of the distorted excitation decreases rapidly, much faster than other two 

magnetic inductions, even the rate of change of the excitation varies. Since the rate of 

change of the sinusoidal excitation is much lower during that period, the corresponding 

magnetic induction is decreasing much slower than other two inductions. At 0.075 s all 

three excitations are at the different level, as well as the corresponding inductions, while 

their rates of change are at the same level. During this period, from 0.05 s to 0.075 s, the 

rotation of the magnetic domains is the dominant process in the material and domain wall 

movement is not so significant [15]. The response of the material (change in the magnetic 

induction) during this process is such that it strictly follows the variation of the excitation 

magnetic field. Therefore, fastest change of the excitation produces fastest response.  

After 0.075 s the distorted excitation starts to change slower than other two excitations, 

while the sinusoidal excitation has the fastest variation. Very soon the magnetic induction at 

the triangular and sinusoidal excitation starts to decrease rapidly, much faster than the 

magnetic induction of the distorted excitation. This corresponds to the increase of the 

retrieval of the domain walls and the increase of number of domains. Also, misalignment 

of the magnetic moment of domains with the excitation magnetic field becomes larger. 

At the moment when the excitation field becomes zero the remanent magnetisation in 

the material is present. The level of the remanence depends on the previous magnetisation 

process in the material. In the previously analysed processes, lower level of the remanence 

corresponds to the higher rate of change of the excitation magnetic field starting from the 

saturation. Consequently, lower remanence corresponds to lower coercive magnetic field, 

as it can be observed in Fig. 11a. 

After reaching the coercivity point, the magnetisation process can be analysed in the 

same way as it has been previously described. 

8. CONCLUSION 

This paper addressed the influence of magnetic field amplitude and excitation frequency 

on the shape of hysteresis loop of the toroidal core sample made of electrical steel. Also, a 

comparison of the hysteresis loops at sinusoidal and triangular waveform of the excitation 

field has been made, as well as at the excitation that produces sinusoidal excitation. 

The harmonic content of the induced voltage in the secondary coil of the transformer 

and of magnetic induction at different frequency is dependent on the magnetisation 

processes. A suppression of the higher harmonics in the induced voltage and the magnetic 

induction has been observed at higher frequencies of the excitation field. This behaviour 

has been related to the domain walls damping. 
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An analysis of a variation of normalized amplitudes and initial phases of harmonic 

components has been performed and a proper mathematical model has been proposed. 

Also, a variation of the model parameters with the excitation magnetic field has been 

presented. 

Presented results have importance in proper understanding of the dynamic magnetisation 

process in the electrical steel. Also, these results can be useful in the modelling of the 

magnetic hysteresis. Future research will be focused on the influence of the frequency and 

the shape of the excitation field on power loss in the material and its modelling. 
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