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Abstract. We present the use of the modified internal model controller (MIMC) and the 

“Probability Tube” (PT) action representation for robot-assisted upper extremities 

training of hemiplegic patients. The robot-assisted training session has two phases. 

During the first "demonstration" phase the robot learns from the therapist the target 

path through examples. In the second "exercise" phase the robot assists a patient to 

follow the target path. During this process, the control limits the interface force 

between the robot and the hand to be below the preset threshold (F = 50 N). The 

system allows the assessment of the range of movement, the positional error between 

the target and the reached position, the amount of added assistance (the interface force 

between the hand and the robot). We demonstrate the operation in two hemiplegic 

patients. The patients and therapist suggested after the tests that the new system is 

straightforward and intuitive for clinical applications. 
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1. INTRODUCTION 

Intensive repetition of functional movements is proven to be an efficient method of 

motor control relearning during the neurorehabilitation process [1]. Robotic devices are 

inherently well suited for repetitive tasks as well as for providing the quantitative assessment 

of performed movements, which is why they are becoming the preferred tools to support 

such therapeutic modality [2]. Two types of robot assistants are dominantly used for 

intensive exercise: 1) devices that assist the end-point movement of the arm and interface 

the patient at hand (e.g., MIT-Manus [3], Braccio di Ferro [4]) and 2) exoskeleton robots 

that assist individual arm joints and interface the arm at multiple points (e.g., ARMin [5], 

Cozens arm robot [6]). 
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Depending on the chosen therapy modality the robotic device can support, assist, 

resist or even perturb the movement of the arm/hand. To do so, robot assistants apply 

sophisticated methods for actuator control in position, velocity or impedance space. The 

rehabilitation gain is maximized when the device adapts to the patient’s performance in a 

manner which encourages the efforts, e.g., by providing "assistance-as-needed" or "faded 

guidance" [5 - 9]. To implement these complex assistance schemes the “haptic” approach, 

where the device acts on the patient with the force determined by the computer model, is 

frequently employed in the control of robot assistants [4, 5, 10, 11]. The essential elements 

of haptic control that are used in current robot assistants can be described with the following 

two equations: 

 motor intrinsic hapticT (t) = T (q,q,q,p) + T (t)  (1) 

 
T

haptic hapticT (t) = J(q) F (t)  (2) 

where [ q,q,q  ] are kinematic variables and p is a set of unknown parameters in the nonlinear 

model of intrinsic torque, Tintrinsic [4]. This torque relates to inertia, dissipative friction, 

and external forces (i.e., gravity). J(q) is the Jacobean of the device's geometry, and Fhaptic 

is the targeted interface force between the arm and the apparatus. The application of such 

a system requires an adequate nonlinear model and experimental assessment of unknown 

parameter p for an extensive range of operating conditions. A difficulty is that on-line 

compensation of the intrinsic dynamics is highly complex [4]. Another major practical 

problem for the implementation is the selection of the target trajectory for the hand that 

the robot needs to assist.  

We show here one possible method for solving two problems: 1) How to select a 

target trajectory which is suited to the current patient needs, and dynamically changing 

abilities; and 2) How can this trajectory be translated to the controller of a robot to is used 

in daily clinical work?  

We demonstrate a solution for both tasks in the case of point-to-point movements. The 

demonstration is presented with a new 3D robot prototype (R3-BEG), shown in Fig. 1. 

The assumed principle for the operation of the R3-BEG is: "teach-and-repeat" scenario 

[2, 7, 12], which is adopted in current clinical practice and present in some commercial 

devices [13]. The "teach-and-repeat" consists of the "demonstration" phase, in which the 

therapist and patient hold the endpoint of the robot, and the therapist selects a target 

trajectory based on heuristics; and the "exercise" phase, in which the robot assists the arm 

to move along the preferred trajectory with the force constraint (threshold maximum 

force) [13]. 

The following elements of the system are new: 1) The interface between the therapist, 

the patient and the robot used during the demonstration phase; 2) The action representation 

which translates the captured kinematics to the controller; 3) Integration of the natural 

variability of the therapist’s movements into the target trajectory [14, 15]; 4) Two-level 

control comprising at higher level velocity the set points selection in each movement 

phase, based on the “Probability Tube” (PT) action representation and at the low-level 

control implementation of the modified internal model control (MIMC) [16, 17] to ensure 

offset-free following of the set point; and 5) Motivating feedback based on the online 

assessment of the patient’s performance in the “exercise phase” (Fig. 1). The presentation 
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starts with the description of the robot and controller, and continues to the presentation of 

tests in two post-stroke patients. 

2. THE R3-BEG ROBOT ASSISTANT 

The R3-BEG combines a two-segment planar manipulandum (arm) and a vertical slider 

(Fig. 1). Following the analogy with the patient’s arm, the joints were named shoulder (S) 

and elbow (E). 

 

Fig. 1 The R3-BEG robot for the arm exercise (left panel). The sketch of the robot arm 

showing the task (top left panel) and feedback presented to the therapist (bottom 

right panels). 

The handle (Fig. 1) is instrumented by a set of force transducers allowing the estimation 

of the size and direction of the force acting at the handle in the plane orthogonal to the 

handle. This handle serves as the interface between the patient and the robot. The top part 

(extension) of the same handle is the interface between the therapist and the robot. This 

configuration allows the therapist to set the target trajectory by moving the end-point of the 

robot while the patient is holding the same handle. The force sensor is used in the second 

phase as the source of feedback for controlling the maximum assistive force constraint and 

for assessment of the added amount of assistance.   

High level control is based on methods described in [18], which suggested high 

rehabilitation potential, but required a sophisticated haptic platform. Here the PT is used 

as a lookup table to determine velocity set point, based on current movement phase and 

performance. This can be presented as: 

 1k),i,
k

)i),t(v(PT1
)i),t(v(PT(1PT)t(refv 


  (3) 
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where v(t) is current acceleration and i current phase. The factor k determines the level of 

allowed variability and is set up by the therapist. 

The low level control is based on two single-input-single-output MIMC linear digital 

controllers [17] to control the shoulder and the elbow of the system. The essential 

characteristics of the MIMC design and tuning concept from [18] are: it is well suited to 

exploit the benefits of prior knowledge and experience gained from the open-loop 

dynamics of the plant; the control system structure is directly obtainable from the model 

used to approximate process dynamics; a small number of tuning parameters, with clear 

meaning, followed by simple tuning rules, enough easy to apply. This concept also allows 

scalability of the presented solution, as it is suitable for designing multiple-input multiple-

output (MIMO) neural network (NN) digital controllers [19]. 

Measured variables on the plant are the elbow and shoulder positions, pE(t) [rad] and 

pS(t) [rad], however, the controlled variables consist of the velocity of the elbow vE(t) 

[rad/s] and the velocity of the shoulder vS(t) [rad/s], which are obtained from 

 E s E s E s sv (kT )=(p (kT ) p ((k 1)T ))/T   (4) 

 S s S s S s sv (kT )=(p (kT ) p ((k 1)T ))/T   (5) 

Their dynamic characteristics are defined by the elbow velocity model GmvE(s) and the 

shoulder velocity model GmvS(s), which are obtained from open loop step response test. 

Models GmvE(s) and GmvS(s)are defined by equations 6 and 7: 

 
1sTζ2sT
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where KE = 0.00024, KS = 0.00023, LE = 0.07, LS = 0.1, TE = 0.04, TS = 0.08, ζE = ζS = 0.7. 

 

Fig. 2 MIMC controller block diagram, modified from Fig. 2 in [17] 

The velocity models GmvE(s) and GmvS(s) were used to design and tune MIMC velocity 

controllers, defined by the structure presented in Fig. 2, modified from [17]. The elbow 

MIMC velocity controller is defined by: 

 

2
4

rE E LE
0.4z

F (z)º1, F (z) = , G (z) = z
z-0.6

 
 
 

 (8) 
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-1 2
m0E

2

P (z) 1 z 1.3205z + 0.4966
 = 

z 0.00024 0.1761z


 (9) 

where z
-1

 represents the unite delay operator, z
-1 

= e−
sTs

.  

The shoulder MIMC velocity controller is defined by 

 

2
5

rS S LS
0.2z 0.2z

F (z) = , F (z) = , G (z) = z
z 0.8 z-0.8

 
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  
 (10) 

 
-1 2
m0S

2

P (z) 1 z 1.6522z + 0.7047
 = 

z 0.00023 0.0525z


 (11) 

Both MIMC controllers are implemented with the sample time Ts = 0.02 s. 

 

We validated linear models of R3-BEG joints. The parameters of the models were 

estimated based on recordings of the open-loop step responses. The set-points to the 

elbow and shoulder controllers of the R3-BEG are defined in the phase-plane by the 

procedure described in Kostić et al. [14, 15].  

However, to test the closed-loop tracking performance of the low level control (MIMC 

controllers - Equations 8-11), without the influence of higher level control algorithm, sinusoidal 

set-points defined in time were applied to the shoulder and the elbow control systems.  

Results presented in Fig. 3 were obtained for the control system defined in the loop 

with the MIMC elbow velocity controller by Equations 8 and 9. 

  

Fig. 3 Closed-loop responses for the elbow in the loop with MIMC elbow controllers (8) 

and (9): model (red line), plant (black line) and set-point (blue line). 

3 IMPLEMENTATION OF THE R3-BEG 

Two hemiplegic patients signed the informed consent approved by the local ethics 

committee of the Clinic for Rehabilitation "Dr Miroslav Zotović", Belgrade, Serbia. 

Patient P1 had a small range of movement and was highly spastic while the patient P2 had 

a larger range of motion and less pronounced spasticity. The level of disability was 

assessed by an experienced clinician before the beginning of the tests (the Ashworth 

spasticity scale (AS), the action research arm test (ARAT), and the Fugl-Meyer (FM) 

motor test for upper extremities).  
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The session with R3-BEG followed the previously described two-phase procedure. In 

the "demonstration phase", the therapist "presented" the movement to the patient and the 

robot by manipulating the handle while the patient held the instrumented handle and was 

instructed not to resist the imposed movement between the starting and end points.  

The robot was passive (decoupled motors), and sensors captured movement kinematics 

and interface force. Each movement was repeated several times to create the action 

representation using a procedure described in detail elsewhere [Argall et al., 2009). The 

obtained PT provided set-points to the elbow and shoulder MIMC controllers of the R3-

BEG in the phase-plane while the maximal force of assistance was defined as maximal 

interface force exerted by the therapist. 

In the "exercise phase", the robot assisted a patient to perform the desired point-to-

point movement. There were two different movements, one in the ipsilateral direction and 

one in the contralateral direction. The starting position and the target were marked with a 

green and a red circle (diameters D = 4 cm), respectively. The handle was instrumented 

with a laser pointer which projected the position of the handle to allow the patient to 

know the position of the handle.  

Data presented in Figure 4 illustrate the performance of patients P1 and P2, respectively. 

The efficacy of the robotic intervention is documented by two objective measures: 1) the 

Euclidian distance between the reached position and the target point, which relates to the 

range of movement, and 2) the interface force between the hand and the R3-BEG, compared to 

the amount of provided assistance. These metrics were selected based on the recommendations 

of the European scientific community [19]. 

 

Fig. 4 Trajectories achieved by the patients P1 (severe spasticity - left panels) for the two 

target points. F is the force. D is distance between the end point of the trajectory 

and the target T. Right panels show the performance of Patient P2 (mild spasticity) 

As shown in Fig. 4 (left panels), the patient P1 was not able to completely perform the 

task and could not reach the target point in the case in which the handle needed to be 

moved to the contralateral side of his body (the distance between the endpoint of the 

movement and the target was 9.6 cm). However, he encountered fewer problems with the 

radial movement in the ipsilateral direction (D = 2.9 cm). 

The interface force indicates that the robot was assisting the movement all along the 

trajectory. The robot assisted the movement with significant force during the last 25 % of 

the movement (F ≈ 30 N). The force was gradually increasing to about 10 N during the 

first 75% of the movement. This result is by the patent’s impairment (constraints introduced 

by spasticity and decreased the range of movement) Fig. 4 (right panels) illustrates the 
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performance of the patient P2 characterized with mild spasticity. In this case, the interface 

force was substantially smaller compared with the interface force estimated during the 

tests with patient P1. The distance between the endpoint and the target was only 2 cm and 

an interface force never reached F = 15 N. This indicates that the patent used the robotic 

guidance to compensate for the lack of motor control, rather than the compromised range 

of motion, which supports the reported patient impairment. 

4 CONCLUSIONS 

We developed a control method for a rehabilitation robot. The new system was proved 

to be simple for tuning and implementation in the clinical environment. The novel "teach-

and-repeat" method for high-level control, described in [14,15] implemented in this 

scenario was found to be useful for translating the therapist's skills and experience to the 

robot-assisted therapy. The signals from sensors used for control allow direct assessment 

of the differences between passive and active arm movements (range and smoothness of 

the movement and required force assistance). The force controlled interface (haptics) also 

allows the setup of the tasks that need to be trained to improve the performance. 
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