
FACTA UNIVERSITATIS
Series: Electronics and Energetics Vol. 27, No 2, June 2014, pp. 235 - 249
DOI: 10.2298/FUEE1402235S

EXECUTION TIME – AREA TRADEOFF IN GAUSING

RESIDUAL LOAD DECODER: INTEGRATED EXPLORATION

OF CHAINING BASED SCHEDULE AND ALLOCATION IN HLS

FOR HARDWARE ACCELERATORS


Anirban Sengupta
1
, Reza Sedaghat

2
, Vipul Kumar Mishra

1

1
Computer Science and Engineering, Indian Institute of Technology, Indore, India
2
Electrical and Computer Engineering, Ryerson University, Toronto, Canada

Abstract. Design space exploration is an indispensable segment of High Level

Synthesis (HLS) design of hardware accelerators. This paper presents a novel

technique for Area-Execution time tradeoff using residual load decoding heuristics in

genetic algorithms (GA) for integrated design space exploration (DSE) of scheduling

and allocation. This approach is also able to resolve issues encountered during DSE of

data paths for hardware accelerators, such as accuracy of the solution found, as well

as the total exploration time during the process. The integrated solution found by the

proposed approach satisfies the user specified constraints of hardware area and total

execution time (not just latency), while at the same time offers a twofold unified

solution of chaining based schedule and allocation. The cost function proposed in the

genetic algorithm approach takes into account the functional units, multiplexers and

demultiplexers needed during implementation. The proposed exploration system

(ExpSys) was tested on a large number of benchmarks drawn from the literature for

assessment of its efficiency. Results indicate an average improvement in Quality of

Results (QoR) greater than 26 % when compared to a recent well known GA based

exploration method.

Key words: area; high level synthesis; exploration; scheduling; chaining; execution

1. INTRODUCTION

As the complexity of Very Large Scale Integration (VLSI) designs increases, the
design of Application Specific Integrated Circuits (ASIC) should be addressed at higher
levels of abstraction in order to meet the growing challenges. Of late there has been a
major shift among all well-known Electronic Design Automation (EDA) vendors from
traditional Register Transfer Level (RTL) designs to high level synthesis. However, for
comprehensive high level system designs, efficient design space exploration techniques
are required during HLS that can concurrently meet the user specified constraints of


 Received January 27, 2014

Corresponding author: Reza Sedaghat

Electrical and Computer Engineering, Ryerson University, Toronto, Canada
(e-mail: rsedagha@ee.ryerson.ca)

236 A. SENGUPTA, R.SEDAGHAT, VK. MISHRA

hardware area and execution time. Furthermore, design space exploration should also be
able to concurrently resolve the orthogonal issues encountered during DSE, such as
minimizing the time of the exploration process and maximizing the precision required.
Hence, the tremendous advancement of highly complex digital VLSI circuits in the
current generation of portable devices and other electronic products has mainly become
possible owing to the efficient design techniques developed so far [1].

The process of HLS can be broadly classified into three phases. The first phase
involves the conversion of the algorithm into Data Flow Graph (DFG). The second phase
includes scheduling, which assigns operations into the appropriate control steps.
Allocation, the third phase in high level synthesis, is the data-path synthesis that allocates
hardware resources such as registers and busses, and binds the operations of DFG to
functional units [1].

The HLS phase consists of interdependent tasks such as scheduling and allocation.
Scheduling is the process of assigning the operations in specific control step while
resource allocation refers to the assignment of the functional units to perform the
operations, multiplexers and demultiplexers to switch between different inputs and
output. However, the problem of solving the integrated scheduling and allocation by
exhaustive analysis is strictly prohibited [1].

2. RELATED WORK

The problem of design space exploration was addressed in [2], where the authors have
proposed the use of a genetic algorithm in the binding and allocation phase in high level
synthesis. This method involves crossover dependence on the force directed data path
binding completion algorithm. One of the problems with [2] is that the method accepts a
scheduled data flow graph as an input. This clearly signifies the inability of their approach to
resolve the scheduling problem. Authors in [3] have also proposed a genetic algorithm for
time constrained scheduling. The chromosome is encoded with the permutation of
operations, which is decoded by a list decoder, to decode the chromosome into a valid
schedule. However, the approach does not handle chaining and execution time optimization.
In addition, authors in [4] have proposed a problem space genetic algorithm for design space
exploration of data paths. The authors have used the concept of heuristic/problem pair to
convert a data flow graph into a valid schedule. The chromosome is encoded based on the
„work remaining‟ value of each node. One of the problems with approach [4] is that the
second special parent chromosome built in correspondence with the minimum functional
units (i.e. serial implementation) does not differ in the work remaining field of the first
special chromosome. This may not always properly lead to reaching the optimal solution.
Further, the cost function considers only latency and not total execution time. The problem
of design space exploration was also addressed in [5] by suggesting order of efficiency,
which assists in deciding preferences amongst the different Pareto optimal points. Research
in [6] suggested that identification of a few superior design points from the Pareto set
suffices for an excellent design process. Evolutionary algorithms in [7], such as the Genetic
Algorithm (GA), have been suggested to yield better results for the design space exploration
process. The use of GA has also been suggested as a framework for DSE of data paths in
high level synthesis in [8]. Authors in this approach have proposed a priority order based
chromosome for the data schedules and an independent chromosome for the functional units.
Their work uses the robust search capabilities of the genetic algorithm for scheduling and

 Execution Time – Area Tradeoff in GA Using Residual Load Decoder 237

allocation of datapath with the aim to find a solution for both the module selection and
scheduling. One of the drawbacks of [8] is that the approach does not consider resource
binding. Thus, the cost function proposed does not reflect the multiplexer and
demultiplexers‟ resources. Furthermore, like other GA design space exploration approaches,
[8] only considers optimization of latency and area. Another approach introduced by
researchers in [1] was also based on Pareto optimal analysis. According to their work, the
design space was arranged in the form of an architecture vector design space for architecture
variant analysis and optimization of performance parameters. Though the results proved
promising the approach was unable to handle chaining based scheduling. Furthermore in [9]
and [10], authors described another approach to DSE in high level systems based on binary
encoding of the chromosomes. Work shown in [11] for DSE suggests that authors used an
evolutionary algorithm for successful evaluation of the design for an application specific
SoC. Approaches [9]-[11] only considered traditional latency and not the execution time
constraint for data pipelining. The work shown in [12] discusses the optimization of area,
delay and power in behavioral synthesis, but does not focus on the high level design space
exploration using multi chromosomal genetic algorithm nor does it consider execution time
during data pipelining. Furthermore, authors in [13] introduce a tool called
SystemCoDesigner that offers rapid design space exploration with rapid prototyping of
behavioral systemC models. Automated integration was developed by integrating behavioral
synthesis into their design flow, while authors in [14] describe current state-of-the-art high-
level synthesis techniques for dynamically reconfigurable systems. Additionally, authors in
[15]-[17] also used genetic algorithms for scheduling and resource allocation for data path
synthesis. Another class of scheduling methods employed previously was probabilistic in
nature. For example the simulated annealing (SA) and simulated evolution (SE) based
scheduling techniques have been used for the high level synthesis problem. Authors in [18],
[19] have proposed simulated annealing scheduling method called „SALSA‟ which uses
many probabilistic search operators to enhance the performance of SA-based technique for
high level synthesis problem. Moreover, authors have also proposed an extended binding
model for handling the scheduling problem in high level synthesis. Furthermore, authors in
[20] also used SA for scheduling problem with simultaneous minimization of registers and
function units. SE has been proposed by authors in [21] for solving the combined problem of
scheduling and resource allocation in high level synthesis. All aforementioned approaches
[15]-[21], however, do not consider execution time, chaining and data pipelining. In contrast
to the proposed approach, [15]-[17] do not incorporate a special seeding process based on
serial and parallel implementation in order to efficiently guide the GA to optimal/near-
optimal solution. Other previously proposed approaches [22], [23] are based on integer linear
programming (ILP). Here, the computational complexity is massive and although able to
provide good results, consume enormous time. Furthermore, the concept of data pipelining
based on execution time was not shown during system trade-off. Constructive approaches
[24]- [27] are very straightforward to implement but suffer from the major drawback of
leading to poor quality of solutions owing to their greedy nature.

3. THE PROPOSED APPROACH FOR GENETIC ALGORITHM BASED EXPLORATION SYSTEM

(EXPSYS)

The approach proposed in this paper for finding the optimal integrated scheduling,

allocation, binding and module selection, employs a special multi chromosomal compound

238 A. SENGUPTA, R.SEDAGHAT, VK. MISHRA

chromosome structure that has the efficient ability to search the design space. It provides an

integrated solution to the problem of scheduling, allocation and binding by yielding a set of

hardware resources that contains the details of functional units (e.g. number and kind).

Further, this solution reduces the cost function based on constraints provided for hardware

area (consisting of function units, multiplexers, demultiplexers) and execution time

(considering latency, cycle time and number of sets of data to be executed). In order to

reduce the final cost, the module selection indicates the optimal number of resources needed

of each kind, as well as the right version of a specific resource needed from the module

library during implementation The ExpSys has been developed by a new chromosome

encoding technique that consists of separate chromosome structures for each of the

resources, rather than the traditional method consisting of a single chromosome structure to

represent all the resources. Moreover the proposed approach also includes an independent

chromosome representation of the module allocations fields.

3.1 The ExpSys overview

The input to the GA framework is the behavioral description of the dataflow graph

(DFG), or the high level description of the algorithm in C language, that describes the

behavior of the application.

In addition to the behavioral description of the application input to the GA framework

also includes the set of user specified design constraints for hardware area and execution

time (with the user specified weight factors for hardware area-execution time tradeoff),

control parameters for the genetic algorithm, and the module library that contains

specifically three different information viz. maximum resources available, clock cycles

and area. The proposed framework is comprised of two basic units. The first unit is the

proposed heuristic that acts as an input to the skeleton for the genetic algorithm. The

second unit processes the information provided by the first unit to produce a final

integrated scheduling, allocation and module selection solution. The proposed skeleton

(algorithm) for the genetic algorithm is shown is Fig.1. It uses a new heuristic based on

residual load criterion that assigns a specific priority for each operation in the

chromosome structure. The first parent (P1) chromosome of the nodal string (this string is

defined later in Section 4.2) is encoded based on the residual load (α) of each resource

from the ASAP scheduling graph. On the contrary, each operation of the second parent

(P2) nodal string is encoded based on the difference of the latency obtained by using

ASAP scheduling with maximum resource (L
ASAP

) and the residual load (α) for each

operation (oi) obtained for P1 chromosome. Hence, the encoded value of each operation

(oi) of the second parent chromosome is calculated using Equation (1).

ASAP

iL (o)   (1)

The rest of the parents of the population in the nodal string encoded with the residual

load values are obtained by random perturbation. The other parent chromosomes

(P3…..Pn) of the population obtained by the perturbation function should be individuals

lying between the Parent P1 derived from the schedule based on maximum resource and

Parent P2 derived based on minimum resource. This is more logical because the optimal

solution to the integrated problem lies somewhere between the maximum and the

minimum resource. The developed perturbation function, which yields the residual load

values, is given in Equation (2)

 Execution Time – Area Tradeoff in GA Using Residual Load Decoder 239

 PF () / 2   (2)

where „µ‟ is a random value between „α‟ and „β‟. The additional random value „µ‟ is

added to the perturbation function because, in order to have more diversity in the initial

population, the residual load value for the rest of the parents (P3…..Pn) should be

different (Note: This residual load value determines the priority among nodes during the

decoding process. Thus, it is necessary to have different residual load values by adding

the random value to the perturbation function). Moreover, having greater diversity results

in searching all the corners of the design space, thereby assisting in finding the

optimal/near-optimal solution. Ignoring „µ‟ in the above function would encode the nodal

string part for the rest of the parents (P3…..Pn) with the same residual load values,

thereby reducing the diversity of the initial population. The function in Equation (2) is

used when encoding the values of the nodal string for the rest of the parents. On the other

hand, the perturbation of the resource allocation string (this string is defined later in

Section 3.2) for the other parents is obtained by applying the algorithm shown below:

Algorithm

 1) Schedule the DFG using ASAP algorithm and calculate the latency (L).

 2) Generation G =1.

 3) Creation of the initial population by chromosome encoding with priority list of nodes based on

„residual load‟ which is done as follows:

a) Encode the first parent (P1) of the nodal string using the residual load (α) based on the

ASAP schedule. Encode the first parent (P1) of resource allocation string with maximum

resources.

b) Encode the second parent (P2) of the nodal string using residual load (β) calculated as:

L
ASAP

 – α (oi) based on minimum resources. Encode the second parent (P1) of the resource

allocation string with minimum resources.

c) Create the rest of the parent (P3…Pn) of the nodal string with residual load based on the

perturbation function = (α + β)/2 ± µ; where „µ‟ is a random value between „α‟ and „β‟.

 4) Perform crossover with very high probability (Pcross) among parents to create off-springs.

 5) Decode the chromosomes using the proposed „Residual load Heuristic‟ to find scheduling

solutions by binding DFG operations to FU, allocating MUX‟s and DEMUX‟s.

 6) Get information about the functional units (FU) such as versions, area occupied, clock cycle

etc. from the module library.

 7) Calculate the global cost function and determine the fitness of each individual. Global cost

function considers A) Total Area which is a combination of: i) Area of FU ii) Area of MUX iii)

Area of DEMUX. B) Total execution time which is a combination of, i) Latency ii) Cycle time

and iii) Number of sets of data.

 8) Perform mutation on the least fit nodal string chromosome and the resource allocation string

chromosome with probability, Pm = 0.25. Mutation is performed once every generation

 9) Decode the mutated chromosomes using the proposed „Residual load Heuristic‟ to find

scheduling solutions and then calculate the cost of the mutated chromosome again.

10) Select the best population from the set of off-springs and parents from this generation and take

it forward to the next generation. Increment G, (G=G+1) until G< Generation Max

11) End GA Run.

Fig. 1 The proposed skeleton for the ExpSys

240 A. SENGUPTA, R.SEDAGHAT, VK. MISHRA

Perturbation rule for the resource allocation chromosome for rest of the parents

1. Randomly pick any two nodes (v1, v2) from the chromosome that represents the

resource allocation.

2. Randomly select any integer value (i) ranging between or equal to „α‟ and „β‟ for that

specific operation (node). Hence, α <=i<= β

Once the parents for the initial population are formed direct crossover is applied.

Crossover results in creation of off-spring in that generation. For every mating between

two parents, two off-springs can be created. If, for example, size of the parents in the

population is 8, then 16 off-spring will be produced. Therefore, the total population of the

first generation is 24. The next task is to decode the generated individuals of the first

generation by applying a new „residual load heuristic‟ that always results in a valid

schedule. During the process of formation of the schedule solution, the data dependency

is strictly followed before any operation is selected for scheduling. The global cost

function is then determined in order to judge the fitness of each individual solution. The

least fit individual is mutated in order to hope for a better solution. After mutation, the

mutated chromosome is again decoded and its fitness is adjudged. The best fit individuals

from this first generation are then forwarded to the next generation. This process

continues until the maximum generation G(Max) specified in reached.

3.2 Chromosome representation

Suitable encoding of the problem dictates the capability of the genetic algorithm to

find optimal or near–optimal solutions. The proposed approach uses a multi chromosome

structure consisting of independent strings to separately represent the priority of the

nodes of the DFG for each FU type and the resource allocation information. The

approach is called multi chromosomal because each FU (resource) is represented as an

independent substring in the nodal string structure. It has two independent strings to

separately represent the nodes of the DFG (called „nodal string‟) and the resource

allocation (called „resource allocation string‟). The „nodal string‟ contains the residual

load values of each node which will determine the priority of the nodes during

scheduling. The „residual load heuristic‟ is used when decoding the nodal string in order

to obtain a valid scheduling solution. The „resource allocation string‟ contains a list of

integers, which indicate the maximum number of resources allowed during scheduling.

The resource allocation string contains a substring with integers to represent the

maximum number of functional units of each type available for scheduling in every time

step of the schedule. This encoding scheme for both the resource allocation string and

nodal string assures that the genetic algorithm always produces a valid schedule as well

as reaching all the corners of the design space to explore the integrated solution of

scheduling, allocation and binding. The encoding scheme for the „nodal string‟ and the

„resource allocation string‟ is shown with an example of a benchmark „Differential

Equation Solver‟. Small values of delay in cc are used during demonstration. For clarity,

during experimentation real values have been used. The schedule of the DFG of the

differential equation solver using ASAP is shown in Fig.2. The latency (L) obtained is

12cc (Note: Assumes multipliers and adders/subtractors take 4cc and 2cc respectively).

The corresponding chromosome encoding for the first parent (P1) of the nodal string is

shown in Fig. 3(a). The total residual load of each operation (node) is obtained by

summation of the residual load of the successor operations following that node. E.g. for

 Execution Time – Area Tradeoff in GA Using Residual Load Decoder 241

node 1, the residual load is (4+4+2+2) cc = 12cc. The second parent (P2) chromosome is

encoded based on the residual load values obtained using Equation (1). The second parent

(P2) chromosome encoding is shown in Fig. 3(b). The rest of the parents of the initial

population is obtained using Equation (2) which is a perturbation function used to encode

the residual load values. The residual load values for rest of the parents always lie

between the values from the first parent and second parent. This scheme has been

developed because the optimal solution to the problem should always lie between the

serial and maximally parallel implementation [4]. On the other hand, the first parent (P1)

shown in Fig. 3(a) and second parent (P2) of the resource allocation string shown in Fig.

3(b) are based on the user specified maximum and minimum resources respectively. For

example, the first parent (P1) of the resource allocation string shown in Fig. 3(a) consists

of three multipliers, three adders, two subtractors and one comparator. Additionally,

second parent (P2) of the resource allocation string shown in Fig. 3(b) consists of one

multiplier, one adder, one subtractor, and one comparator. The rest of the parents

(P3…P8) of the „resource allocation string‟ are obtained using the algorithm in Fig 3. The

„resource allocation string‟ for the rest of the parents of the initial population is also

encoded with multiplier, adder, subtractor, and comparator option (Note: „M‟, „A‟, „S‟,

„C‟ refers to multipliers, adders, subtractor, and comparators respectively in the resource

allocation string). Thus, the final solution found by the proposed ExpSys is able to

indicate the final combination of multipliers, adders, subtractor, and comparators needed

to implement the problem based on the user specified hardware area and execution time

constraints. The nodal string and the resource allocation string for the rest of the parents

are shown in Fig.4(a) and Fig.4(b) respectively. For example, in case of Fig 4(a), the

encoding of the third parent for the resource allocation string is obtained by first picking

up randomly any two nodes M (multiplier) & A (adder) and then randomly selecting any

integer value between „3‟ and „1‟ for M and between „3‟ and „1‟ for A. The randomly

selected value for both M & A is „2‟. Similarly, the rest of the parent chromosomes can

be built by perturbation. This type of perturbation for the „resource allocation string‟ and

the perturbation function for the „nodal string‟ described before aids in searching all the

possible combinations of the design space so that the GA can reach an optimal or near-

optimal solution.

Fig. 2 Scheduling of Differential equation solver using ASAP

242 A. SENGUPTA, R.SEDAGHAT, VK. MISHRA

Fig. 3 Chromosome encoding for the first parent (a) and second parents (b)

Fig. 4 Chromosome encoding for the third parent (a) and fourth parent (b)

Fig. 5 Crossover between P1 and P2

 Execution Time – Area Tradeoff in GA Using Residual Load Decoder 243

3.3 Crossover technique

Crossover is a technique for producing off-spring when two parents mate. The parents

are selected by a binary tournament selection method [28]. In this work, we propose the

independent direct crossover of the two independent strings viz. nodal string and resource

allocation string to produce separate off-spring for each with a very high crossover

probability (Pcross = 1.0). Furthermore, the direct crossover is applied to each sub structure

of the nodal string structure. For example, direct crossover is independently applied to

adder substring, multiplier substring, subtractor substring, etc. of each nodal string as well

as resource allocation string. Since the nodal string encodes the residual load of each

operation for a particular FU, the crossover results in crossing only the residual load values.

Hence the precedence relationship among the operators is not disobeyed.

3.3.1 Multi-point crossover of the nodal string

Before the crossover scheme can be applied to the nodal strings, the two parents are
randomly divided into two halves at point n. The crossover point selected during crossing
is absolutely random. This is because the nodal string is encoded with residual load
values of the nodes and crossover operation only crosses the residual load values, hence
choosing a random cut point for crossover does not disturb the precedence relationship
among the nodes. Only random cut point has been used in the proposed work as this
technique has been widely used by other approaches and provided efficient results. The
proposed crossover is called multi-point because each substring of the nodal string
representing independent FUs is divided at a different point. For example, applying the
direct crossover operator to the nodal string between the first parent (Fig. 3(a)) and
second parent (Fig.3(b)) at point 2 for multiplier and point 1 for adder and subtractor,
yields offspring 1 and offspring 2 respectively. Offspring 1 inherits all the properties of
the first half from the first parent, while the second half of the offspring is inherited from
the second parent. The properties that are inherited from the parents are the residual load
values and its corresponding node numbers (operations). The offspring 1 obtained after
crossover between P1 and P2 is shown in Fig 5(a), while offspring 2 obtained after
crossover between P2 and P1 is shown in Fig. 5(b). Similarly the other offspring are
obtained by crossing between the rest of the parents. For the sake of brevity, the rest of
the offspring obtained have been omitted in this paper.

3.3.2 Crossover of the resource allocation string

The resource allocation string is responsible for encoding the number of hardware
functional units of each type available for scheduling operations in each time step. Since
the number of allocated functional units of each type is totally independent of each other,
the 1-point crossover can be easily applied. For instance, in the case of the DFG for
differential equation solver benchmark, the two parents (P1 and P2) for the resource
allocation string are shown in Fig. 3(a) and 3(b) respectively. P1 represents a solution
with three multipliers, three adders, two subtractors and one comparator while P2
represents a solution with one multiplier, one adder, one subtractor and one comparator.
Application of the direct crossover at a random cut point between P1 and P2 yields
offspring 1 while crossing between P2 and P1 yields offspring2 as shown in Fig 5(b).

244 A. SENGUPTA, R.SEDAGHAT, VK. MISHRA

3.4 Mutation operation

3.4.1 Mutation operator of the nodal string

The mutation algorithm for resource allocation string is adopted from [8] based on
random increment or decrement while mutation for nodal string is shown below:

Algorithm
1. Randomly pick any two nodes (vi, vj) from the nodal string [k].
2. Swap the residual load values of the two selected nodes.

If, vi = Li and vj = Lj, then,
 vi = Lj and vj = Li.

According to the algorithm, any two nodes (vi, vj) in the string (k) are randomly selected
for mutation. Next, the residual load values of the two selected nodes are swapped. For
example, let the residual load value for the two nodes (vi) and node (v2) selected be „L1‟
and „L2‟ respectively. Therefore, after mutation the new residual load values for node (vi)
is „L2‟ and node (vj) is „L1‟. This mutation technique drastically alters the residual load
values, which act as the priority to select the operations for scheduling. As a result of this
drastic alteration, the new operation to be scheduled can vastly affect the scheduling cost.

3.5 Decoding process (determination of a valid schedule)

The decoding of chromosomes always results in a valid scheduling solution, which
strictly obeys the data dependency present between the operations. For the decoding
process, a „residual load heuristic‟ is proposed. The residual load heuristic is shown in
Fig. 6. For example, in the case of offspring 1, the resource allocation string and the
nodal string are shown in Fig.5(a) and Fig.5(b) respectively. The resource allocation
string of offspring1 represents an allocation solution containing three multipliers, three
adders, one subtractor, and one comparator. On the other hand, the priority of each
operation for a particular type of FU is indicated by the residual load values in the nodal
string (Fig.5(b)). Therefore, for the dataflow graph shown in Fig.3, the scheduling
solution of offspring 1 is shown in Fig. 7. The resulting solution is a valid schedule,
allocation and binding obtained for offspring 1. The solution provides an integrated
solution to the concurrent problem of scheduling, allocation and binding.

3.6 Global cost function and fitness evaluation methodology

The proposed approach objective is to simultaneously reduce the execution time

required for a specific set of data as well as the total hardware area occupied. Most of the

previous approaches [2], [4], [7], [8] have only considered latency as a design constraint

and not total execution time, which considers the latency, cycle time and also the number

of sets of data to be executed. In the presented approach, a comprehensive cost function

has been developed that considers the total execution delay, taking data pipelining as well

as the total hardware area into account. The decoding process strictly follows the

„residual load heuristic‟ and hence always results in a feasible solution. The cost function

(CG) developed considers total execution time and area is shown in Eq. (3).

 Execution Time – Area Tradeoff in GA Using Residual Load Decoder 245

Fig. 6 Flow chart for residual load heuristic

Fig. 7 Chaining schedule and allocation to offspring 1 (Decoded)

246 A. SENGUPTA, R.SEDAGHAT, VK. MISHRA

 EXE CONS FU MUX DEMUX CONS
G

MAX MAX

T T [A (A A)] A
C W1 W2

T A

   
    (3)

TEXE = Total execution time taken for execution of the given sets of data; where TEXE is

calculated using the function from [1] given in equation (4):

EXE CT {L (N 1) T }    (4)

L= Latency of the scheduling solution. TC = Cycle time of the scheduling solution. (Note:

The cycle time is the difference in clock cycles between any consecutive outputs of

pipelined data instances. The cycle time information is therefore not extracted from the

module library since it is not readily available, i.e. the cycle time calculation for the

integrated solution (Fig. 7). The output for first set of data is arriving after 14cc while the

output for second instance of data is arriving after 26cc. Thus, due to pipelining there is a

cycle time difference of 12 cc resulting from considering the initiation interval. Therefore

the option of cycle time during pipelining which is the resulting effect of considering

initiation interval during data pipelining has been also taken into account during the

exploration process.

AT= Total area calculated using Eq. 5.

 T FU MUX DEMUXA = A +(A +A) (5)

N = Number of sets of data to be executed.

CG = Global Cost of the integrated solution

TCONS = Execution time specified by the user.

TMAX = Max execution time taken by a solution during the specific generation (G).

AFU = Total area of the functional units.

AMUX = Total area of the multiplexer used during implementation.

ADEMUX = Total area of the demultiplexers used during implementation.

ACONS = Area constraint specified by the user.

AMAX = Max hardware area of a solution during the specific generation (G).

W1 and W2 = User specified preference of the constraints.

The cost function requires input from various sources to evaluate the fitness of each

solution found. For the calculation of the execution time, the sources consist of: a)

module library information, b) data extracted for the hardware implementation, c) data

flow graph and d) scheduling solution found after decoding the chromosome (latency),

number of sets of data, cycle time together.

3.7 Termination criterion for the genetic algorithm

The maximum generation has been kept constant for each benchmark run. Although

making the number of generations proportional to the problem size is more logical,

settling on an average number of maximum generations for both small and large size

benchmarks is a good compromise. Therefore, experiments dictated that retaining the

maximum generation G(Max) at 100 is an optimal compromise.

 Execution Time – Area Tradeoff in GA Using Residual Load Decoder 247

4. EXPERIMENTAL RESULTS

Various DSP benchmarks [29], [30] such as digital filter, Auto Regressive Filter

(ARF), Discrete Wavelet Transformation (DWT), Digital Butterworth filter, Band Pass

Filter (BPF) and Elliptic Wave Filter (EWF), MPEG Motion Vectors, MESA: Matrix

Multiplication and JPEG: Down sample were tested and verified. The proposed approach

has been implemented in Java and run on Intel core i5-2450M processor, 2.5 GHz with

3MB L3 cache memory and 4GB DDR3 RAM. ExpSys finds optimal/near-optimal

results for all the benchmark applications. Moreover, the proposed ExpSys was also

compared to [8] with respect to the mentioned benchmarks under the same constraints to

make a qualitative assessment and strength of the proposed approach. The proposed

achieved better quality of result (determined by Eq.6) as shown in Table I. Furthermore,

ExpSysalso considers cycle time resulting from initiation interval and latency to create a

genuinely pipelined functional data-path during performance calculation. [8], on the other

hand, is not able to optimize the execution time considerably due to its inability to create

a genuinely pipelined functional data-path. Thus, for determining of execution time in

[8], “N” set of processing data is multiplied directly with the latency as per:
[8]

EXET N*L. Where the QoR is determined as:

max max

1

2

T EXEA T
QoR

A T

 
  

 
 (6)

With respect to achieved QoR, ExpSys produces better solutions compared to [8] for all

the benchmarks as evident in Table 1. For example, in the case of ARF benchmark, the

optimal resource configuration found 3 (*) and 1(+), the area of solution is 10934au, the

execution time is 54281µs and the QoR is 0.35. On the other hand [8], based on same

constraints, yields an optimal resource configuration which is 4(*), 1(+) with 13776au

area, 45630 µs execution time and 0.36 QoR. ExpSys achieves an average improvement

in QoR greater than 26% (Table 1).

5. CONCLUSION

This paper proposed a novel technique for Area-Execution time tradeoff using

residual load decoding heuristics in genetic algorithm (GA) for integrated design space

exploration (DSE). To the best of the authors‟ knowledge, this approach is the first

GAbased DSE method for Area-Execution time tradeoff in HLS. Based on the results

obtained from the experiment, the proposed ExpSys is able to provide not only

competitive but also superior results for almost all tested DSP benchmarks.

Acknowledgement: This work is supported by the Optimization and Algorithm Research Lab

(OPRAL), Ryerson University, Canadian Microelectronics Corporation (CMC), Motorola, NSERC

CRSNG, Ontario Innovation Trust and Sun Microsystems. Additionally, This work acknowledges

the assistance provided by Science and Engineering Research Board (SERB), Department of

Science and Technology, Govt. of India.

248 A. SENGUPTA, R.SEDAGHAT, VK. MISHRA

REFERENCES

[1] AnirbanSengupta, Reza Sedaghat, ZhipengZeng, “A High Level Synthesis design flow with a novel

approach for Efficient Design Space Exploration in case of multi parametric optimization objective”,

Microelectronics Reliability, Elsevier, Volume 50, Issue 3, March 2010, Pages 424-437.
[2] C. Mandal, P. P. Chakrabarti, and S. Ghose, “GABIND: A GA approach to allocation and binding for the

high-level synthesis of data paths,” IEEE Transaction on VLSI, vol. 8, no. 5, pp.747–750, Oct. 2000.

Table 1 Experimental results of comparison with [8] for the DSP benchmarks

DSP

Benchmarks

Parameters of Comparison (Note: us = micro seconds and au = area unit; au = 1Transistor,

G(Max)=100 and W1=W2=0.5)

Optimal Resource combination
Execution Time

N=1000 (us)

Area

(au)
QoR

 ExpSys [8] ExpSys [8] ExpSys [8] ExpSys [8]

Auto Regressive

Filter (ARF)

FU 3(*),1(+) 4(*),1(+)
54281us 45630us 10934au 13776au

0.35 0.36 Mux 8 10
Constraint
70000us

Constraint
15000au Demux 4 5

Discrete

Wavelet

Transformation

(DWT)

FU 4(*),1(+) 2(*),1(+)
10844us 66420us 13776au 8092au

0.38 0.56
Mux 10 6

Constraint

30000us

Constraint

10000au Demux 5 3

Digital

Butterworth

Filter

FU 2(*),1(+) 3(*),1(+)
22880us 22410us 8092au 10934au

0.42 0.49 Mux 6 8
Constraint

30000us

Constraint

9000au Demux 3 2

Band Pass

Filter (BPF)

FU 4(*),1(+) 2(*),1(+)
11642us 68310us 13776au 8092au

0.42 0.52 Mux 10 6
Constraint
30000us

Constraint
15000au Demux 5 3

Elliptic Wave

Filter (EWF)

FU 3(*),1(+) 2(*),2(+)
21085us 46440us 10934au 10500au

0.45 0.57
Mux 8 8

Demux 4 4
Constraint

50000us

Constraint

8000au

JPEG

Downsample

FU 2(*),1(+) 1(*),1(+)
10818us 29700us 8092au 5250au

0.31 0.59 Mux 6 4
Constraint

15000us

Constraint

15000au Demux 3 2

MPEG Motion

Vector

FU 4(*),1(+) 5(*),1(+)
32680us 35640us 13776au 16618au

0.24 0.27 Mux 10 12
Constraint
40000us

Constraint
25000au Demux 5 6

Discrete Cosine

Transformation

(DCT)

FU 4(*),1(+) 2(*),2(+)
31467us 88290us 13776au 10500au

0.33 0.47 Mux 10 8
Constraint
50000us

Constraint
15000au Demux 5 4

MESA Horner

FU 3(*),1(+) 2(*),1(+)
10843us 65070us 10934au 8092au

0.35 0.59
Mux 8 6

Demux 4 3
Constraint

25000us

Constraint

12000au

MESA Matrix

Multiplication

FU 7(*),1(+) 4(*),2(+) 53628us 132570us 32570au 16184au

0.19 0.24 Mux 16 12 Constraint

200000us

Constraint

40000au Demux 8 6

 Execution Time – Area Tradeoff in GA Using Residual Load Decoder 249

[3] M. J. M. Heijlingers, L. J. M. Cluitmans, and J. A. G. Jess, “High-level synthesis scheduling and

allocation using genetic algorithms,” in Proc. ASP-DAC., pp. 61–66, 1995.
[4] M. K. Dhodhi, F. H. Hielscher, R. H. Storer, and J. Bhasker, “Datapath synthesis using a problem-space

genetic algorithm,” in IEEE Trans.Comput.-Aided Des., vol. 14, pp. 934–944,1995.

[5] I. Das. A preference ordering among various Pareto optimal alternatives. Structural and Multidisciplinary
Optimization, 18(1):30–35, Aug. 1999.

[6] Alessandro G. Di Nuovo, Maurizio Palesi, Davide Patti, Fuzzy Decision Making in Embedded System

Design,” Proc. of 4th Intl Conference on Hardware/Software Codesign and System synthesis, pp: 223-228,
October 2006.

[7] J. C. Gallagher, S. Vigraham, and G. Kramer,“A family of compact genetic algorithms for intrinsic

evolvable hardware,” IEEE Trans. Evolutionary Computation., vol. 8, no. 2 , pp. 1–126, Apr. 2004.
[8] Vyas Krishnan and SrinivasKatkoori, “A Genetic Algorithm for the Design Space Exploration of

DatapathsDuring High-Level Synthesis, IEEE Tran.on Evolutionary Computation, vol.10, no.3, 2006.

[9] E. Torbey and J. Knight, “High-level synthesis of digital circuits using genetic algorithms,” in Proc. Int.
Conf. Evol. Comput., pp.224–229, May 1998.

[10] E. Torbey and J. Knight, “Performing scheduling and storage optimization simultaneously using genetic

algorithms,” in Proc. IEEE Midwest Symp. Circuits Systems, pp. 284–287, 1998.

[11] Giuseppe Ascia, Vincenzo Catania, Alessandro G. Di Nuovo, Maurizio Palesi, Davide Patti, “Efficient
design space exploration for application specific systems-on-a-chip” Jrnl of Systems Architecture 53,

pp:733–750, 2007.

[12] A.C.Williams, A.D.Brown and M.Zwolinski,“Simultaneous optimisation of dynamic power, area and
delay in behavioural synthesis”, IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 6, pp: 383-390, 2000.

[13] Christian Haubelt, Thomas Schlichter, Joachim Keinert, Mike Meredith, “SystemCoDesigner: automatic

design space exploration and rapid prototyping from behavioral models”, Proceedings of the 45th annual
ACM IEEE Design Automation Conference, Pages 580-585, 2008.

[14] Xuejie Zhang and Kam W. Ng, “A review of high-level synthesis for dynamically reconfigurable

FPGAs”, Microprocessors and Microsystems, Elsevier, Volume 24, Issue 4, Pages 199-211,1 2000.

[15] N. Wehn et al., “A novel scheduling and allocation approach to datapath synthesis based on genetic

paradigms,” in Proc. IFIPWorking Conf. Logic Architecture Synthesis, pp. 47–56, 1991.

[16] R. M. San and J. P. Knoght, “Genetic algorithms for optimization of integrated circuit synthesis,” in Proc.
5th Int. Conf. Genetic Algorithms, San Mateo, CA, pp. 432–438, 1993.

[17] R. J. Cloutier and D. E. Thomas, “The combination of scheduling, allocation and mapping in a single

algorithm,” in Proc. 27th Design Automation Conf., pp. 71–76, Jun. 1990.
[18] J. A. Nestor and G. Krishnamoorthy, “SALSA: A new approach to scheduling with timing constraints,”

IEEE Trans. Comput.-Aided Des., vol. 12, pp. 1107–1122, 1993.

[19] G. Krishnamoorthy and J. A. Nestor, “Data path allocation using extended binding model,” in Proc. 32nd
ACM/IEEE Design Automation Conf., pp. 279–284, 1992.

[20] S. Devadas and A. R. Newton, “Algorithms for hardware allocation in data path synthesis,” IEEE Trans.

Comput.-Aided Des., vol. 8, pp.768–781, 1989.
[21] T. A. Ly and J. T. Mowchenko, “Applying simulated evolution to high level synthesis,” IEEE Trans.

Comput.-Aided Des., vol. 12, no. 2, pp.389–409, Feb. 1993.

[22] C. H. Gebotys and M. I. Elmasry, “Global optimization approach for architectural synthesis,” IEEE Trans.
Comput.-Aided Des., vol. 12, pp. 1266–1278, 1993.

[23] C. T. Hwang, J. H. Lee, Y. C. Hsu, and Y. L. Lin, “A formal approach to the scheduling problem in high-

level synthesis,” IEEE Trans. Comput.- Aided Des., vol. 10, no. 2, pp. 464–475, Feb. 1991.
[24] G. De Micheli, Synthesis and Optimization of Digital Circuits. New York: McGraw-Hill, 1994.

[25] R. Camposano, “Path-based scheduling for synthesis,” IEEE Trans.CAD., vol. 10, pp. 85–93, 1991.

[26] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the behavioral synthesis of ASICs,” IEEE
Trans. Comput.-Aided Des., vol. 8, no.6, pp. 661–679, 1989.

[27] A. C. Parker, J. T. Pizarro, and M. Mlinar, “Maha: A program for datapath synthesis,” in Proc. 23rd

ACM/IEEE Design Automation Conf., 1986, pp. 461–466.
[28] T. Blickle and L. Thiele, “A mathematical analysis of tournament selection,” in Proc. 6th Int. Conf.

Genetic Algorithms, pp. 9–16, 1995.

[29] http://www.cbl.ncsu.edu/benchmarks/.
[30] Saraju P. Mohanty, NagarajanRanganathan, Elias Kougianos and PriyadarsanPatra, “Low-Power High-

Level Synthesis for Nanoscale CMOS Circuits” Chapter- High-Level Synthesis Fundamentals, Springer

US, 2008.

